

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Multi-Parameter Setting (C, α) Means with Respect to One Dimensional Vilenkin System

György Gáta, Anteneh Tilahuna

^aInstitute of Mathematics, University of Debrecen, H-4002 Debrecen, Pf. 400, Hungary

Abstract. We prove that the maximal operator of the (C, α_n) -means of the one dimensional Vilenkin-Fourier series is of weak type(L^1, L^1). Moreover, we prove the almost everywhere convergence of the (C, α_n) means of integrable functions (i.e. $\sigma_n^{\alpha_n} f \longrightarrow f$), where $n \in \mathbb{N}_{\alpha,q}$ and $n \longrightarrow \infty$ for $f \in L^1(G_m)$, G_m is a bounded Vilenkin group, for every sequence $\alpha = (\alpha_n)$, $0 < \alpha_n < 1$.

1. Introduction

The idea of Cesàro means with variable parameters of numerical sequences is due to Kaplan [12]. In 2007 Akhobadze [3] introduced the notion of (C, α) means of trigonometric Fourier series with variable parameter setting. Fine [6] proved this for Walsh-Paley system for constant sequences. On the rate of convergence of (C, α) means in the constant sequences case see the paper of Fridli [7]. For the two dimensional case see the paper of Goginava [10]. The almost everywhere convergence of this summability method for a constant parameter in the quadraterial partial sums of double Vilenkin-Fourier series was proved by Gát and Goginiva in 2006 [5]. In 2008 Abu Joudeh and Gát [1] proved for variable Parameter setting in the case of Walsh-Paley system. In this paper we proved the almost everywhere convergence of the (C, α) means in a multi-parameter setting with respect to the one dimensional bounded Vilenkin system. The a.e. divergence of Cesàro means with varying parameters of Walsh-Fourier series was investigated by Tetunashvili [15]. First we give a brief introduction to the theory of Vilenkin systems. These orthonormal systems were introduced to the theory of Vilenkin systems. These orthonormal systems were introduced by N.Ya. Vilenkin in 1947 (see [16]) as follows.

Denote by $\mathbb N$ the set of natural numbers, $\mathbb P$ the set of positive integers, respectively. Denote $m:=(m_k:k\in\mathbb N)$ a sequence of positive integers such that $m_k\geq 2$, $k\in\mathbb N$ and Z_{m_k} the discrete cyclic group of order m_k . That is, Z_{m_k} can be represented by the set $\{0,1,2,...,m_k-1\}$, with the group operation $\mod m_k$ addition. Since the group is discrete, every subset is open. The normalized Haar measure μ_k on Z_{m_k} is defined by $\mu_k(\{j\}):=\frac{1}{m_k}(j\in\{0,1,...,m_k-1\})$. Let

$$G_m:=\mathop{\times}_{k=0}^{\infty}Z_{m_k}.$$

2020 Mathematics Subject Classification. Primary 42C10

Keywords. One dimensional Vilenkin System, Vilenkin-Fourier series, almost everywhere convergence, (C, α_n) means

Received: 24 September 2020; Accepted: 10 February 2021

Communicated by Dragan S. Djordjević

The first author is supported by the projects EFOP-3.6.2-16-2017-00015 and EFOP-3.6.1-16-2016-00022 supported by the European Union, co-financed by the European Social Fund.

Email addresses: gat.gyorgy@science.unideb.hu (György Gát), anteneh@science.unideb.hu (Anteneh Tilahun)

Then, every $x \in G_m$ can be represented by a sequence $x = (x_i, i \in \mathbb{N})$, where $x_i \in Z_{m_i}$ $(i \in \mathbb{N})$. The group operation on G_m (denoted by +) is the coordinate-wise addition (the inverse operation is denoted by -), the measure (denoted by μ), which is the normalized Haar measure, and the topology are the product measure and topology. Consequently, G_m is a compact Abelian group. If $\sup_{n \in \mathbb{N}} m_n < \infty$, then we call G_m a bounded Vilenkin group. If the generating sequence m is not bounded, then G_m is said to be an unbounded Vilenkin group. In this paper we discuss bounded Vilenkin groups, only. The Vilenkin group is metrizable in the following way:

$$d(x,y) := \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{M_{i+1}} \quad (x,y \in G_m).$$

The topology induced by this metric, the product topology, and the topology given by intervals defined below, are the same. A base for the neighborhoods of G_m can be given by the intervals: $I_0(x) := G_m$, $I_n(x) := \{y = (y_i, i \in \mathbb{N}) \in G_m : y_i = x_i \text{ for } i < n\} \text{ for } x \in G_m, n \in \mathbb{P}. \text{ Let } 0 = (0, i \in \mathbb{N}) \in G_m \text{ denote the null element of } G_m \text{ and } I_n(0) := I_n, \bar{I}_n = G_m \setminus I_n.$

Denote by $L^p(G_m)$ the usual Lebesgue spaces ($\|.\|_p$ the corresponding norms) ($1 \le p \le \infty$), \mathcal{A}_n the σ algebra generated by the sets $I_n(x)$ ($x \in G_m$) and E_n the conditional expectation operator with respect to \mathcal{A}_n ($n \in \mathbb{N}$). We say that an operator $T: L^1 \to L^0$ ($L^0(G_m)$ is the space of measurable functions on G_m) is of type (L^p, L^p) (for $1 \le p \le \infty$) if $\|Tf\|_p \le C_p\|f\|_p$ for all $f \in L^p(G_m)$ and the constant C_p depends only on p. We say that T is of weak type (L^1, L^1) if $\mu(|Tf| > \lambda) \le C\|f\|_1/\lambda$ for all $f \in L^1(G_m)$ and $\lambda > 0$. Let $M_0 := 1$ and $M_{k+1} := m_k M_k$, for

 $k \in \mathbb{N}$ be the so-called generalized powers. Then every $n \in \mathbb{N}$ can be uniquely expressed as $n = \sum_{k=0}^{\infty} n_k M_k$, $0 \le n_k < m_k$, $n_k \in \mathbb{N}$. This allows one to say that the sequence $(n_0, n_1, ...)$ is the expansion of n with respect to m. We often use the following notations. Let $|n| := \max\{k \in \mathbb{N} : n_k \neq 0\}$ (that is, $M_{|n|} \le n < M_{|n|+1}$) and $n^{(k)} = \sum_{i=k}^{\infty} n_i M_i$. Next we introduce on G_m an orthonormal system we call Vilenkin system.

For $k \in \mathbb{N}$ and $x \in G_m$ denote by r_k the k-th generalized Rademacher function:

$$r_k(x) := \exp(2\pi i \frac{x_k}{m_k}) \quad (x \in G_m, \ i := \sqrt{-1}, \ k \in \mathbb{N}).$$

The n^{th} Vilenkin function is

$$\psi_n := \prod_{j=0}^{\infty} r_j^{n_j} (n \in \mathbb{N}).$$

The system $\psi := (\psi_n : n \in \mathbb{N})$ is called a Vilenkin system. Each ψ_n is a character of G_m and all the characters of G_m are of the this form. Define the m-adic addition as $k \oplus n := \sum_{j=0}^{\infty} (k_j + n_j \pmod{m_j}) M_j$ $(k, n \in \mathbb{N})$. Then $\psi_{k \oplus n} = \psi_k \psi_n$, $\psi_n(x+y) = \psi_n(x)\psi_n(y)$, $\psi_n(-x) = \bar{\psi}_n(x)$, $|\psi_n| = 1$ $(k, n \in \mathbb{N}, x, y \in G_m)$. Denote the Dirichlet and the Fejér or (C,1) kernels respectively as,

$$D_n := \sum_{k=0}^{n-1} \psi_k, K_n := \frac{1}{n+1} \sum_{k=0}^n D_k.$$

Define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet kernels, the (C, α) kernels

and means with respect to the Vilenkin system ψ as follows:

$$\begin{split} \hat{f}(n) &:= \int_{G_m} f \bar{\psi}_n d\mu, \\ S_n f &:= \sum_{k=0}^{n-1} \hat{f}(k) \psi_k, \\ \sigma_n^{\alpha} f &:= \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} S_k f, \\ K_n^{\alpha} &:= \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} D_k, \\ \sigma_n f &:= \sigma_n^1 f, K_n := K_n^1 \quad (f \in L^1(G_m)). \end{split}$$

It is known that

$$S_n f(y) = \int_{G_m} f(x) D_n(y - x) d\mu(x) \quad (n \in \mathbb{N}, \ f \in L^1(G_m)).$$

It is also well-known that(see [4], [5])

$$D_{M_{n}}(y,x) = \begin{cases} M_{n}, & \text{if } y \in I_{n}(x) \\ 0, & \text{if } y \notin I_{n}(x) \end{cases}$$

$$S_{M_{n}}f(x) = M_{n} \int_{I_{n}(x)} f d\mu = E_{n}f(x) \quad (f \in L^{1}(G_{m}), n \in \mathbb{N}),$$

$$D_{SM_{n}} = D_{M_{n}} \sum_{k=0}^{s-1} \psi_{kM_{n}} = D_{M_{n}} \sum_{k=0}^{s-1} r_{n}^{k}.$$

$$(1)$$

Define the kernel and means of the (C, α_n) summability method as follows

$$K_n^{\alpha_n} = \frac{1}{A_n^{\alpha_n}} \sum_{t=0}^n A_{n-t}^{\alpha_n - 1} D_t$$

$$\sigma_n^{\alpha_n} f(x) := \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha - 1} S_k(x) = \int_{G_m} f(y) K_n^{\alpha_n}(x - y) d\mu(y) \quad (f \in L^1(G_m))$$

where

$$A_k^{\alpha_n} = \frac{(\alpha_n + 1)(\alpha_n + 2)...(\alpha_n + n)}{k!}$$
 (for all real number $\alpha_n \neq -1, -2, -3, ...$).

It is known in [18] that,

$$A_n^{\alpha_n} = \sum_{k=0}^n A_k^{\alpha_n - 1}, \ A_k^{\alpha_n} - A_{k+1}^{\alpha_n} = \frac{-\alpha_n A_k^{\alpha_n}}{k+1}.$$
 (2)

Introduce the following notations: for a, s, $n \in \mathbb{N}$ let $n_{(s)} := \sum_{j=0}^{s-1} n_j M_j$, that is, $n_{(0)} = 0$, $n_{(1)} = n_0$ and for $M_B \le n < M_{B+1}$, let $M_B \le n < M_{B+1}$, |n| := B, $n = n_{(B+1)}$.

Next, introduce the following functions and operators for the multi-parameter setting ($n \in \mathbb{N}$, $0 < \alpha_a < 1$).

$$\begin{split} T_{n}^{\alpha_{a}} &= \frac{1}{A_{n}^{\alpha_{a}}} \sum_{k=0}^{n_{B}M_{B}-1} A_{n-k}^{\alpha_{a}-1} D_{k}, \\ \tilde{T}_{n}^{\alpha_{a}} &:= \frac{n_{B}D_{M_{B}}}{A_{n}^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}-1} \\ &+ \frac{\alpha_{a}(1-\alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-2} \frac{j+1}{(n_{(B)}+j)^{2-\alpha_{a}}} \Big| K_{j} \Big| + \alpha_{a} \Big| K_{n_{B}M_{B}-1} \Big|, \\ t_{n}^{\alpha_{a}} f(y) &:= \int_{G_{m}} f(x) T_{n}^{\alpha_{a}} (y-x) d\mu(x), \\ \tilde{t}_{n}^{\alpha_{a}} f(y) &:= \int_{G} f(x) \tilde{T}_{n}^{\alpha_{a}} (y-x) d\mu(x). \end{split}$$

Define two variable function $P(n, \alpha) := \sum_{i=0}^{\infty} n_i M_i^{\alpha}$ for $n \in \mathbb{N}$, $\alpha \in \mathbb{R}$. For example P(n, 1) = n. Besides, set for sequences $\alpha = (\alpha_n)$ and positive reals q, the subset of natural numbers

$$\mathbb{N}_{\alpha,q} := \left\{ n \in \mathbb{N} : \frac{P(n,\alpha_n)}{n^{\alpha_n}} \le q \right\}.$$

For sequence α such that $0 < \alpha_0 \le \alpha_n < 1$ we have $\mathbb{N}_{\alpha,q} = \mathbb{N}$ for some q depending only on α_0 . We remark that $M_n \in \mathbb{N}_{\alpha,q}$ for every $\alpha = (\alpha_n)$, $0 < \alpha_n < 1$ and $q \ge 1$.

In this paper, C denotes an absolute constant and C_q another one which may depend only on q. Besides, introduce the following kernel functions and operators for the case where $n \in \mathbb{N}_{\alpha,q}$ and $0 < \alpha_n < 1$.

$$\tilde{K}_{n}^{\alpha_{n}} := \left| \tilde{T}_{n}^{\alpha_{n}} \right| + \sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} n_{l} D_{M_{l}} + \sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} |T_{n_{(l-1)}}^{\alpha_{n}}|,
\tilde{\sigma}_{n}^{\alpha_{n}} f(y) := \int_{G_{m}} f(x) \tilde{K}_{n}^{\alpha_{n}} (y - x) d\mu(x).$$

Lemma 1.1. [3] *If k and n are natural numbers, then*

a).
$$C_1(1+\alpha_n)(2+\alpha_n)k^{\alpha_n} < A_k^{\alpha_n} < C_2(1+\alpha_n)(2+\alpha_n)k^{\alpha_n}, -2 < \alpha_n < -1;$$

b).
$$C_1(1+\alpha_n)k^{\alpha_n} < A_k^{\alpha_n} < C_2(1+\alpha_n)k^{\alpha_n}, -1 < \alpha_n < 0$$
;

c).
$$C_1(d)k^{\alpha_n} < A_k^{\alpha_n} < C_2(d)k^{\alpha_n}, \ 0 < \alpha_n \le d.$$

where C_1 , C_2 are positive absolute constants(though in case (c) they depend on d).

Lemma 1.2. [5] Let
$$0 \le j < n_t M_t$$
 and $0 \le n_t < m_t$. Then, $D_{n_t M_t - j} = D_{n_t M_t} - \psi_{n_t M_t - 1} \bar{D}_j$.

Proof. We know that this result is not a new one, but in order to give some introduction to the methods of Vilenkin system we give here the proof of [5].

It is clear that

$$D_{n_t M_t} = D_{n_t M_t - j} + \sum_{k=n_t M_t - j}^{n_t M_t - 1} \psi_k = D_{n_t M_t - j} + \sum_{k=0}^{j-1} \psi_{n_t M_t - k - 1}.$$

Consequently,

$$\psi_{n_{t}M_{t}-k-1}(x) = \psi_{(n_{t}-1)M_{t}+(m_{t-1}-1)M_{t-1}+...+(m_{0}-1)M_{0}-k}(x)$$

$$= \psi_{(n_{t}-k_{t}-1)M_{t}+(m_{t-1}-k_{t-1}-1)M_{t-1}+...+(m_{0}-k_{0}-1)M_{0}}(x)$$

$$= \psi_{(n_{t}-1)M_{t}+(m_{t-1}-1)M_{t-1}+...+(m_{0}-1)M_{0}}(x)\bar{\psi}_{k}(x)$$

$$= \psi_{n_{t}M_{t}-1}(x)\bar{\psi}_{k}(x).$$

Hence, the Lemma follows. \Box

2. Main Results

Lemma 2.1. For $n, a \in \mathbb{N}$, $M_B \le n < M_{B+1}$, |n| = B, $\alpha_a \in (0, 1)$. Then, $|T_n^{\alpha_a}| \le \tilde{T}_n^{\alpha_a}$.

Proof. Since |n| = B. Then,

$$\begin{split} &A_{n}^{\alpha_{a}}T_{n}^{\alpha_{a}} = \sum_{j=0}^{n_{B}M_{B}-1}A_{n-j}^{\alpha_{a}-1}D_{j} = \sum_{j=0}^{n_{B}M_{B}-1}A_{n_{B}M_{B}+n_{(B)}-j}^{\alpha_{a}-1}D_{j} \\ &= \sum_{j=0}^{n_{B}M_{B}-1}A_{n_{(B)}+j}^{\alpha_{a}-1}D_{n_{B}M_{B}-j}. \end{split}$$

By Lemma 1.2 and (1) we have

$$\begin{split} T_{n}^{\alpha_{a}} &= \frac{D_{n_{B}M_{B}}}{A_{n}^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}-1} - \frac{\psi_{n_{B}M_{B}-1}}{A_{n}^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}} \bar{D}_{j} \\ &= \frac{D_{M_{B}}}{A_{n}^{\alpha_{a}}} \sum_{k=0}^{n_{B}-1} r_{n}^{k} \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}-1} - \frac{\psi_{n_{B}M_{B}-1}}{A_{n}^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}} \bar{D}_{j} \\ &= \frac{D_{M_{B}}}{A_{n}^{\alpha_{a}}} \sum_{k=0}^{n_{B}-1} r_{n}^{k} \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}-1} + I. \end{split}$$

This implies that

$$\begin{split} & \left| T_{n}^{\alpha_{a}} \right| \leq \left| \frac{D_{M_{B}}}{A_{n}^{\alpha_{a}}} \sum_{k=0}^{n_{B}-1} r_{n}^{k} \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}-1} \right| + \left| I \right| \\ & \leq \frac{D_{M_{B}}}{A_{n}^{\alpha_{a}}} \sum_{k=0}^{n_{B}-1} \left| r_{n}^{k} \right| \sum_{j=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}-1} + \left| I \right| \\ & = \frac{n_{B}D_{M_{B}}}{A_{n}^{\alpha_{a}}} \sum_{i=0}^{n_{B}M_{B}-1} A_{n_{(B)}+j}^{\alpha_{a}-1} + \left| I \right|. \end{split}$$

By the help of Abel's transformation and (2) we get

$$\begin{split} |I| &= \left| -\frac{\psi_{n_B M_B - 1}}{A_n^{\alpha_a}} \sum_{j = 0}^{n_B M_B - 1} A_{n_{(B)} + j}^{\alpha_a - 1} \bar{D}_j \right| \\ &= \frac{1}{A_n^{\alpha_a}} \left| \sum_{j = 0}^{n_B M_B - 2} \left[A_{n_{(B)} + j}^{\alpha_a - 1} - A_{n_{(B)} + j + 1}^{\alpha_a - 1} \right] \sum_{i = 0}^{j} \bar{D}_i + A_{n_{(B)} + n_B M_B}^{\alpha_a - 1} \sum_{i = 0}^{n_B M_B - 1} \bar{D}_i \right| \\ &\leq \sum_{j = 0}^{n_B M_B - 2} \frac{(1 - \alpha_a) A_{n_{(B)} + j}^{\alpha_a - 1}}{A_n^{\alpha_a}} \frac{j + 1}{n_{(B)} + j + 1} |K_j| + \frac{A_n^{\alpha_a - 1}}{A_n^{\alpha_a}} \left| \sum_{i = 0}^{n_B M_B - 1} \bar{D}_i \right| =: h_1 + h_2. \end{split}$$

It is Known from Lemma 1.1 that $\frac{A_{n_{(B)}+j}^{\alpha_a-1}}{A_n^{\alpha_a}} \leq \frac{\alpha_a(n_{(B)}+j)^{\alpha_a-1}}{n^{\alpha_a}}$. So, the situation for h_1 becomes

$$\begin{split} &\sum_{j=0}^{n_{B}M_{B}-2} \left| \frac{(1-\alpha_{a})A_{n_{(B)}+j}^{\alpha_{a}-1}}{A_{n}^{\alpha_{a}}} \frac{j+1}{n_{(B)}+j+1} K_{j} \right| \\ &\leq \sum_{j=0}^{n_{B}M_{B}-2} \left| \frac{\alpha_{a}(1-\alpha_{a})}{n^{\alpha_{a}}(n_{(B)}+j)^{1-\alpha_{a}}} \frac{j+1}{n_{(B)}+j+1} K_{j} \right| \\ &\leq \frac{\alpha_{a}(1-\alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-2} \frac{j+1}{(n_{(B)}+j)^{1-\alpha_{a}}(n_{(B)}+j+1)} \left| K_{j} \right| \\ &\leq \frac{\alpha_{a}(1-\alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-2} \frac{j+1}{(n_{(B)}+j)^{2-\alpha_{a}}} \left| K_{j} \right|. \end{split}$$

The case for h_2 becomes

$$h_{2} = \frac{A_{n}^{\alpha_{a}-1}}{A_{n}^{\alpha_{a}}} \left| \sum_{i=0}^{n_{B}M_{B}-1} D_{i} \right| = \frac{A_{n}^{\alpha_{a}-1}}{A_{n}^{\alpha_{a}}} (n_{B}M_{B}) \left| K_{n_{B}M_{B}-1} \right|$$

$$\leq \frac{\alpha_{a}(n_{B}M_{B})}{n} \left| K_{n_{B}M_{B}-1} \right| \leq \alpha_{a} \left| K_{n_{B}M_{B}-1} \right|.$$

Thus,

$$|I| \le \frac{\alpha_a (1 - \alpha_a)}{n^{\alpha_a}} \sum_{j=0}^{n_B M_B - 2} \frac{j+1}{(n_{(B)} + j)^{2 - \alpha_a}} |K_j| + \alpha_a |K_{n_B M_B - 1}|.$$

The proof completed. \Box

Now, we need to prove the next Lemma which means that the maximal operator $\tilde{t}_*^{\alpha_a} := \sup_{n,a \in \mathbb{N}} |\tilde{t}_n^{\alpha_a}|$ is quasi-local. This Lemma together with the next one are the most important tools in the proof of the main results of this paper.

Lemma 2.2. Let $1 > \alpha_a > 0$, $f \in L^1(G_m)$ such that $supp f \subset I_k(u)$, $\int_{I_k(u)} f d\mu(x) = 0$ for some m-adic interval $I_k(u)$. Then, we have $\int_{I_k(u)} \sup_{n,a \in \mathbb{N}} |\tilde{t}_n^{\alpha_a} f| d\mu(x) \leq C ||f||_1$.

Proof. We can easily show that for $n < M_k$ and $x \in I_k(u)$, $y \in \overline{I_k}(u)$ we have

$$\tilde{T}_n^{\alpha_a}(y-x) = \tilde{T}_n^{\alpha_a}(y-u),$$

$$\int_{I_{\nu}(u)} f(x) \tilde{T}_n^{\alpha_a}(y-x) d\mu(x) = \tilde{T}_n^{\alpha_a}(y-u) \int_{I_{\nu}(u)} f(x) d\mu(x) = 0.$$

Consequently,

$$\int_{\bar{I}_k(u)} \sup_{n,a\in N} \left| \tilde{t}_n^{\alpha_a} f \right| d\mu = \int_{\bar{I}_k(u)} \sup_{n\geq M_k,a\in N} \left| \tilde{t}_n^{\alpha_a} f \right| d\mu.$$

By the shift invariance of the Haar measure it can be supposed that u = 0. That is, $I_k(u) = I_k$. Thus,

$$\int_{\bar{I}_k(u)} \sup_{n \geq M_k, a \in N} |\tilde{I}_n^{\alpha_a} f| d\mu = \int_{\bar{I}_k} \sup_{n \geq M_k, a \in N} \left| \int_{I_k} \tilde{T}_n^{\alpha_a} (y-x) f(x) d\mu(x) \right| d\mu(y).$$

By Lemma 2.1 we have,

$$\begin{split} &\int_{\bar{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} \tilde{T}_{n}^{\alpha_{a}}(y - x) f(x) d\mu(x) \right| d\mu(y) \\ &= \int_{\bar{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\frac{n_{B} D_{M_{B}}(y - x)}{A_{n}^{\alpha_{a}}} \sum_{j=0}^{n_{B} M_{B} - 1} A_{n-j}^{\alpha_{a} - 1} \right. \\ &+ \frac{\alpha_{a} (1 - \alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{n_{B} M_{B} - 2} \frac{j+1}{(n^{(B)} + j)^{2 - \alpha_{a}}} \left| K_{j}(y - x) \right| \\ &+ \alpha_{a} \left| K_{n_{B} M_{B} - 1}(y - x) \right| \left| d\mu(x) \right| d\mu(y) \\ &= \int_{\bar{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\frac{n_{B} D_{M_{B}}(y - x)}{A_{n}^{\alpha_{a}}} \sum_{j=0}^{n_{B} M_{B} - 1} A_{n-j}^{\alpha_{a} - 1} \right] d\mu(x) \right| d\mu(y) \\ &+ \int_{\bar{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\frac{\alpha_{a} (1 - \alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{n_{B} M_{B} - 2} \frac{j+1}{(n^{(B)} + j)^{2 - \alpha_{a}}} \left| K_{j}(y - x) \right| \right] d\mu(x) \right| d\mu(y) \\ &+ \int_{\bar{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\alpha_{a} \left| K_{n_{B} M_{B} - 1}(y - x) \right| \right] d\mu(x) \right| d\mu(y) \\ &:= \phi_{1} + \phi_{2} + \phi_{3}. \end{split}$$

It is simple to find out that

$$\frac{n_B D_{M_B}(y-x)}{A_n^{\alpha_a}} \sum_{i=0}^{n_B M_B-1} A_{n-j}^{\alpha_a-1} = 0,$$

for any $y - x \in \overline{I}_k$. This holds because $D_{M_B}(y - x) = 0$ for $B = |n| \ge k$ and $y - x \in \overline{I}_k$. Hence, $\phi_1 = 0$. Besides,

$$\begin{aligned} \phi_{2} &= \int_{\overline{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\frac{\alpha_{a}(1 - \alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-2} \frac{j+1}{(n^{(B)} + j)^{2-\alpha_{a}}} \left| K_{j}(y - x) \right| \right] d\mu(x) \right| d\mu(y) \\ &= \int_{\overline{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\frac{\alpha_{a}(1 - \alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{M_{k}-1} \frac{j+1}{(n_{(B)} + j)^{2-\alpha_{a}}} \left| K_{j}(y - x) \right| \right| \\ &+ \frac{\alpha_{a}(1 - \alpha_{a})}{n^{\alpha_{a}}} \sum_{j=M_{k}}^{n_{B}M_{B}-2} \frac{j+1}{(n_{(B)} + j)^{2-\alpha_{a}}} \left| K_{j}(y - x) \right| \right] d\mu(y) \\ &\leq \int_{\overline{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\frac{\alpha_{a}(1 - \alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{M_{k}-1} \frac{j+1}{(n_{(B)} + j)^{2-\alpha_{a}}} \left| K_{j}(y - x) \right| \right] d\mu(x) \right| d\mu(y) \\ &+ \int_{\overline{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\frac{\alpha_{a}(1 - \alpha_{a})}{n^{\alpha_{a}}} \sum_{j=M_{k}}^{n_{B}M_{B}-2} \frac{j+1}{(n_{(B)} + j)^{2-\alpha_{a}}} \left| K_{j}(y - x) \right| \right] d\mu(x) \right| d\mu(y) \\ &+ \int_{\overline{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) H_{1}(y - x) d\mu(x) \right| d\mu(y) \\ &+ \int_{\overline{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) H_{2}(y - x) d\mu(x) \right| d\mu(y). \end{aligned}$$

However, since for any $j < M_k$ we have that the Fejér kernel $K_i(y - x)$ depends with respect to x only on coordinates $x_0 = 0, ..., x_{k-1} = 0$, then

$$\int_{I_{\nu}} f(x) \Big| K_{j}(y - x) \Big| d\mu(x) = |K_{j}(y)| \int_{I_{\nu}} f(x) = 0$$

gives $\int_{I_k} f(x)H_1(y-x)d\mu(x) = H_1(y)\int_{I_k} f(x)d\mu(x) = 0.$

$$\begin{split} &\frac{\alpha_a(1-\alpha_a)}{n^{\alpha_a}}\sum_{j=M_k}^{n_BM_B-1}\frac{j+1}{(n_{(B)}+j)^{2-\alpha_a}}\Big|K_j\Big|\\ &\leq \sup_{j\geq M_k}\Big|K_j\Big|\frac{\alpha_a(1-\alpha_a)}{n^{\alpha_a}}\sum_{j=1}^n\frac{j+1}{j^{2-\alpha_a}}\\ &\leq \sup_{j\geq M_k}\Big|K_j\Big|\frac{2\alpha_a(1-\alpha_a)}{n^{\alpha_a}}\sum_{j=1}^nj^{\alpha_a-1}\\ &\leq 2(1-\alpha_a)\sup_{i\geq M_k}\Big|K_j\Big|. \end{split}$$

By Lemma 2.1 in [9], this implies

$$\begin{split} & \int_{\bar{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) H_{2}(y - x) d\mu(x) \right| d\mu(y) \\ & \leq \int_{I_{k}} |f(x)| \Big(\int_{\bar{I}_{k}} \sup_{n \geq M_{k}, a \in N} \left| H_{2}(y - x) \right| d\mu(y) \Big) d\mu(x) \\ & \leq C \int_{I_{k}} |f(x)| \Big(\int_{\bar{I}_{k}} \sup_{j \geq M_{k}} \left| K_{j}(y - x) \right| d\mu(y) \Big) d\mu(x) \\ & \leq C \int_{I_{k}} |f(x)| d\mu(x) = C \left\| f \right\|_{1}. \end{split}$$

Thus, $\phi_2 \le C \|f\|_1$. Similarly, for the case ϕ_3 we apply Lemma 2.1 in [9]

$$\phi_{3} = \int_{I_{k}} \sup_{n \geq M_{k}, a \in N} \left| \int_{I_{k}} f(x) \left[\left| K_{n_{B}M_{B}-1}(y-x) \right| \right] d\mu(x) \right| d\mu(y)$$

$$\leq \int_{I_{k}} |f(x)| \left(\int_{I_{k}} \sup_{n \geq M_{k}} \left| K_{n_{B}M_{B}-1}(y-x) \right| d\mu(y) \right) d\mu(x)$$

$$\leq C \int_{I_{k}} |f(x)| d\mu(x) = C \left\| f \right\|_{1}.$$

Hence, the Lemma follows. \Box

Corollary 2.3. *Let* $1 > \alpha_a > 0$. *Then, we have*

$$\begin{split} & \|T_n^{\alpha_a}\|_1 \leq \|\tilde{T}_n^{\alpha_a}\|_1 \leq C; \\ & \|t_n^{\alpha_a}f\|_1, \, \|\tilde{t}_n^{\alpha_a}f\|_1 \leq C\|f\|_1 \end{split}$$

and

$$||t_n^{\alpha_a}q||_{\infty}$$
, $||\tilde{t}_n^{\alpha_a}q||_{\infty} \leq C||q||_{\infty}$

for all natural numbers a, n where C is some absolute constant and $f \in L^1$, $g \in L^{\infty}$. That is, operator $t_n^{\alpha_a}$, $\tilde{t}_n^{\alpha_a}$ are of type (L^1, L^1) and (L^{∞}, L^{∞}) and Uniformly in n.

Proof. The proof is direct consequence of Lemma 2.2. Then

$$\begin{split} \|\widetilde{T}_{n}^{\alpha_{a}}\|_{1} &\leq C \frac{n_{B} \|D_{M_{B}}\|_{1}}{A_{n_{a}}^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-1} A_{n-j}^{\alpha_{a}-1} \\ &+ \frac{(1-\alpha_{a})}{n^{\alpha_{a}}} \sum_{j=0}^{n_{B}M_{B}-2} \frac{j+1}{(n_{(B)}+j)^{2-\alpha_{a}}} \|K_{j}\|_{1} + \|K_{n_{B}M_{B}-1}\|_{1}. \end{split}$$

Consequently, by $||D_{M_B}||_1$, $||K_j||_1 \le C$, the proof of Corollary 5 follows. \square

In the sequel we prove that maximal operator $\tilde{\sigma}_{*,q}^{\alpha} := \sup_{n \in \mathbb{N}_{\alpha,q}} |\tilde{\sigma}_n^{\alpha_n}|$ is quasi-local. The way we get this is by the investigation of kernel functions, its maximal function on the Vilenkin group by making a hole around zero and some quasi-locality issues (for the notion of quasi-locality see[13]). This is the very base of the proof of the main results of this paper. That is, Theorem 2.7.

Lemma 2.4. Let $0 < \alpha_n < 1$, $f \in L^1(G_m)$ such that $supp f \subset I_k(u)$, $\int_{I_k(u)} f d\mu = 0$ for some m-adic interval $I_k(u)$. Then we have $\int_{G_m \setminus I_k(u)} \tilde{\sigma}_{*,q}^{\alpha} f d\mu \leq C_q ||f||_1$. Where constants C_q can depend only on q.

Proof. From the formula of the kernel function $\tilde{K}_n^{\alpha_n}$ we have

$$\tilde{K}_{n}^{\alpha_{n}} = \left| T_{n}^{\alpha_{n}} \right| + \sum_{l=0}^{B} \frac{A_{n(l-1)}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} n_{l} D_{M_{l}} + \sum_{l=0}^{B} \frac{A_{n(l-1)}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} |T_{n(l-1)}^{\alpha_{n}}| =: N_{1} + N_{2} + N_{3}.$$

The integral,

$$\int_{G_m \setminus I_k(u)} \sup_{n \in \mathbb{N}} \left| \int_{I_k(u)} f(x) \left(N_2(y-x) \right) d\mu(x) \right| d\mu(y) = 0$$

since $f * D_{M_l} = 0$ for $l < s \le k$ because of the \mathcal{A}_k measurablity of D_{M_l} and $\int f = 0$. Besides, $D_{M_l}(y - x) = 0$; for s > k, $y - x \notin I_k$.

Since from Lemma [3] we have

$$\frac{A_{n_{(l-1)}}^{\alpha_n}}{A_n^{\alpha_n}} \leq \frac{(n_{(l-1)})^{\alpha_n}}{n^{\alpha_n}} \leq C \frac{M_l^{\alpha_n}}{n^{\alpha_n}}.$$

Besides, by the help of Lemma 2.2 and by the fact that $n \in \mathbb{N}_{\alpha,q}$ implies $\sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_n}}{A_n^{\alpha_n}} \le C \sum_{l=0}^{B} \frac{M_l^{\alpha_n}}{n^{\alpha_n}} \le C_q$ we get

$$\begin{split} &\int_{G_{m}\setminus I_{k}(u)}\sup_{n\in\mathbb{N}_{\alpha,q}}\bigg|\int_{I_{k}(u)}f(x)\bigg(N_{1}(y-x)+N_{3}(y-x)\bigg)d\mu(x)\bigg|d\mu(y)\\ &\leq \int_{G_{m}\setminus I_{k}(u)}\sup_{n\in\mathbb{N}_{\alpha,q}}\bigg|\int_{I_{k}(u)}f(x)\bigg(\bigg|\tilde{T}_{n}^{\alpha_{n}}(y-x)\bigg|+\sum_{l=0}^{B}\frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}}\bigg|\tilde{T}_{n_{(l-1)}}^{\alpha_{n}}(y-x)\bigg|\bigg)d\mu(x)\bigg|d\mu(y)\\ &\leq C_{q}\int_{G_{m}\setminus I_{k}(u)}\sup_{n\in\mathbb{N}_{\alpha,q}}\bigg|\int_{I_{k}(u)}f(x)\bigg|\tilde{T}_{n}^{\alpha_{n}}(y-x)\bigg|d\mu(x)\bigg|d\mu(y)\\ &\leq C_{q}\|f\|_{1}. \end{split}$$

Hence, the Lemma follows. \Box

Lemma 2.5. *Let* $0 < \alpha_n < 1$, $n \in \mathbb{N}$, $M_B \le n < M_{B+1}$, |n| = B. Then,

$$|K_n^{\alpha_n}| \leq \tilde{K}_n^{\alpha_n}.$$

Proof. By definition, we have

$$K_n^{\alpha_n} = \frac{1}{A_n^{\alpha_n}} \sum_{j=0}^{n-1} A_{n-j}^{\alpha_n - 1} D_j$$

$$= \frac{1}{A_n^{\alpha_n}} \sum_{j=0}^{n_B M_B - 1} A_{n-j}^{\alpha_n - 1} D_j + \frac{1}{A_n^{\alpha_n}} \sum_{j=n_B M_B}^{n-1} A_{n-j}^{\alpha_n - 1} D_j$$

$$= T_n^{\alpha_n} + \frac{1}{A_n^{\alpha_n}} \sum_{j=n_B M_B}^{n_B M_B + n_{(B)} - 1} A_{n_{(B)} + n_B M_B - j}^{\alpha_n - 1} D_j.$$

By Lemma 1.2 the situation for

$$\begin{split} &\frac{1}{A_{n}^{\alpha_{n}}} \sum_{j=n_{B}M_{B}}^{n_{B}M_{B}+n_{(B)}-1} A_{n_{(B)}+n_{B}M_{B}-j}^{\alpha_{n}-1} D_{j} \\ &= \frac{1}{A_{n}^{\alpha_{n}}} \sum_{t=0}^{n-1} A_{n-t}^{\alpha_{n}-1} D_{t+n_{B}M_{B}} \\ &= \frac{1}{A_{n}^{\alpha_{n}}} \sum_{t=0}^{n_{(B)}-1} A_{n-t}^{\alpha_{n}-1} \bigg(D_{n_{B}M_{B}} + \psi_{n_{B}M_{B}-1} \overline{D_{t}} \bigg) \\ &= \frac{D_{n_{B}M_{B}}}{A_{n}^{\alpha_{n}}} \sum_{t=0}^{n_{(B)}-1} A_{n-t}^{\alpha_{n}-1} + \frac{\psi_{n_{B}M_{B}-1}}{A_{n}^{\alpha_{n}}} \sum_{t=0}^{n_{(B)}-1} A_{n-t}^{\alpha_{n}-1} \overline{D_{t}}. \\ &= \frac{A_{n_{(B)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} \bigg(D_{n_{B}M_{B}} + \psi_{n_{B}M_{B}-1} \overline{K_{n_{(B)}}^{\alpha_{n}}} \bigg). \end{split}$$

Then,

$$K_n^{\alpha_n} = T_n^{\alpha_n} + \frac{A_{n_{(B)}}^{\alpha_n}}{A_n^{\alpha_n}} \left(D_{n_B M_B} + \psi_{n_B M_B - 1} \overline{K_{n_{(B)}}^{\alpha_n}} \right).$$

In general, for j = 1, ..., B + 1, we get

$$K_{n_{(j)}}^{\alpha_n} = T_{n_{(j)}}^{\alpha_n} + \frac{A_{n_{(j-1)}}^{\alpha_n}}{A_{n_{(i)}}^{\alpha_n}} \left(D_{n_{(j-1)}M_{(j-1)}} + \psi_{n_{(j-1)}M_{(j-1)}-1} \overline{K_{n_{(j-1)}}^{\alpha_n}} \right).$$

Recursively applying this formula and Considering that $n_{(-1)}=0$, $T_0^{\alpha_n}=K_0^{\alpha_n}=0$, $A_0^{\alpha_n}=1$, we get

$$\begin{split} |K_{n}^{\alpha_{n}}| &\leq |T_{n}^{\alpha_{n}}| + \sum_{l=0}^{B} \left(\prod_{j=l}^{B} \frac{A_{n_{(j-1)}}^{\alpha_{n}}}{A_{n_{(j)}}^{\alpha_{n}}} D_{M_{l}} \sum_{k=0}^{n_{l}-1} |r_{n}^{k}| + \prod_{j=l}^{B} \frac{A_{n_{(j-1)}}^{\alpha_{n}}}{A_{n_{(j)}}^{\alpha_{n}}} |T_{n_{(l-1)}}^{\alpha_{n}}| \right) \\ &= \left| \tilde{T}_{n}^{\alpha_{n}} \right| + \sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} n_{l} D_{M_{l}} + \sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} |T_{n_{(l-1)}}^{\alpha_{n}}| = \tilde{K}_{n}^{\alpha_{n}}. \end{split}$$

Hence, the Lemma follows. \Box

Now, we plug into the main tool for the proof of Theorem 2.7. Define operators as follows

$$\sigma_{*,q}^{\alpha}f := \sup_{n \in N_{\alpha,q}} |\sigma_n^{\alpha_n} f|, \ \tilde{\sigma}_{*,q}^{\alpha}f := \sup_{n \in N_{\alpha,q}} |\tilde{\sigma}_n^{\alpha_n} f|.$$

Lemma 2.6. The operator $\tilde{\sigma}_*^{\alpha}$ is of type (L^{∞}, L^{∞}) and Weak type (L^1, L^1) ; σ_*^{α} is of Weak type (L^1, L^1) .

Proof. By the help of the method of Lemma 2.2 and Corollary 2.3 we get that

$$\begin{split} & \|\tilde{K}_{n}^{\alpha_{n}}\|_{1} \leq \|T_{n}^{\alpha_{n}}\|_{1} + \sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} n_{l} \|D_{M_{l}}\|_{1} + \sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} \|T_{n_{(l-1)}}^{\alpha_{n}}\|_{1} \\ & \leq C + C \sum_{l=0}^{B} \frac{A_{n_{(l-1)}}^{\alpha_{n}}}{A_{n}^{\alpha_{n}}} \leq C_{q} \end{split}$$

since $n \in \mathbb{N}_{\alpha,q}$. Thus, $\tilde{\sigma}_{*,q}^{\alpha}$ is of type (L^{∞}, L^{∞}) .

To proof the weak type(L^1 , L^1) case we apply Calderon-Zygmund decomposition Lemma [9]. Let $f \in L^1$ and $||f||_1 < \delta$. Then there is a decomposition:

$$f = f_0 + \sum_{j=1}^{\infty} f_j$$

such that

$$||f_0||_{\infty} \le C\delta$$
, $||f_0||_1 \le C||f||_1$, $G_m^j = I_{k_i}(u^j)$

are disjoint m-adic intervals for which

$$supp f_j \subset G_m^j, \ \int_{G_m^j} f_j d\mu = 0, \ |F| \le \frac{C||f||_1}{\delta}$$

 $(u^j \in G_m, k_j \in \mathbb{N}, j \in \mathbb{P})$, where $F = \bigcup_{i=1}^{\infty} G_m^j$. By the σ -sublinearity of the maximal operator with an appropriate constant C_q we have

$$\mu(\tilde{\sigma}_{*,q}^{\alpha}f>2C_q\delta)\leq \mu(\tilde{\sigma}_{*,q}^{\alpha}f_0>C_q\delta)+\mu(\tilde{\sigma}_{*,q}^{\alpha}\sum_{j=1}^{\infty}f_j>C_q\delta):=W+M.$$

Since $\tilde{\sigma}_{*,a}^{\alpha}$ is of type (L^{∞}, L^{∞}) , we have that

$$\|\tilde{\sigma}_{*,q}f_0\|_{\infty} \le C_q \|f_0\|_{\infty} \le C_q \delta$$

then we have W = 0. The situation for M becomes,

$$\begin{split} M &= \mu(\tilde{\sigma}_{*,q}^{\alpha} \sum_{j=1}^{\infty} f_j > C_q \delta) \leq |F| + \mu(\bar{F} \cap [\tilde{\sigma}_{*,q}^{\alpha} \sum_{j=1}^{\infty} f_j > C_q \delta]) \\ &\leq \frac{C||f||_1}{\delta} + \frac{C_q}{\delta} \sum_{i=1}^{\infty} \int_{G_m \setminus G_m^i} \sigma_{*,q}^{\alpha} f_j d\mu =: \frac{C||f||_1}{\delta} + \frac{C_q}{\delta} \sum_{i=1}^{\infty} N_j, \end{split}$$

in which

$$N_{j} = \int_{G_{m}\backslash G_{m}^{j}} \sigma_{*,q}^{\alpha} f_{j} d\mu \leq \int_{G_{m}\backslash I_{k_{j}}(u^{j})} \sup_{n\in\mathbb{N}_{\alpha,q}} \left| \int_{I_{k_{j}}(u^{j})} f_{j}(x) \tilde{K}_{n}^{\alpha_{n}}(y-x) d\mu(x) \right| d\mu(y).$$

The next estimation for N_i is given by Lemma 2.4. Then,

$$N_j \le C_q ||f_j||_1.$$

That is, operator $\tilde{\sigma}_{*,q}^{\alpha}$ is of weak type (L^1 , L^1). By Lemma 2.5 and since

$$\mu(\sigma_{*,q}^{\alpha}f>2C_q\delta)\leq \mu(\tilde{\sigma}_{*,q}^{\alpha}|f|>2C_q\delta)\leq C_q\frac{\|f\|_1}{\delta}.$$

We concluded that the maximal operator $\sigma_{*,q}^{\alpha}$ is of weak type (L^1 , L^1). Hence, the Lemma follows. \square

Theorem 2.7. Let $0 < \alpha_n < 1$. Let $f \in L^1(G_m)$. Then $\sigma_n^{\alpha_n} f \longrightarrow f$ if $n \longrightarrow \infty$, $n \in \mathbb{N}_{\alpha,q}$.

Proof. Let us consider a Vilenkin Polynomial P such that $P(x) = \sum_{i=0}^{M_k-1} c_i \psi_i$. Then for all natural number $n \ge M_k$, $n \in \mathbb{N}_{\alpha,q}$ we have that $S_n P \equiv P$. Thus, the statement $\sigma_n^{\alpha_n} P \longrightarrow P$ holds everywhere which is not only for $n \in \mathbb{N}_{\alpha,q}$. Now, let ϵ , $\delta > 0$, $f \in L^1$. Let P be a Vilenkin polynomial such that $||f - P||_1 < \delta$. Then,

$$\begin{split} &\mu(\overline{\lim_{n\in\mathbb{N}_{\alpha,q}}}|\sigma_{n}^{\alpha_{n}}f-f|>\epsilon)\\ &\leq \mu(\overline{\lim_{n\in\mathbb{N}_{\alpha,q}}}|\sigma_{n}^{\alpha_{n}}(f-P)|>\frac{\epsilon}{3})+\mu(\overline{\lim_{n\in\mathbb{N}_{\alpha,q}}}|\sigma_{n}^{\alpha_{n}}P-P|>\frac{\epsilon}{3})\\ &+\mu(\overline{\lim_{n\in\mathbb{N}_{\alpha,q}}}|\sigma_{n}^{\alpha_{n}}P-f|>\frac{\epsilon}{3})\\ &\leq \mu(\overline{\lim_{n\in\mathbb{N}_{\alpha,q}}}|\sigma_{n}^{\alpha_{n}}(f-P)|>\frac{\epsilon}{3})+0+\frac{3}{\epsilon}\|P-f\|_{1}\\ &\leq C_{q}\|P-f\|_{1}\frac{3}{\epsilon}\leq \frac{C_{q}}{\epsilon}\delta \end{split}$$

since (from Lemma 2.6) $\sigma_{*,q}^{\alpha}$ is of weak type(L^1,L^1) with any fixed q > 0. This holds for all $\delta > 0$. That is, for an arbitrary $\epsilon > 0$

$$\mu(\overline{\lim_{n\in\mathbb{N}_{\alpha,q}}}|\sigma_n^{\alpha_n}f-f|>\epsilon)=0$$

and as a result we also have

$$\mu(\overline{\lim_{n\in\mathbb{N}_{\alpha,q}}}|\sigma_n^{\alpha_n}f-f|>0)=0.$$

This finally gives $\overline{\lim}_{n\in\mathbb{N}_{\alpha,q}}|\sigma_n^{\alpha_n}f-f|=0$ a.e. Consequently, $\sigma_n^{\alpha_n}f\longrightarrow f$ a.e provided that $n\longrightarrow\infty$, $n\in\mathbb{N}_{\alpha,q}$. Hence, the Theorem follows. \square

References

- [1] Anas Ahmed.A.J., G.Gát, Convergence of Cesàro means with varying parametrs of Walsh-Fourier series, Miskolic Mathematical Notes Vol.19(2018), No.1., pp.303-317.
- [2] G.H. Agaev, N.Ja. Vilenkin, G.M. Dzhafarli, and A.I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on 0-dimensional Groups, Izd. ("ELM"), Baku, 1981. [in Russian]
- [3] T. Akhobadze, On the convergence of generalized Cesàro means of trigonometric Fourier series.I., Acta Math. Hung., vol. 115, no. 1-2, pp. 59-78, 2007, doi: https://doi.org/10.1007/s10474-007-5214-7.
- [4] I. Blahota, Relation between Dirichlet kernels with respect to Vilenkin-like systems, Acta Academiae Paedagogicae Agriensis XXII, 109-114 (1994).
- [5] G.Gát, U.Goginava, Almost Everywhere convergence of (*C*, *α*)-means of Quadratical Partial sums of Double Vilenkin-Fourier series, Mathematical Journal Vol. 13(2006), No.3, 447-462.

- [6] N. Fine, Cesàro summability of Walsh-Fourier series, proc. Nat. Acad. Sci. USA, vol.41, pp.588-591, 1955 doi:https://doi.org/10.1073/pnas.41.8.588.
- [7] S. Fridli, On the rate of convergence of Cesàro means of Walsh-Fourier series, J. of Approx. Theory, vol. 76, no. 1, pp. 31-53, 1994, doi: https://doi.org/10.1006/jath.1994.1003.
- [8] N. Fujii, A maximal inequality for h1 functions on the generalized Walsh-Paley group, Proc.Amer. Math. Soc., vol. 77, pp. 111-116, 1979, doi: https://doi.org/10.1090/S0002-9939-1979-0539641-9.
- [9] G. Gát, On (C,1) summability for Vilenkin-like systems, Stud. Math., vol. 144, no. 2, pp. 101-120, 2001, doi: 10.4064/sm144-2-1
- [10] U. Goginava, Approximation properties of (C, α) means of double Walsh-Fourier series Analysis in Theory and Applications, vol. 20, no. 1, pp. 77-98, 2004, doi: https://doi.org/10.1007/BF02835261.
- [11] E. Hewitt and K. Ross, Abstract Harmonic Analysis I., Heidelberg: Springer-Verlag, 1963.
- [12] I. B. Kaplan, Cesàro means of variable order. Izv. Vyssh. Uchebn. Zaved. Mat. 18 (1960), no. 5, 62-73.
- [13] F. Schipp, W. Wade, P. Simon, and J. Pal, Walsh series, An Introduction to dyadic harmonic analysi, Bristol and New York: Adam Hilger, 1990.
- [14] M. Taibleson, Fourier Analysis on Local Fields, Princeton, N.J.: Princeton Univ. Press., 1975.
- [15] Sh. Tetunashvili, On divergence of Fourier series by some methods of summability. J. Funct. Spaces Appl. 2012, Art. ID 542607, 9 pp.
- [16] N. Vilenkin, On a class of complete orthonormal systems, (Russian) Bull. Acad. Sci. URSS. Ser. Math. [Izvestia Akad. Nauk SSSR] 11(1947), 363-400.
- [17] F. Weisz, (C, α) summability of Walsh-Fourier series, Analysis Mathematica, vol. 27, pp. 141-155, 2001.
- [18] A. Zygmund, Trigonometric Series. Cambridge: University Press, 1959.