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Multi-Parameter Setting (C, ) Means with Respect to One Dimensional
Vilenkin System

Gyorgy Gat?, Anteneh Tilahun?

Institute of Mathematics, University of Debrecen, H-4002 Debrecen, Pf. 400, Hungary

Abstract. We prove that the maximal operator of the (C, a,,)-means of the one dimensional Vilenkin-Fourier
series is of weak type(L!, L!). Moreover, we prove the almost everywhere convergence of the (C, a,) means

of integrable functions (i.e. ¢3"f — f), where n € N, ; and n — oo for f € LY(G,,), G, is a bounded
Vilenkin group, for every sequence a = (a,), 0 < a, < 1.

1. Introduction

The idea of Cesaro means with variable parameters of numerical sequences is due to Kaplan [12]. In 2007
Akhobadze [3] introduced the notion of (C, &) means of trigonometric Fourier series with variable parameter
setting. Fine [6] proved this for Walsh-Paley system for constant sequences. On the rate of convergence
of (C, @) means in the constant sequences case see the paper of Fridli [7]. For the two dimensional case
see the paper of Goginava [10]. The almost everywhere convergence of this summability method for a
constant parameter in the quadraterial partial sums of double Vilenkin-Fourier series was proved by Gat
and Goginiva in 2006 [5]. In 2008 Abu Joudeh and Gét [1] proved for variable Parameter setting in the case
of Walsh-Paley system. In this paper we proved the almost everywhere convergence of the (C, &) means in a
multi-parameter setting with respect to the one dimensional bounded Vilenkin system. The a.e. divergence
of Cesaro means with varying parameters of Walsh-Fourier series was investigated by Tetunashvili [15].
First we give a brief introduction to the theory of Vilenkin systems. These orthonormal systems were
introduced to the theory of Vilenkin systems. These orthonormal systems were introduced by N.Ya.
Vilenkin in 1947 (see [16]) as follows.

Denote by IN the set of natural numbers, IP the set of positive integers, respectively. Denote m := (m; : k € IN)
a sequence of positive integers such that m; > 2, k € N and Z,, the discrete cyclic group of order my.
That is, Z,, can be represented by the set {0, 1,2, ..., m; — 1}, with the group operation mod m addition.

Since the group is discrete, every subset is open. The normalized Haar measure py on Z,, is defined by
wei}) = mlk(j €{0,1,...,me —1}). Let
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Then, every x € G,, can be represented by a sequence x = (x;, i € IN), where x; € Z,, (i € N). The group
operation on G,, (denoted by +) is the coordinate-wise addition (the inverse operation is denoted by —), the
measure (denoted by ), which is the normalized Haar measure, and the topology are the product measure
and topology. Consequently, G,, is a compact Abelian group. If sup, . m, < oo, then we call G, a bounded
Vilenkin group. If the generating sequence m is not bounded, then G, is said to be an unbounded Vilenkin
group. In this paper we discuss bounded Vilenkin groups, only. The Vilenkin group is metrizable in the

following way:

= xi — il
a0 y) =Y Mj (%, ¥ € Gu).
i=0 !

The topology induced by this metric, the product topology, and the topology given by intervals defined
below, are the same. A base for the neighborhoods of G,, can be given by the intervals: Iy(x) := G,,, [,(x) :=
ly=(y,i e N) € Gy, : y; = xifori < n} for x € G,,, n € P. Let 0 = (0, i € N) € G, denote the null element of
Gy and L,(0) := I, I, = G, \I..

Denote by L7(G,,;) the usual Lebesgue spaces (||.||, the corresponding norms) (1 < p < ), A, the o algebra
generated by the sets I,,(x) (x € G,;) and E, the conditional expectation operator with respect to A, (n € IN).
We say that an operator T : L' — L° (L%(G,,) is the space of measurable functions on G,,) is of type (L?, L¥)
(for 1 < p < 00) if [|ITfll, < CylIfll, for all f € LP(G;,) and the constant C, depends only on p. We say that T is
of weak type (LY, LY) if u(ITf| > A) < Cl|fll1/A forall f € LY(G,,) and A > 0. Let My := 1 and M1 := mM, for

k € IN be the so-called generalized powers. Then every n € IN can be uniquely expressed as n = Y, My,
0 < g < my, nx € IN. This allows one to say that the sequence (19, 111, ...) is the expansion of n with respect
to m. We often use the following notations. Let |n| := max{k € IN : n; # 0} (that is, M) < n < Mj,41) and
n® = Z}'ik niM;. Next we introduce on G,, an orthonormal system we call Vilenkin system.

For k € N and x € G, denote by 7y the k-th generalized Rademacher function:
re(x) = exp(Zm%) (x € Gy, 1:= V=1, ke N).
k

The n' Vilenkin function is

0o

Wy = H ri(n € N).

j=0

The system 1) := (i, : n € N) is called a Vilenkin system. Each 1, is a character of G,, and all the characters
of G, are of the this form. Define the m-adic addition as k®n := Z‘;O(kj +nj(modm;))M; (k,n € IN). Then

l,bkean = l;bkl;bn/ an(x + ]/) = ll)n(x)lpn(]/)r Ebn(_x) = J}n(x)r W)nl =1 (k/ ne€N, x, ye Gm)-
Denote the Dirichlet and the Fejér or (C,1) kernels respectively as,

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet kernels, the (C, &) kernels
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and means with respect to the Vilenkin system 1 as follows:
fon= [ s
n_l m
Suf =) flky,
k=0
1 n
oif =~z Y ATISf,

m k=0

onf =0hf, Ky := K. (f € L{(Gp)).

It is known that

Snf(y) = fc f@)Du(y = 0du(x) (n €N, f € LYGw).

It is also well-known that(see [4], [5] )

M,, ifyel,(x)

D LX) =

M, (Y, X) {0, if y ¢ 1(x)
Sm, f(x) = M, fdu=E.f(x) (f€LGn), ne€N),
(%)

s—1 s—1

Dsm, = D, Z Ykm, = D, Z e
k=0 k=0

Define the kernel and means of the (C, &) summability method as follows
y, 1 - a,—1
K=~ Y AvDy
no=0
ay — 1 - a-1 _ Uy 1
oy f(x) == A ZAn_kSk(x) = ). FWK" (= y)du(y)  (f € L'(Gw))
k:() m

where

(an + D(ay + 2)...(a, + 1)
k!

aﬂ —_
A=

It is known in [18] that,

n _anA“n
a, _ ap—1 Ay AQn k
AS _kz-:?Ak AP = AR =

(for all real number a, # —1,-2,-3,...).

4123

(2)

Introduce the following notations: for a4, s, n € N let n,) := Z;;(l) njM;, thatis, ng) = 0, nqy = no and for

Mp <n < Mgy, let Mg < n < Mgy, In| := B, n = n(g4).
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Next, introduce the following functions and operators for the multi-parameter setting (n € N, 0 < a; < 1).

1 YLBMB
oy a,—1
T =—m ), An'D
n k=0
HBMgfl
Ty . nBDMB a,—1
T = CAYN A”<B>+J'
n j=0
Mg—2 .
(1 — ) "R j+1
e Z | Kj| + @a|Kiymg-1,
n P (n@) + )

£ £(y) = fG FOTS(y - D),

B £(y) = fG FOT(y - )du).

Define two variable function P(n, a) := )2 n;M; forn € N, a € R. For example P(n, 1) = n. Besides, set for
sequences a = (a,) and positive reals g, the subset of natural numbers

P(n,a,) - q}.

nn

Ny := {n €eIN:

For sequence a such that 0 < ag < a, <1 we have N, ;, = N for some g depending only on ap. We remark
that M,, € N, 4 for every a = (@), 0 <a, <landg 2> 1.

In this paper, C denotes an absolute constant and C; another one which may depend only on q. Besides,
introduce the following kernel functions and operators for the case where n € N, ;and 0 < a, < 1.

01,, an

n(-1) n(l 1)
Z Aa,, nIDMI + Z Aot,l n(l 1)

1=0
5 f(y) o= f FRR (y — X))

Lemma 1.1. [3] If k and n are natural numbers, then

a). Ci(1+ ay)2 +ank™ < AP < Co(1 + an)(2 + apk™, -2 < a, < —1;

b). Ci(1+ak™ <Ap <Gl +ank™, -1 <a, <0;

o). Ci(@k™ <Al < Cy(dk™, 0 <a, <d.
where Cy, C, are positive absolute constants(though in case (c) they depend on d).
Lemma 1.2. [5] Let 0 < j < niM; and 0 < ny < my. Then, Dy~ = Dy, — Ynm,— 1D

R . —
RO =

ca,
Ty

Proof. We know that this result is not a new one, but in order to give some introduction to the methods of
Vilenkin system we give here the proof of [5].
It is clear that

nM—1

Dy, = Dum—j + Z Uk = Dy, + Z Uiy My—k-1-
k=n:M;—j =

Consequently,

Wi, Mi—k=1(X) = Y= 1)My+ (111 = 1)My 1 ..+ (110 -1)Mo—k (X)
= Y 1=k = )My (11 —kr 1 ~1)M_1 ...+ (19 —kg—1)Mp (X)
= Y1) M+ (11— 1My +..+ (110 —1)Mo (X) P ()

= I7l):1,Mt—1 (x)lpk(x)‘
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Hence, the Lemma follows. [

2. Main Results

Lemma 2.1. Forn,a € N, Mg <n < Mpy1, [n| =B, a; € (0,1). Then,
T < Ty

Proof. Since |n| = B. Then,

HBMB—l HBMB—l
ATy = Z AyD; = Z A tvno-iDi
HBMsfl
=Y AP

j=0

By Lemma 1.2 and (1) we have

D HBMB—l HBMB—l
o = Dotts TNT e PmMid TNT e,
n Al ne)+j Aan ney+jJ
n — |
=0 =0
ngfl nBMB*‘l ‘rlBMgfl

:DMB Zrk Z Aaa—l _IIZ)”BMB_l Z A% D,
Aia "L ne)+j AZH ngy+j—J

k=0 =0 =0

Dy k =1
T A% Zr” Z ne)+j I
k=0 j=0
This implies that

Ty <

[

A”‘" Z Z 1(p) Jlfj

k=0 :
VlB—l TLBMB 1

D -
< —=2 Nk L
A n +
A° . ney
k=0 j=0
HBMB—l
_ 1Dy a1 |p
Aan n(B)+] +
n ]:0

By the help of Abel’s transformation and (2) we get

VlBMB—l

ngMp—1 1 =
|I| = lli B“E Z A% 1.D]‘
A a . ne)+j
]:
1 npMp—2 j ngMp—1
— Qg au 3.
T A% Z [A"<B)+J ”(B>+J+1] Z "(B)+"BMB Z D
n | 2o i=0 i=0
Mp—2 — Aa— . _ Mz—1
npMp=2 (1 a”)An:B)ﬂ j+1 Aﬁ” 1| nsMz
< e 1 ‘ _Aa“ D;| =: hy + hy.
< n N+ ]+ P By

j=0

4125
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At ~aa-
"t aa(ng+j)™ !

It is Known from Lemma 1.1 that i < P

So, the situation for /; becomes

ngMp=21(1 — (Jéa)Az(“B)ﬂ j+1 K'

AZ" nep) + ] +1

j=0

o2 a,(1 - a,) j+ 1

n () + j)i=% ng) + j + 1

j=0
nBMB

21— 0(,,) j+1
K.
Z (71(3) + ])1 “ﬂ(l’l(g) + ] + 1) ]|

K|

nBMB

a,(1 - ay) ] +1
Nn% ;; (n(B) + ]‘)2—04,1

The case for h; becomes

ngMp—1 a,-1

Ar A
Dil = a (ngMp)

A
[27] (nBMB)
n

Iy =

KHBMB—l ‘

i=0

K‘VZBMB—1| S aa KVIBMB—1|'

j+1
= R CUR

K]'| + a, KnBMB—1|'

The proof completed. [J

Now, we need to prove the next Lemma which means that the maximal operator £* := sup, . |f3| is
quasi-local. This Lemma together with the next one are the most important tools in the proof of the main
results of this paper.

Lemma 2.2. Let 1 > o, > 0, f € LYGy,) such that suppf C Ii(u), ﬁk(u) fdu(x) = 0 for some m-adic interval Li(1t).
Then, we have ) SUP, aeN [Fy fldu(x) < ClIflh.

Proof. We can easily show that for n < My and x € I;(u), y € Iy(1) we have

Ty (y—x) =Ty (y—w),

[ seomw-nuw=Trw-u [ foue -
Ti(u) Ti(u)
Consequently,
f sup |f f sup |F" fldu.
Ii(u) n,aeN Ix(u) n>My,aeN

By the shift invariance of the Haar measure it can be supposed that u = 0. That is, Iy(#) = I;. Thus,

f sup |f fldu = sup
I

(u) n>My,aeN Iy n>My,aeN

fl Ty - ) Fdu|duy).
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By Lemma 2.1 we have,

f sup f T (y = 0 f(0)du)|du(y)
Iy n>My, aeN | JIi
Dais(y =) "Y% -
~ [ sup | [ [P0y
Iy n>My,aeN | VI n j=0
HBMB—Z
(1 —a,) j+1
+ E— B 1 oea K;(]/ - X)
N ; (n(B) + ])2 a |
+ ta | Kiugny-1(y — x)’]du(x) ap(y)
nsDay(y =%)"Y,
- [ sup ﬂme%?—-Zzw]wmwm
Iy n>My,aeN I | n ]'=0

HBMB—Z

au(l — ) j+1
+ su (x) -
[ RARE Wy

+ f sup f f(x) a,
Iy n>My, aeN

= ¢1 +(p2+¢3.

It is simple to find out that

KHBMs—l(y - x)|]d1u(x) d#(]/)

&w—me%ww>

1Dty (y — ) " oot
T L A=
n =0
for any y — x € Ii. This holds because Dy, (y — x) = 0 for B = |n| > k and y — x € I. Hence, ¢
Besides,
ngMp-2 .
an) j+1 }
- U X —————K(y — x)|[du(x)|d
¢2 ‘fI;H>MkIZEN f )[ ]:ZO (n(B) +])2*Uta ](y )’ ,’l( ) H(]/)
a,(1 - Ofa) j+1
- Ki(y -
[ | [ Y )
npMp—2
aa(1 — ) j+1 ]
+ T o K:(y — ) 1du()ld
N = (n(B) + ])Z—aa ](y )| ‘U( ) H(y)
j
a,(1 - aa) j+1 ]
: Ki(y —x)||d d
fll:n>1?/flk1€€N ff( )[ Z (7’1(3) +])2_‘Xn ](y x)| [J(.X) !’l(y)
ngMp—-2 .
(1 - aa) j+1 ]
su ()[ . Ki(y — )| |duo)|du(y)
jI;n>MkIj:€N f ]%k (n(B) + ])Z—a,, ] y ’ u wy

f sup f(x)Hl(y —x)dp(x)|du(y)

Iy n>My,aeN

f sup f SO)H2(y — x)dpu(x)\dp(y).
n>My,aeN

=0.

4127
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However, since for any j < My we have that the Fejér kernel K;(y — x)depends with respect to x only on
coordinates xo =0, ..., xx_1 = 0, then

flkf(x)‘Kj(]/—X)‘dy(x)=|Kj(y)|£f(x):0

gives f;k F0)H; (y — x)du(x) = Hi(y) flk Fx)du(x) = 0.
On the other hand,
1<]-|

a(l-a) NG j+1

N - CCRS

a,(1-a,) v j+1
Nn% Z ]'2—0(,Z
j=1

2a,(1 - <
< sup ‘K]| aa(naa ) Zfa“_l
JZMi =1

<sup |Kj
JZ2Mi

<2(1 - a,) sup ‘K]‘
=My

By Lemma 2.1 in [9], this implies
j; SOH(y — x)du(x)\du(y)

f sup

I_k n>My,aeN x

< [ [ sup
Ik Iy n>My, aeN

<C f1 F ) = C||f], -

Ha(y = )|du(y))du)

Thus, ¢ < C||f]|, -
Similarly, for the case ¢3 we apply Lemma 2.1 in [9]

o= [ s | [ 0]

< flk If(X)I( flk ::AZ KnBMB—l(y—X)'dy(y))dy(x)

<C fl F@ldu = C|f]),

KHBMB—l(y - x)‘]dﬂ(x) d#(y)

Hence, the Lemma follows. [
Corollary 2.3. Let 1 > a, > 0.Then, we have

ITwlh < IITyh < G
£ Il 1B fll < Cll fll

and

£ glleo, IE5 lleo < Cllglloo
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for all natural numbers a, n where C is some absolute constant and f € L', g € L. That is, operator t, £,* are of

type (L', LY) and (L™, L*) and Uniformly in n.

Proof. The proof is direct consequence of Lemma 2.2. Then

”BMB
- 1|1 Dpllt
||Tﬁ"||1 < CM Z Aaa
AL’ n=j
n j=0

HBMB—Z

(1-a,) j+1
+ :
" ;}' (n) + j)=

Consequently, by |[Dp, i, lIKjlli < C, the proof of Corollary 5 follows. [J

K|, + 1Kngas-alh-

In the sequel we prove that maximal operator &, ; := sup, Ioﬁ”l is quasi-local. The way we get this is by

the investigation of kernel functions, its maximal function on the Vilenkin group by making a hole around
zero and some quasi-locality issues (for the notion of quasi-locality see[13] ). This is the very base of the
proof of the main results of this paper. That is, Theorem 2.7.

Lemma 24. Let 0 < a, < 1, f € LY(G,,) such that suppf C Ii(u), fIk(u) fdu = 0 for some m-adic interval I;(u1).
Then we have me\Ik(u) 0% o fdu < Cyllfllh. Where constants Cg can depend only on q.

Proof. From the formula of the kernel function K;;" we have

B

1 1) 1 1) Py .

+Z D +Z e TS | =Ny + Nz + Ns.
1=0

O —
K" =

Ay
T,

The integral,

[ sl f(X)(Nz(y—X))d#(x)
Gu\Ix(u) neN I (1)

since f * Dy, = 0 for I <'s < k because of the A, measurablity of Dy, and f f = 0. Besides, Dy;,(y — x) = 0;
fors>k, y—x¢ L.
Since from Lemma [3] we have

du(y) =

1(1-1)
Az" - non - nén :

A(Xy, B (n(l—l))a” - M;sz

an

Besides, by the help of Lemma 2.2 and by the fact that n € N, ; implies ):l -0 Aanl) <cYy? 120 1:{,” <Cywe

get
f sup
Gm \Ik(”) WENu,r]

< f sup
G\l (1) €Ny 4

< qu sup
Gm\lk(u) nENa,q
< Gyllfth-

Hence, the Lemma follows. [

du(y)

I( )f(x)(Nl(J/ - x)+ N3y — X))dy(x)

du(y)

B
fh(u) f(x)( Tty - x)| ;‘ AZ»«D Ty v = x)‘)d#(X)

flx)

Le(u)

du(y)

T3 (y = 0)du()
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Lemma2.5. Let0 <, <1,n €N, Mg <n < Mpys1, |n| =B. Then,
|Kf{r1| S Kgn.

Proof. By definition, we have

1 n—-1
Ay __ a,—1 .
K = A% ZAn—j D;
n ]:O
1 ngMp—1 n—1
— ap—1 . ay—1 .
- Adn Z‘ An—j DJ+A06n Z An—j D]
n ]=0 n jZHBMB
nBMBﬁLn(B)*l
— T a,—1 .
=T," + e An(B)MBMB_].D].
n j=npMp
By Lemma 1.2 the situation for
1 nBMB+n(B)—1
a,—1 .
Agn ) ZM An(3)+nBMB—jD]
J=npMp
n-1
1 ay—1
= Aa” ZA ! Dt+n3MB
not=0
1"
a,,—l n
= A% Z A ( ngMp +¢”BMB—1D1‘)
n
ne)—1 ne)—1
_ D"BMB Aa,, ¢nBMB 1 Aan—lﬁ
T AW A% n—t t
n t=0 n t=0

an
(B)

= (D”BMB + llanMB_lKZ(];;))'
Ay

Then,

an

Ay _ (B) @
Knn — Tn” + _A"‘" (DnBMB + ¢nBMB_1Kn?B))'
n

In general, for j =1, .., B+ 1, we get

an

Ka,, T + A"(i—l) D K »
ng) Aan ngnMgy T ll’"(f—nM(/—l) 187y,
()

Recursively applying this formula and Considering that n(_1) = 0, Ty" = K" = 0, Aj" = 1, we get

a”
a a n(] D ) T¢
IKn|<|Tn|+Z(H = Dy ZIrI+HAa,, n(’}l))
”(/) ()

0(,, an

ng-1) <11> — R
+Z A n’DMI+Z AS ”<H>| K;

Hence, the Lemma follows. [

= |Ta

4130
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Now, we plug into the main tool for the proof of Theorem 2.7. Define operators as follows

0s,f = sup loy"fl, 67, f == sup |5, fl.

1€N,,q n€ENgy 4

Lemma 2.6. The operator % is of type (L=, L*) and Weak type (L, L); 0% is of Weak type (L!, L).

Proof. By the help of the method of Lemma 2.2 and Corollary 2.3 we get that
Aan
IR < 1T h + Z A“ %Dy I + Z — 1T

0111

<C+CZ 1:(;”1 <

since nn € Nq, 4. Thus, 57, is of type (L%, L%).

To proof the weak type(L!, L!) case we apply Calderon-Zygmund decomposition Lemma [9].

Let f € L'and || flli < 0. Then there is a decomposition:
F=fh+) 5
j=1
such that
Ifollee < €8, llfolls < Cllflls, Gy = L ()

are disjoint m-adic intervals for which

Cliflh
0

suppfj C G f{, fidu =0, |F| <
Gﬂl

(W € Gy, k; €N, j € P), where F = U2, G,.
By the o-sublinearity of the maximal operator with an appropriate constant C; we have

(@ f > 2C,0) < u(@  fo > Cyd) + (@, Z £i>Cyd) = W+ M.
=1
Since 47, , is of type (L*, L*), we have that
16+, 4 follo < Cyll folleo < Cyb
then we have W = 0. The situation for M becomes,

M=p@, Y fi>Cpo) < |F|+y(Fn[6ﬁqZ)‘j > C,0))

j*l

C||f||1 C||f||1 G v
i Z"fm\cf B F;

m

in which

we [ e [ s
Gu\G}, G,,,\Ik].(ul)nE]qu

iKY (y = 0du(x)

I (W)

du(y).

4131
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The next estimation for N is given by Lemma 2.4. Then,

N; < Gilifilh-

That is, operator 3¢ , is of weak type (L', L').
By Lemma 2.5 and since

5 £l
(o2 o f > 2C46) < p(as ,If1 > 2C40) < cq%.

We concluded that the maximal operator o7, is of weak type (LY, LY.
Hence, the Lemma follows. [

Theorem 2.7. Let 0 < a, < 1. Let f € LNGy). Then oy f — fif n — oo, n € Ny 4.

Proof. Let us consider a Vilenkin Polynomial P such that P(x) = Z?ﬁ’é_l ciyi. Then for all natural number
n = My, n € N, ; we have that S, P = P. Thus, the statement o,"P — P holds everywhere which is not only
forn € N, 4. Now, lete, 6 >0, f € L. Let P be a Vilenkin polynomial such that ||f — P|l; < 6. Then,

3 Qn £
u(nganq loy" f = f1>€)
_— € - €
< s ap _ e : anp _ e
< “(ng\]rﬂ‘,q oy (f — P)I > 3) + y(nléNrﬂq oy P — P| > 3)
= ap €
+”(n1553,, low'P = fI > 3)

- o € 3
< Jim Joi(f = P)| > 3) + 0+ ZIP = flh

€Ny, 4
3 C
< GlIP = fln s < fé

since (from Lemma 2.6) o, is of weak type(L!, L') with any fixed g > 0. This holds for all § > 0.
That is, for an arbitrary € > 0

p( lim oy f = f| > €) =0

aq

and as a result we also have
M(ngl\]n;q low' f = f1>0)=0.

This finally gives Eneﬂ\u oy f = fl = 0 a.e. Consequently, 0" f — f a.e provided that n — oo, n € N, 4.
Hence, the Theorem follows. []
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