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Abstract. In 1986 V.V. Uspenskij proved that there exists a universal topological group with a countable
base and in 1990 put the problem: does there exist a universal topological group of weight an uncountable
cardinal τ? This problem is still open. In 2015 we gave the notion of a continuously containing space for a
given collection of topological groups and proved that there exists such a space of weight τ for the collection
of all topological groups of weight ≤ τ. In the present paper we prove that in the class of all topological
spaces of weight ≤ τ, which are continuously containing spaces for a collection of topological groups, there
are universal elements.

1. Introduction and Preliminaries

The development of Topology is directly connected with the consideration of new classes of objects. One
of the main question, which naturally arises in the consideration of any new class of topological spaces,
is whether there are universal elements, that is elements of this class, containing topologically all other
elements of the class. This fact is emphasized in the paper [1] (see Section 3.3, Problem 7 and Problem 8),
where the following two general problems are posed:

“Problem 7. Let P be a given class of topological spaces. Determine (if that is possible) “standard”
topological spaces Y, into which it is possible to imbed each space in P. Find the simplest such space Y.”

A variant of Problem 7 is the following universal object problem:

“Problem 8. Which classes P of topological spaces contain a space X into which each space in P imbeds?”
Here, the spaces Y of the above Problem 7 will be called containing spaces for P and the spaces X of the

Problem 8 universal spaces in P.
The above problems can be posed not only in classes of topological spaces but also in any category,

where the notion of “embedding” is defined. Universal objects for many categories are constructed in [10],
where (see also [8]) a method of construction of universal and containing spaces is developed. In the papers
[3–7], [9, 11–19] using this method universal objects are also constructed for categories of: topological spaces
(with different dimension invariants), separable metric spaces, mappings, topological groups and frames.

Concerning topological groups we recall that a topological group T is universal in a classG of topological
groups if T ∈ G and each element X ∈ G is isomorphic to a subgroup of T. Two universal elements for the
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class of all separable metrizable topological groups are constructed in [21, 22]. These universal elements
are the group of all self-homeomorphisms of the Hilbert cube with the topology of uniform convergence
and the group of isometries of the Urysohn universal metric space. Another such a space is constructed in
[2]. Universal elements in categories of (metrizable) Abelian topological groups are considered in [20]. But
the problems of the existence of universal elements for some classes of topological groups remain open.
Such classes are the class of all topological groups (see Question 2 of [22]) and the class of all metrizable
topological groups (see Problem 4 of [20]) of a given uncountable weight. Other classes of topological
groups (connected with dimensions), in which the problems of the existence of universal elements is still
open, are given in the paper [15].

In the paper [15], so-called spaces, continuously containing all elements of a given collection of topo-
logical groups, were introduced as an alternative of universal topological groups. It was proved that there
exists a continuously containing space for the collection of all topological groups of weight ≤ τ. In the
present paper, using the above mentioned method of [8, 10], we construct universal elements in classes
of continuously containing spaces. Below, we recall the definition of these spaces and briefly explain the
construction of Containing Spaces, denoted by T(B,R), which will be the corresponding universal elements.

Assumptions and notations. In this paper we assume that all considered spaces and topological groups
are T0-spaces of weight ≤ τ, where τ is a fixed infinite cardinal. The symbol “ ≡ ” in an expression means
that one or both sides of the expression are new notations. The symbol “×′′ will be used for the product
of sets. The operation in each topological group X will be called product and the product of two subsets
A ⊂ X and B ⊂ X will be denoted by AB or by (AB)|X if we like to indicate the group in which the product
is considered. The inverse element of an element x ∈ X will be denoted by x−1 or by x−1

|X. We put
A−1
≡ A−1

|X = {x−1
|X : x ∈ A}. (We note that if A or B is empty set, then A × B = AB = ∅.)

Definition 1.1. [Continuously containing spaces; see [15]] Let Q be a topological space, and let G be a
collection of subsets of Q such that each element of Gwith the relative topology is a topological group. We
say that G is continuous if the following conditions hold:

(1) for any two points x and y of Q, belonging to an element X of G, and for each neighbourhood U of
xy ∈ X in Q, there exist neighbourhoods V and W of x and y, respectively, in Q such that, for each element
Y ∈ G, we have

((V ∩ Y)(W ∩ Y))|Y ⊂ U ∩ Y;

(2) for each point x of Q, belonging to an element X of G, and for each neighbourhood U of x−1
∈ X in Q

there exists a neighbourhood V of x in Q such that for each element Y ∈ Gwe have (V ∩ Y)−1
|Y ⊂ U ∩ Y;

(3) the union of all elements of G is Q.

Let G be an indexed collection of topological groups. We say that a topological space Q is a continuously
containing space for G if for each element X ∈ G there exists a topological embedding hX

Q of X into Q
(therefore, the subset hX

Q(X) of Q with the relative topology is a topological group) such that the collection
{hX

Q(X) : X ∈ G} of subsets of Q is continuous. In this case, we shall say that Q is a continuously containing
space for G with respect to the collection {hX

Q : X ∈ G} of embeddings.

Assumption. In what follows of this note, for convenient of notation, whenever we consider an arbitrary
continuously containing space Q for an indexed collection G of topological groups with respect to a
collection {hX

Q : X ∈ G} of embeddings, we shall identify each point x ∈ X ∈ G with the point hX
Q(x) and

therefore the group X will be identified with the subset hX
Q(X) of Q.

On the Containing Spaces T(B,R) (see Section 2 of [8] and Chapter 1 of [10]). Let S be an indexed collection
of spaces. Any Containing Space, denoted by T(B,R), is uniquely determined by a base B for S (in [8, 10] the
base B is called mark):

B ≡ {{UX
δ : δ ∈ τ} : X ∈ S}, (1.1)

where {UX
δ : δ ∈ τ} is an indexed base for the open subsets of X ∈ S, and by a family R of equivalence relations

on S:
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R ≡ {∼s: s ∈ F }, (1.2)

where F is the set of all non-empty finite subset of τ. From the family R it is required that the following
conditions are satisfied:

(a) the number of equivalence classes of the relation ∼s, s ∈ F , is finite;
(b) ∼s

⊂∼
t for each t ⊂ s ∈ F ;

(c) for each s ∈ F and X,Y ∈ S the condition X ∼s Y implies that the algebra AX
s of subsets of X,

generated by the set {UX
δ : δ ∈ s}, is isomorphic to the algebra AY

s of subsets of Y, generated by the set
{UY

δ : δ ∈ s}. Moreover, there is an isomorphism i : AX
s → AY

s such that i(UX
δ ) = UY

δ for each δ ∈ s. A family R
of equivalence relations on S, satisfying only conditions (a) and (b), is called admissible and if, additionally,
R satisfies condition (c), then R is called B-admissible.

We denote by C(∼s) the set of all equivalence classes of the relation ∼s and put C(R) = ∪{C(∼s) : s ∈ F }.
We recall the construction of the Containing Space T ≡ T(B,R). Suppose that (1.1) is a base for a collection

S of spaces and (1.2) is a B-admissible family of equivalence relations on S. On the set P of all pairs (x,X),
where x ∈ X ∈ S, we define an equivalence relation, denoted by ∼B

R, as follows. Two pairs (x,X), (y,Y) ∈ P
are ∼B

R-equivalent if and only if (a) X ∼s Y for each s ∈ F and (b) for each δ ∈ τ we have x ∈ UX
δ if and only

if y ∈ UY
δ . The set T is the set of all equivalence classes of the relation ∼B

R. The set

BT
≡ {UT

δ (H) : δ ∈ τ,H ∈ C(R)},

where UT
δ (H) is the set, consisting of all point a ∈ T such that there exists an element (x,X) ∈ a for which

X ∈ H and x ∈ UX
δ (and, therefore, for each element (x,X) ∈ a we have X ∈ H and x ∈ UX

δ ), is a base for a
topology on T (see Lemma 2.8 of [8]).

The mapping iXT of X into T, defining by relation iXT (x) = a ∈ T, where x ∈ X ∈ S and a is the point of T,
containing the pair (x,X), is an embedding of X into T. This embedding is called natural (see Proposition
2.10 of [8]).

We shall use also the notion of an extension of bases for S and the notion of final refinement of a family
of equivalence relations on S. Let

B1 ≡ {{UX
1,δ : δ ∈ τ} : X ∈ S} and B2 ≡ {{UX

2,δ : δ ∈ τ} : X ∈ S}
be two bases for S. We say that B2 is an extension of B1 if there exists an one-to-one mapping ϕ : τ→ τ such
that UX

1,δ = UY
2,ϕ(δ), δ ∈ τ. In this case ϕ is called the extension mapping from B1 to B2. Let

R1 ≡ {∼
s
1: s ∈ F } and R2 ≡ {∼

s
2: s ∈ F }

be two families of equivalence relations on S. We say that R2 is a final refinement of R1 if for each s ∈ F there
exists t ∈ F such that ∼t

2 ⊂∼
s
1.

Now, we define the notion of a saturated class of spaces (see Section 3 of [8] and Chapter 2 of [10]). Let
S be a class of spaces. We say that S is saturated if for each indexed collection S of elements of S, there exists
a base B0 for S with the following property: for every extension B of B0, there exists a B-admissible family
RB of equivalence relations on S such that, for each admissible family R of equivalence relations on S being
a final refinement of RB, the containing space T(B,R) belongs to S. The base B0 is called initial base for S
(corresponding to the class S) and the family RB initial family of equivalence relations on S corresponding to B (and
the class S).

Below, we indicate some saturated classes of spaces.
(1) the class of all completely regular spaces of weight ≤ τ (see Proposition 3.8 of [8]);
(2) the class of all completely regular n-dimensional spaces (in the sense of ind) of weight ≤ τ (see

Corollary 3.1.6 of [10]);
(3) the class of countable-dimensional spaces (in the sense of ind) of weight ≤ τ (see Proposition 4.4.4 of

[10]);
(4) the class of strongly countable-dimensional spaces (in the sense of ind) of weight ≤ τ (see Proposition

4.4.4 of [10]).
(5) the intersection of any two saturated classes of spaces.

Many other saturated classes are indicated in [10].
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The results. Let Qi, i = 1, 2, be a continuously containing space for an indexed collection Gi, i = 1, 2, of
topological groups. We say that an embedding f : Q1 → Q2 is proper if there exists a mapping ϕ : G1 → G2
such that for each X ∈ G1, the restriction f |X of f onto X is an isomorphism of X onto ϕ(X).

Let C be a class of continuously containing spaces for indexed collections of topological groups. We
say that an element T ∈ C is properly universal in this class if for each element X ∈ C there exists a proper
embedding of X into T.

The main results of this paper are stated in the following theorem.

Theorem 1.2. Let S be a saturated class of spaces and G a collection of topological groups. Then:
(1) in the subclass C(G) of S of all continuously containing spaces for the indexations of G there are properly

universal elements;
(2) in the subclass C of S of all continuously containing spaces for indexed collections of topological groups, there

are properly universal elements.

Considering in the above theorem S as concrete saturated classes we obtain different results, which are
independent each of other. For example, since the classes of all completely regular spaces and all completely
regular n-dimensional spaces (in the sense of ind) are saturated we have the following corollaries.

Corollary 1.3. (1) In the class of all completely regular spaces, which are continuously containing spaces for index-
ations of a fixed collection of topological groups, there are properly universal elements.

(2) In the class of all completely regular spaces, which are continuously containing spaces for indexed collections
of topological groups, there are properly universal elements.

Corollary 1.4. (1) In the class of all completely regular n-dimensional spaces (in the sense of ind), which are
continuously containing spaces for indexations of a fixed collection of topological groups, there are properly universal
elements.

(2) In the class of all completely regular n-dimensional spaces (in the sense of ind), which are continuously
containing spaces for indexed collections of topological groups, there are properly universal elements.

2. Proof of Theorem 1.2

Let Q be a continuously containing space for an indexation Gin of the collection G of topological groups.
We define a subset AQ of Q × Q, a mapping pQ : AQ → Q, and a mapping iQ : Q → Q as follows: a point
(x, y) ∈ Q ×Q belongs to AQ if and only if there exists an element X ∈ Gin such that x, y ∈ X. In this case we
put pQ(x, y) = (xy)|X and iQ(x) = x−1

|X.

Lemma 2.1. Let Q be a continuously containing space for an indexation Gin of the collection G of topological groups.
Then, the mappings pQ and iQ are well-defined (that is, they are independent of the topological group X ∈ G that is
considered in their definitions) and continuous.

Proof. Let x, y ∈ X ∩ Y, where X,Y ∈ Gin. To prove that pQ is well-defined it suffices to prove that for
each points x, y ∈ X ∩ Y we have (xy)|X = (xy)|Y. Suppose that (xy)|X , (xy)|Y. Consider, for example, a
neighbourhood U of (xy)|X in Q such that (xy)|Y < U. Since Q is a continuously containing space for Gin
there exist neighbourhoods V and W of x and y in Q, respectively, such that

((V ∩ Z)(W ∩ Z))|Z ⊂ U (2.1)

for neach Z ∈ Gin. Then, since x ∈ V ∩ Y and y ∈ W ∩ Y for Z = Y we must have (xy)|Y ∈ U, which is a
contradiction. Similarly we prove that iQ is well-defined.

Now, we prove that pQ is continuous. Let (x, y) ∈ AQ and let U be a neighbourhood of pQ(x, y) in Q. Then,
there exists X ∈ Gin such that x, y ∈ X and therefore pQ(x, y) = (xy)|X = xy. Consider the neighbourhoods
V and W of x and y in Q respectively, which satisfy relation (2.1) and put H = AQ ∩ (V ×W). Then, H is
a neighbourhood of the point (x, y) in AQ. We prove that pQ(H) ⊂ U. Indeed, let (x′, y′) ∈ H. Then, there
exists Z ∈ Gin such that x′, y′ ∈ Z and therefore x′ ∈ V ∩ Z and y′ ∈ W ∩ Z. By relation (2.1) we have
x′y′ = pQ(x′, y′) ∈ U, proving that pQ is continuous. Similarly we prove that iQ is continuous.
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2.2 Proof of the case (1) of Theorem 1.2. By set-theoretical reasons, we can assume that there exists a
collection Q(G) of elements of C(G) having the following property: for each continuously containing space
Q for an indexation of G with respect to some collection of embeddings there exists a proper embedding of
Q onto an element of Q(G). Moreover, we can suppose that Q(G) is indexed by a set MG, that is

Q(G) = {Qµ : µ ∈MG}.

In the rest of the proof of the case (1) we put M = MG and Q = Q(G). Therefore, each element Qµ ∈ Q,
µ ∈M, is a continuously containing space for an indexation Gµ of G by a set Λµ:

Gµ ≡ {X(µ,λ) : λ ∈ Λµ}, (2.2)

with respect to an indexed collection {hX(µ,λ)

Qµ
: λ ∈ Λµ} of embeddings. We shall prove that there is an object

T ∈ C(G) such that for each element Q ∈ Q there is a proper embedding of Q into T. In this case, since the
composition of proper embeddings is a proper embedding, for each space Q ∈ C(G) there will be a proper
embedding of Q into T, that is T will be the required proper universal element. This will prove the case (1).

The space T will be constructed as the Containing Space T(B,R) for some indexed base B for Q and
suitable B-admissible family R of equivalence relations on Q. Below, we give the construction of B and R.

We define the base B to be an arbitrary initial base for Q corresponding to the saturated class S. We will
assume that

B = {{WQµ

η : η ∈ τ} : µ ∈M},

where {WQµ

η : η ∈ τ} is an indexed base for the open subsets of the space Qµ.
We define the family

R ≡ {∼s: s ∈ F }

to be an initial family of equivalence relations on Q, corresponding to the base B and the class S, satisfying
the following two conditions:

(A) for each s ∈ F and for each two ∼s-equivalent elements Qµ0 and Qµ1 of Q, µ0, µ1 ∈M, the relation

(W
Qµ0
η1
×W

Qµ0
η2

) ∩ AQµ0
⊂ (pQµ0

)−1(W
Qµ0
η0

) (2.3)

for some η0, η1, η2 ∈ s, implies the relation

(W
Qµ1
η1
×W

Qµ1
η2

) ∩ AQµ1
⊂ (pQµ1

)−1(W
Qµ1
η0

); (2.4)

(B) for each s ∈ F and for each two ∼s-equivalent elements Qµ0 and Qµ1 of Q, µ0, µ1 ∈M, the relation

W
Qµ0
η1
⊂ i−1

Qµ0
(W

Qµ0
η0

) (2.5)

for some η0, η1 ∈ s, implies the relation
W

Qµ1
η1
⊂ i−1

Qµ1
(W

Qµ1
η0

). (2.6)

The existence of the family R with the above properties can easily be proved.
Now, we prove that the Containing Space T ≡ T(B,R) is the required element of C(G). First, we note

that by the choice of B and R, the Containing Space T is an element of S. Moreover, if iQµ

T , µ ∈ M, is the
natural embedding of Qµ into T, then for each λ ∈ Λµ the mapping

hX(µ,λ)

T ≡ iQµ

T ◦ hX(µ,λ)

Qµ

is an embedding of X(µ,λ) into T and

T = ∪{iQµ

T (Qµ) : µ ∈M}.
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Since
Qµ = ∪{hX(µ,λ)

Qµ
(X(µ,λ)) : λ ∈ Λµ}

we have
iQµ

T (Qµ) = ∪{iQµ

T (hX(µ,λ)

T )(X(µ,λ))) : λ ∈ Λµ}

and, therefore (using Assumption of Section 1),

T = ∪{hX(µ,λ)

T (X(µ,λ)) : (µ, λ) ∈ N}, (2.7)

where
N = {(µ, λ) : µ ∈M, λ ∈ Λµ}.

To complete the proof of the case (1) it is enough to prove that T is a continuously containing space for
the indication

Gin ≡ {X(µ,λ) : (µ, λ) ∈ N}

of G with respect to the indexed collection

{hX(µ,λ)
T : (µ, λ) ∈M ×Λµ}

of embeddings, that is to prove that conditions (1) − (3) of Definition 1.1 are satisfied. We note that in this
case the natural embedding iQµ

T , µ ∈M, of Qµ into T will be a proper embedding.
Condition (3) of Definition 1.1 is the relation (2.7). We prove condition (1). Let x, y ∈ X ≡ X(µ0,λ0) ∈ Gin,

where µ0 ∈ M and λ0 ∈ Λµ0 , and let U be an open neighbourhood of (xy)|X in T. Without loss of generality,
we can suppose that U is an element of the standard base of T, that is U = UT

η0
(H0), where η0 ∈ τ and

H0 ∈ C(∼s0 ) for some s0 ∈ F . Since (xy)|X ∈ Qµ0 , by the definition of the elements of the standard base

of T, we have Qµ0 ∈ H0 and W
Qµ0
η0

is an open neighbourhood of (xy)|X in Qµ0 . Since Qµ0 is a continuously
containing space for the indexation Gµ0 of G, there are open neighbourhoods V and W of x and y in Qµ0 ,
respectively, such that

((V ∩ X(µ0,λ))(W ∩ X(µ0,λ)))|X(µ0 ,λ) ⊂WQµ0

η0

for each λ ∈ Λµ0 (see condition (1) of Definition 1.1). Without loss of generality, we can suppose that

V = W
Qµ0
η1

and W = W
Qµ0
η2

for some η1, η2 ∈ τ. In this case, the above relation takes the form

((W
Qµ0
η1
∩ X(µ0,λ))(W

Qµ0
η2
∩ X(µ0,λ)))|X(µ0 ,λ) ⊂W

Qµ0
η0

or, equivalently,
(W

Qµ0
η1
×W

Qµ0
η2

) ∩ AQµ0
⊂ (pQµ0

)−1(W
Qµ0
η0

). (2.8)

Let s be an element of F such that s0 ∪ {η0, η1, η2} ⊂ s. Denote by H the equivalence class of ∼s containing
the space Qµ0 . Then, WT

η1
(H) and WT

η2
(H) are open sets of T (they belong to the standard base of T). Since

x ∈ W
Qµ0
η1

and y ∈ W
Qµ0
η2

, by the definition of the elements of the standard base of a containing space, we
have (using Assumption of Section 1) x ∈ WT

η1
(H) and y ∈ WT

η2
(H). Let x′, y′ ∈ X(µ1,λ1) ∈ G, where µ1 ∈ M,

λ1 ∈ Λµ1 , x′ ∈WT
η1

(H) and y′ ∈WT
η2

(H). Then, x′ ∈W
Qµ1
η1

, y′ ∈W
Qµ1
η2

and Qµ1 ∈ H. Since Qµ0 ,Qµ1 ∈ H we have
Qµ0 ∼

s Qµ1 . By the choice of s and the condition (a) of the definition of the family R, relation (2.8) implies
the relation

(W
Qµ1
η1
×W

Qµ1
η2

) ∩ AQµ1
⊂ (pQµ1

)−1(W
Qµ1
η0

)

or, equivalently,
((W

Qµ1
η1
∩ X(µ1,λ))(W

Qµ1
η2
∩ X(µ1,λ)))|X(µ1 ,λ) ⊂W

Qµ1
η0

for each λ ∈ Λµ1 . In particular, for λ = λ1 we have

(x′y′)|X(µ1 ,λ1) ∈W
Qµ1
η0
⊂ UT

η0
(H),
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proving condition (1) of the Definition 1.1.
We prove condition (2) of Definition 1.1. Let x ∈ X(µ0,λ0) ∈ G, µ0 ∈ M, and let U ≡ UT

η0
(H0) be an open

neighbourhood of x−1
|X(µ0 ,λ0) in T, where η0 ∈ τ and H0 ∈ C(∼s0 ) for some s0 ∈ F . Therefore, Qµ0 ∈ H0 and

x−1 = x−1
|X(µ0 ,λ0) ∈ W

Qµ0
η0

. Since Qµ0 is a continuously containing space for Gµ0 there exists a neighbourhood

W
Qµ0
η1

of x in Qµ0 , η1 ∈ τ, such that

(W
Qµ0
η1
∩ X(µ0,λ))−1

|X(µ0 ,λ) ⊂W
Qµ0
η0
∩ X(µ0,λ)

for each λ ∈ Λµ0 (see condition (2) of Definition 1.1), or, equivalently,

W
Qµ0
η1
⊂ i−1

Qµ0
(W

Qµ0
η0

). (2.9)

Let s1 = s0 ∪ {η0, η1} and let H1 be the element of C(∼s1 ) containing the space Qµ0 . Since x ∈ W
Qµ0
η1

,
by the definition of the elements of the standard base of T, WT

η1
(H1) is a neighbourhood of x in T. Let

y ∈ X(µ1,λ1) ∩WT
η1

(H1), where µ1 ∈ M and λ1 ∈ Λµ1 . Then, Qµ1 ∈ H1. Since Qµ0 and Qµ1 belong to the same
equivalence class of the equivalence relation ∼s1 , relation (2.9) implies that

W
Qµ1
η1
⊂ i−1

Qµ1
(W

Qµ1
η0

),

or, equivalently,
(W

Qµ1
η1
∩ X(µ1,λ)))−1

|X(µ1 ,λ) ⊂W
Qµ1
η0
∩ X(µ1,λ),

proving condition (2) of Definition 1.1 and completing the proof of the case (1) of Theorem 1.2.

Proof of the case (2) of Theorem 1.2. By set-theoretical reasons, we can suppose that there is a collection G
of elements S, which are topological groups, such that each element of S, which is a topological group, is
isomorphic to an element ofG. Then, any continuously containing space Q for an indexation of a collection
of topological groups from S, that is any element of C, will be a continuously containing space for an
indexation of a subset of G. For each non-empty subset G of Gwe consider the indexed collection

Q(G) = {Qµ : µ ∈MG}

of elements of C(G), constructed in the proof of the case (1) of Theorem 1.2, and put

Q(G) = ∪{Q(G) : G is a non-empty subset of G}.

Considering that MG1 ∩MG2 = ∅ if G1 and G2 are distinct subsets of Gwe can suppose that Q(G) is indexed
by the set

MG ≡ ∪{MG : G is non-empty subset of G},

that is
Q(G) = {Qµ : µ ∈MG}.

The rest part of the proof is the same as in the case (1) replacing only the indexed collection Q(G) by the
indexed collection Q(G) and the set MG by the set MG.�
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