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Abstract. In this article, we consider a mathematical model consisting of fish and mussel population in
presence of plankton as common food source in marine ecosystem. The model is constructed considering
all possible biological relationships among plankton (nutrient), fish and mussel. Nonconstant death rate
is introduced for mussel population. To avoid ignoring any environmental factors, we consider some
important parameters as stochastic. Existence and uniqueness of global positive solutions, boundedness of
solutions are proved mathematically. Conditions for extinction of fish and mussel population are derived.
From these conditions, we have reached at some conclusion which are verified numerically. We have
established the conditions for which the model is persistent in mean. We have proved that the solutions
are globally attractive in mean. Numerical simulations are performed by using MATLAB to justify the
mathematical findings. Numerically, we have investigated several useful facts and have achieved some
conclusion. For extension of this study, a model is proposed at the end.

1. Introduction

Now a days, dynamical study of marine ecosystem and aquaculture has become very essential for
livelihood and economics. There are a lot of factors to be concerned about and there are a lot of species
which are dependent on each other for survival in this ecosystem. Our study mainly concerns itself with
the coexistence of fish with mussel in the same habitat, which may contribute in bio-economic modelling.
Existence of shellfish (mussel) in the same habitat where fish is available has both positive and negative
effects on fish density.

The shellfish are usually treated as bio-filter because they play an important role in controlling the water
quality. They can consume excess feed not dissolved into water, which enhances the water quality. The
shellfish (barnacles, mussel etc.) are used in an innovative way so that they behave like a bio-filtering
system to clean up fish farms [39]. Mussel can help in pollution problem in two ways: (i) mussel can digest
the wastage particles of feed, (ii) they consume phytoplankton which thrive on inorganic nutrients such as
phosphorous and nitrogen.

Since both fish and mussel have same food source, they compete against each other for food. In this
way, existence of mussel has negative effect on fish biomass.

2020 Mathematics Subject Classification. 34C23, 92D25
Keywords. Global attractivity; Persistence; Extinction; Marine ecosystem.
Received: 25 September 2020; Accepted: 19 February 2021
Communicated by Marija Milošević
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Many researchers have studied various models to find out various facts on fish farming and harvesting.
Potential impact of fish farming on nutrient content is studied by Karakassis et al. [14] and they have found
that fish farm waste can cause 1% on nutrient concentration in contrast with other anthropogenic activities.
Some researchers [22] have found that detritivorous fish has huge impact on the estuarian ecosystem.
Samanta et al. [37] have found how the maximum amount of species which are economically important can
be harvested from a fishery. Bandyopadhyay et al. [1] have investigated the role of nutrients in controlling
the behavior of an ecological system. Gazi et al. [9] have considered fish and mussel in a same model in
existence of external food source and analyzed the stability of the system. Gazi [10] have extended this
study and analyzed for the direction of Hopf-bifurcation, stability of the Hopf-bifurcating periodic orbits.

Fish farming can differ depending upon different environment and different water. Sometimes, these
farms depend on tidal flow, sometimes fish are allowed to move to search for natural food, in some cases,
natural food such as plankton are provided in the fisheries and sometime, mussels are cultivated in the
farm to balance the toxic of water. But, other than the fish farm, in coastal area-river-ocean, these species
are found to coexist without any artificial force. In both the cases, both fish and mussel consume same food
which may be provided externally or naturally (plankton), should be in high quantity.

From the belief that any substance can dilute in water, the lakes become the dumping grounds for
different types of wastages and pollutants which cause presence of toxic substances in marine ecosystem.
So, consideration of existence of toxic in a mathematical model of aquaculture is highly significant and
necessary. Hallam and Clark [11], Hallam and De Luna [12], Dubey and Hussain [8], Kar and Chaudhuri
[15], Kar et al. [16], Pal and Samanta [21], Sharma and Samanta [38], Pal et al. [20], etc. have involved
toxic substance to study their mathematical models. In most of the models, general single species or two
species communities without any special emphasis on aquatic environments are considered. Maynard
Smith [40] and Samanta [35] have incorporated the effects of toxic substances in a two species Lotka-
Volterra competitive system, by considering that in presence of other species, each species produces a toxic
substance.

Some researchers [17, 19, 23, 25–37] have introduced Gaussian white noise as environmental variation
model to find out the effects of environmental noise on dynamical systems. May [19] has found that the
birth rates, death rates, carrying capacity, competition coefficients and all other parameters involved in a
dynamical model lead to random fluctuation because of continuous fluctuation in the environment, to a
great lesser extent. If the dynamical patterns revealed in deterministic system are still in evidence when
stochastic effects are introduced, they happen to be very useful ecologically. Usually, uncertain growth
and death rates of populations are considered as an effect of environmental stochasticity. So, it is better to
consider such parameters as a stochastic process rather than a deterministic one.

Only a few researches [9, 10, 41] have considered fish and mussel in the same model. But, to the best of
our knowledge, no one has incorporated the factor in mathematical model that fish play an important role
in reproduction process of mussel. So, their death rate may differ depending on density of fish, i.e., death
rate of mussel should be a fish density dependent function. Consideration of such biological facts and
inclusion of this fact into mathematical modelling make this work unique. Also, no one has studied such a
model in a randomly fluctuating environment, which makes this work more realistic and meaningful.

We represent the article as follows: Section 2 contains biological facts and some assumptions to construct
both the deterministic and stochastic models. In Section 3, existence and uniqueness of global positive
solution is proved for both the deterministic and stochastic systems. Boundedness of solutions is proved
in Section 4 followed by conditions for extinction for fish and mussel which are derived at in Section 5.
Section 6 contains the most important theorems of persistence of the underlying system with some necessary
lemmas and theorems. In section 7, we have proved that solutions of the system are globally attractive in
mean. Section 8 justifies mathematical findings by numerical simulations and investigates some effects of
different factors in this system. Stochastic asymptotic stability of the system is shown through numerical
simulation in this section. In Section 9, we have discussed our mathematical and numerical findings and
concluded some interesting and useful results and have proposed a model to extend this study in future.
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2. Mathematical model with facts and assumptions

Aquatic environment such as brackish estuaries, the tidal zone, open sea, lakes and ponds contain
various kinds of species and they have various types of food chain system. Here we take plankton, fish
and mussel (shellfish) into our consideration to construct our mathematical model. Plankton plays a key
role in the aquatic food web: fish, shellfish (mussel), etc. depend on phytoplankton for survival. Energy
captured by phytoplankton is transferred to these species by zooplankton. Plankton must be produced in
high quantities to support the entire food chain because it is the primary link. Disappearance of plankton
can brake the chain and cause extinction of other marine life. Plankton suffer due to toxicant which are
released by industries in marine water. On the other hand, some phytoplankton produce chemicals (toxic),
which are harmful to human and marine lives. Considering all the facts mentioned above we propose the
system of differential equations for plankton (P) and fish (F) as follows:

dP
dt

= a − αFP − d1P − c1P2

dF
dt

= γFP − ηF2
− d2F − c2F3

(1)

Here, a represents the constant input rate of plankton in the system. Since it is a primary link in this
food chain, it is considered as highly available in this ecosystem and that it has a constant input rate. The
term α is the coefficient of the rate of consumption of plankton by fish, γ is the rate at which the energy
is transferred to fish. Parameters d1 and d2 represent the outflow or sedimentation rate of plankton and
death rate of fish respectively. Here, c1 and c2 are called the coefficients of toxicity to plankton and fish
respectively, η represents the coefficient of the intra-specific competition between fishes. The term c1P2

comes directly through the toxic effect on plankton by some external toxic substance, such as, industrial

wastes. Since,
d(c1P2)

dP
= 2c2P > 0 and

d2(c1P2)
dP2 = 2c2 > 0, there is an accelerated growth in the production

of the toxic substance to the density of the P as more and more of the species consumes the infected foods.
Similar thing happens in the case for fish, except for the fact that the effect of toxicity on the fish is more
than it is on the plankton and it is taken as c2F3 because it consumes the toxic plankton and gets directly
affected by toxic in water.

Mussel is also a species in marine ecology, which also uses plankton as their food. Mussels have a very
interesting unusual and complex mode of reproduction, which includes obligatory as a parasite on a fish.
The reproduction procedure of mussel is shown in Figure 1.

Figure 1: Reproduction cycle of mussel.

So, it is easy to observe that density of fish population affects mussel population and the effect is
inversely proportional to the death rate of mussel, i.e., the death rate of this species becomes non constant,
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dependent on fish density. We consider µ(F, θ) a function of F as the death rate of mussel, where θ is the
contact rate of glochidia larvae (of mussel) with fish. Now, combining the differential equation of mussel
with system (1), we get

dP
dt

= a − αFP − βMP − d1P − c1P2

dF
dt

= γFP − ηF2
− d2F − c2F3

dM
dt

= δMP − µ(F, θ)M

(2)

where β is the coefficient of the rate of consumption of plankton by mussel, δ is the rate at which the energy
is transferred to mussel.

We consider d3 and d are the minimum and maximum death rates of mussel respectively. From field
experiments and reproduction process of mussel, one can assume that µ(F, θ) has the following properties:

(i) µ(0, θ) = d (ii) µ(F, 0) = d (iii) lim
F→∞

µ(F, θ) = d3

(iv) lim
θ→∞

µ(F, θ) = d3 (v)
∂µ(F, θ)
∂F

< 0 (vi)
∂µ(F, θ)
∂θ

< 0
(3)

Let us take µ(F, θ) = d3 +
d − d3

1 + θF
and it is easy to verify that the function µ(F, θ) satisfies all the properties

described in (3). This function may be considered in many different ways satisfying the properties described
in (3). Considering d−d3 = d′ > 0 (∵ d > d3) and substituting the function on system (2), we get the following
system:

dP
dt

= a − αFP − βMP − d1P − c1P2

dF
dt

= γFP − ηF2
− d2F − c2F3

dM
dt

= δMP −
(
d3 +

d′

1 + θF

)
M

(4)

with initial conditions P0 > 0, F0 > 0 and M0 > 0.
Since (i) production of plankton is directly dependent on water temperature and nutrient availability

which is indirectly controlled by temperature-driven circulation patterns and (ii) metamorphosis of mussel
depends also on temperature, environmental fluctuation is not a small fact to be ignored for this model.

We consider outflow or sedimentation rate of plankton (d1), death rate of fish (d2) and minimum death
rate of mussel (d3) as stochastic parameters. We introduce environmental noise on system (4) by perturbing
d1, d2 and d3 with independent Gaussian white noise terms γ1, γ2 and γ3 to obtain the following system:

dP
dt

= a − αFP − βMP − (d1 + γ1)P − c1P2

dF
dt

= γFP − ηF2
− (d2 + γ2)F − c2F3

dM
dt

= δMP − (d3 + γ3)M −
d′M

1 + θF

(5)

where γ1, γ2 and γ3 are independent Gaussian white noises [24] satisfying the following characteristics:

〈γ j(t)〉 = 0 and 〈γ j(t1)γ j(t2)〉 = σ2
jδ j(t1 − t2), for j = 1, 2, 3.
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Here, σ1 > 0, σ2 > 0, σ3 > 0 represent the respective intensities or strengths of the random perturbations,
δ j ( j = 1, 2, 3) are the Dirac delta functions defined by

δ j(x) = 0, for x , 0,∫
∞

−∞

δ j(x)dx = lim
ε→0+

∫ ε

−ε
δ j(x)dx = 1,

and 〈·〉 is the ensemble average of the considered stochastic process. Now, the system (5) can be represented
as follows:

dP =
(
a − αFP − βMP − d1P − c1P2

)
dt − σ1Pdw1

dF = F
(
γP − ηF − d2 − c2F2

)
dt − σ2Fdw2

dM = M
(
δP − d3 −

d′

1 + θF

)
dt − σ3Mdw3

(6)

with initial conditions P0 > 0, F0 > 0 and M0 > 0. Here γ1 = σ1
dw1

dt
, γ2 = σ2

dw2

dt
, γ3 = σ3

dw3

dt
and

w = {w1,w2,w3, t ≥ 0} represents a thee-dimensional standard Brownian motion.

3. Existence of unique global positive solution

Theorem 3.1. If (P0,F0,M0) ∈ R3
+ be any initial value, then the deterministic system (4) has unique global positive

solution (P(t),F(t),M(t)) for all t ≥ 0.

Proof. For being RHS of system (4) continuous and locally Lipschitz on R3
+, the solution (P(t),F(t),M(t)) of

system (4) exists uniquely on [0, τ), where τ ∈ (0,∞]. From first equation of system (4), we have

dP
dt

+
(
αF + βM + d1 + c1P

)
P = a

=⇒ P(t) =

(
P0 + a

∫ t

0

(
exp

∫ r

0

(
αF(z) + βM(z) + d1 + c1P(z)

)
dz

)
dr

)
× exp

(
−

∫ t

0

(
αF(r) + βM(r) + d1 + c1P(r)

)
dr

)
> 0, ∀t ≥ 0.

From second equation of system (4), we have

F(t) = F0 exp
∫ t

0

(
γP(r) − ηF(r) − d2 − c2F2(r)

)
dr > 0, ∀t ≥ 0.

From third equation of system (4), we have

M(t) = M0 exp
∫ t

0

(
δP(r) − d3 −

d′

1 + θF(r)

)
dr > 0, ∀t ≥ 0.

Hence the theorem.

Lemma 3.1. [5] For all z > 0, the following inequality holds

z ≤ 2(z + 1 − log(z)) − 2(2 − log(2)).

Theorem 3.2. For any initial value (P0,F0,M0) ∈ R3
+ of system (6), there is a unique positive solution (P(t),F(t),M(t))

of system (6) on t ≥ 0, and the solutions will remain in R3
+ with probability 1 for all t ≥ 0 almost surely.
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Proof. Since coefficients of system (6) satisfy local Lipschitz condition, hence for any initial value (P0,F0,M0) ∈
R3

+ there is a unique local solution (P(t),F(t),M(t)) ∈ R3
+ for t ∈ [0, τe), where τe is the explosion time. To

show this is a global positive solution, we need to show that τe = ∞. Let r0 > 0 be sufficiently large so that

both x0, s0 and y0 lie in the interval
[ 1
r0
, r0

]
. We define stopping time (τr) for each integer r ≥ r0 such that

τr = inf
{
t ∈ [0, τe) : min {P(t),F(t),M(t)} <

1
k

or max {P(t),F(t),M(t)} > k
}
,

with infφ = ∞ ( φ denotes the empty set). It is easy to observe that τr increases as t → ∞. Here we set
τ∞ = lim

r→∞
τr, whence τ∞ ≤ τe a.s. If it can be proved that τ∞ = ∞, then it is easy to conclude that τe = ∞ and

(P(t),F(t),M(t)) ∈ R3
+ for all t ≥ 0 almost surely. So, to complete the proof all we need to do is to prove is

that τ∞ = ∞. It can be proved by contradiction. Let if possible the statement is false, then there is a pair of
constants T > 0 and ε ∈ (0, 1) such that

P {τ∞ ≤ T} > ε.

So, there exists an integer r1 ≥ r0 such that

P {τ∞ ≤ T} > ε, ∀r ≥ r1. (7)

Now, we define a C3-function V : R3
+ −→ R+ by

V(P,F,M) = (P + 1 − log(P)) + (F + 1 − log(F)) + (M + 1 − log(M))

Since (z + 1 − log(z)) ≥ 0, ∀z > 0, so F(P,F,M) is positive.
Now, applying Itô formula, we get

dV(P,F,M) =
[(

1 −
1
P

)
P
( a

P
− αF − βM − d1 − c1P

)
+

(
1 −

1
F

)
F

×

(
γP − ηF − d2 − c2F2

)
+

(
1 −

1
M

)
M

(
δP − d3 −

d′

1 + θF

)
+
σ2

1 + σ2
2 + σ2

3

2

 dt − [(P − 1)σ1dw1 + (F − 1)σ2dw2 + (M − 1)σ3dw3]

=
[
(P − 1)

( a
P
− αF − βM − d1 − c1P

)
+ (F − 1)

×

(
γP − ηF − d2 − c2F2

)
+ (M − 1)

(
δP − d3 −

d′

1 + θF

)
+
σ2

1 + σ2
2 + σ2

3

2

 dt − [(P − 1)σ1dw1 + (F − 1)σ2dw2 + (M − 1)σ3dw3]

≤
(
a − d1P + αF + βM + d1 + c1P − (α − γ)FP − (β − δ)MP − γP

+ηF + d2 − d2F − d3M − δP + d3 + d′ +
σ2

1 + σ2
2 + σ2

3

2

 dt

− [(P − 1)σ1dw1 + (F − 1)σ2dw2 + (M − 1)σ3dw3]

≤

a + d1 + d2 + d3 + d′ +
σ2

1 + σ2
2 + σ2

3

2

 + (−d1 + c1 − γ − δ)P

+(α + η − d2)F + (β − d3)M
]

dt [∵ α > γ and β > δ]
− [(P − 1)σ1dw1 + (F − 1)σ2dw2 + (M − 1)σ3dw3]

=(b1 + b2P + b3F + b4M)dt − (P − 1)σ1dw1 − (F − 1)σ2dw2 − (M − 1)σ3dw3,



A. Das, G.P. Samanta / Filomat 35:12 (2021), 4135–4155 4141

where b1 =
(
a + d1 + d2 + d3 + d′ +

σ2
1+σ2

2+σ2
3

2

)
, b2 = (−d1 + c1 − γ − δ), b3 = (α + η − d2) and b4 = (β − d3)

Using Lemma 3.1, we get

dV(P,F,M) ≤
[
b1 + 2b2(P + 1 − log P) + 2b3(F + 1 − log F) + 2b4(M + 1 − log M)

]
dt

− (P − 1)σ1dw1 − (F − 1)σ2dw2 − (M − 1)σ3dw3

Let b5 = max {b1, 2b2, 2b3, 2b4} and define v1
∧

v2 := min{v1, v2}.

∴ dV(P,F,M) ≤ b5(1 + V(P,F,M))dt − (P − 1)σ1dw1 − (F − 1)σ2dw2 − (M − 1)σ3dw3

Hence, for t1 ≤ T,

∫ τr
∧

t1

0
d(V(P(t),F(t),M(t))) <

∫ τr
∧

t1

0
b5(1 + V(P(t),F(t),M(t)))dt

−

∫ τr
∧

t1

0
(P − 1)σ1dw1 −

∫ τr
∧

t1

0
(F − 1)σ2dw2 −

∫ τr
∧

t1

0
(M − 1)σ3dw3

Taking expectation on both sides, we get

E (V (P(t),F(t),M(t)))
∣∣∣
t=τr

∧
t1

≤ V(P0,F0,M0) + E
∫ τr

∧
t1

0
b5(1 + V(P(t),F(t),M(t)))dt

≤ V(P0,F0,M0) + b5t1 + a5E
∫ τr

∧
t1

0
V(P(t),F(t),M(t))dt

≤ V(P0,F0,M0) + b5T + b5

∫ t1

0
E
[
V

(
P
(
τr

∧
t1

)
,F

(
τr

∧
t1

)
,M

(
τr

∧
t1

))]
dt

By Gronwall inequality [18]:

E(V(P(τr

∧
t1),F(τr

∧
t1),M(τr

∧
t1))) ≤ b6, (8)

where b6 = (V(P0,F0,M0) + b5T) eb5T.
Define Ωr = {τr ≤ T} for r ≥ r1 and by (7), P(Ωr) ≥ ε. Note that for every τ′ ∈ Ωr there is at least one of

P(τr, τ′),F(τr, τ′),M(τr, τ′) which is equal either r or
1
r

. So, V (P (τr, τ′) ,F(τr, τ′),M (τr, τ′)) is not less than
the smallest of

r + 1 − log(r) and
1
r

+ 1 − log
(1

r

)
=

1
r

+ 1 + log(r).

Consequently,

V(P(τr, τ
′),F(τr, τ

′),M(τr, τ
′)) ≥

(
r + 1 − log(r)

)∧(1
r

+ 1 + log(r)
)
.

Now from (7) and (8), we get

b6 ≥ E[1Ωr V(P(τr, τ
′),F(τr, τ

′),M(τr, τ
′))]

≥ ε
[(

r + 1 − log(r)
)∧(1

r
+ 1 + log(r)

)]
,

where 1Ωr is the indicator function of Ωr. Therefore, r → ∞ leads towards the contradiction ∞ > b6 = ∞.
Hence, our assumption was wrong. So, τ∞ = ∞.
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4. Boundedness of solutions

In this section, we shall discuss the boundedness property of solutions of system (6).

Now, we define M1(t) :=
∫ t

0
σ1dw1, M2(t) :=

∫ t

0
σ2dw2 and M3(t) :=

∫ t

0
σ3dw3 as real valued continuous

local martingales. Applying strong law of large numbers: lim
t→∞

M1(t)
t

= lim
t→∞

M2(t)
t

= lim
t→∞

M3(t)
t

= 0.

Boundedness of solutions is proved followed by the following Lemma.

Lemma 4.1. For all t ≥ 0, E
(
e−w(t)

)
= e

t
2 .

Proof. From Taylor expansion of exponential function, we have

e−w(t) = Σ∞i=0(−1)i (w(t))i

i!

∴ e−w(t) = 1 − w(t) +
(w(t))2

2!
−

(w(t))3

3!
+

(w(t))4

4!
+ . . . (9)

We know that, E(w(t))2k = (1.3.5 . . . (2k − 1))tk and E(w(t))2k+1 = 0
Taking expectation on both sides of (9), we get

E
(
e−w(t)

)
= 1 − E(w(t)) +

E(w(t)))2

2!
−

E((w(t)))3

3!
+

E((w(t)))4

4!
+ . . .

= 1 − 0 +
t
2!
− 0 +

1.3.t2

4!
+ . . .

= 1 +
t
2

+

(
t
2

)2

2!
+ . . . = e

t
2

So, proved.

Theorem 4.1. Let (P(t),F(t),M(t)) be a solution of system (6) with initial conditions (P0,F0,M0) ∈ R3
+, then

E(Pq(t)) ≤ K1(q), E(Fq(t)) ≤ K2(q),∀q ≥ 1, where

K1(q) = max

Pq
0, q

(
a
q

)q
 1 − q

1
q − d1 +

q−1
2 σ

2
1


q−1 , i.e.,K1(1) = P0

and K2(q) = max

Fq
0, q

(
q
η

)q


1
q + γP0 − d2 +

q−1
2 σ

2
2

q + 1


q+1

and for δP0 +
q − 1

2
σ2

3 ≤ d3, E (Mq(t)) ≤Mq
0, so, for δP0 ≤ d3, E (M(t)) ≤M0.

Proof. From first equation of system (6), we have

dP =
(
a − αFP − βMP − d1P − c1P2

)
dt − σ1Pdw1

Let us take V(t) = etPq and apply Itô formula:
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dV1 =

[
etPq + qetPq−1(a − αFP − βMP − d1P − c1P2) +

q(q − 1)
2

σ2
1etPq

]
dt

− qetPqσ1dw1

=qetPq−1

[
P
q

+ a − αFP − βMP − d1P − c1P2 +
q − 1

2
σ2

1P
]

dt − qetPqσ1dw1

≤qetPq−1

[
a + P

(
1
q
− d1P +

q − 1
2

σ2
1

)]
dt − qetPqσ1dw1

Integrating and taking expectation on both sides, we get

E(V1(t)) ≤ Pp
0 + q

∫ t

0
erE

[
Pq−1

{
a + P

(
1
q
− d1P +

q − 1
2

σ2
1

)}]
dr

Let us consider, f1(P) = Pq−1

{
a + P

(
1
q
− d1P +

q − 1
2

σ2
1

)}
∴ f ′1(P) = 0⇒ P =

(1 − q)a

q
(

1
q − d1P +

q−1
2 σ

2
1

) = P∗ (say).

After some calculations, it is observed that f ′′1 (P∗) < 0, so, f1(P) occurs to it’s maximum at P = P∗.

∴ f1(P)
∣∣∣
max

= f1(P∗) =

(
a
q

)q
 1 − q

1
q − d1 +

q−1
2 σ

2
1


q−1

Hence,

E(etPq) ≤Pq
0 + q

(
a
q

)q
 1 − q

1
q − d1 +

q−1
2 σ

2
1


q−1

(et
− 1)

⇒ E(Pq) ≤q
(

a
q

)q
 1 − q

1
q − d1 +

q−1
2 σ

2
1


q−1

+

Pq
0 − q

(
a
q

)q
 1 − q

1
q − d1 +

q−1
2 σ

2
1


q−1 e−t

Now, for t = 0, E(Pq) ≤ Pq
0 and for t→∞, E(Pq) ≤ q

(
a
q

)q
 1 − q

1
q − d1 +

q−1
2 σ

2
1


q−1

.

Hence, E(Pq) ≤ K1(q), where K1(q) = max

Pq
0, q

(
a
q

)q
[

1−q
1
q−d1+

q−1
2 σ2

1

]q−1
 .

From second equation of system (6), we have

dF = F
(
γP − ηF − d2 − c2F2

)
dt − σ2Fdw2

Let us consider V2(t) = etFq and apply Itô formula:

d(V2(t)) =

[
etFq + qetFq−1F

(
γP − ηF − d2 − c2F2

)
+

q(q − 1)
2

σ2
2etFq

]
dt

− qetFqσ2dw2

=qetFq
[

1
q

+ γP − ηF − d2 − c2F2 +
q − 1

2
σ2

2

]
dt − qetFqσ2dw2
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Integrating and taking expectation on both sides, we get

E(etFq) =Fq
0 + q

∫ t

0
erE

[
Fq

(
1
q

+ γP − ηF − d2 − c2F2 +
q − 1

2
σ2

2

)]
dr

≤Fq
0 + q

∫ t

0
erE

[
Fq

(
1
q

+ γP0 − ηF − d2 +
q − 1

2
σ2

2

)]
dr

Now, considering f2(F) = Fq
(

1
q

+ γP0 − ηF − d2 +
q − 1

2
σ2

2

)
and calculating as previously, it can be derived

that

E(Fq) ≤ K2(q), where K2(q) = max

Fq
0, q

(
q
η

)q


1
q + γP0 − d2 +

q−1
2 σ

2
2

q + 1


q+1

From third equation of the underlying system (6), we have

dM = M
(
δP − d3 −

d′

1 + θF

)
dt − σ3Mdw3

Let us take, V3(t) = log M(t) and apply Itô formula:

d(V3(t)) =

δP − d3 −
d′

1 + θF
−
σ2

3

2

 dt − σ3dw3

≤

δP0 − d3 −
σ2

3

2

 dt − σ3dw3

Integrating both sides, we get

log M(t) ≤ log M0 +

δP0 − d3 −
σ2

3

2

 t −M3

⇒M(t) ≤M0e

(
δP0−d3−

σ2
3
2

)
t−M3

⇒Mq(t) ≤Mq
0e

q
(
δP0−d3−

σ2
3
2

)
t−qM3

Taking expectation on both sides and using Lemma 4.1, we get

E(Mq(t)) ≤Mq
0eq

(
δP0−d3+

q−1
2 σ2

3

)
t

So, for
(
δP0 +

q − 1
2

σ2
3

)
< d3, E(Mq(t)) ≤Mq

0. For δP0 < d3, E(M(t)) ≤M0. Hence the theorem.

Since, there is a constant input rate “a” of plankton in the system (6), this species should not extinct and
a lower bound should exist. Let us find, the lower bound of P(t) in the next theorem.

Theorem 4.2. Let (P(t),F(t),M(t)) be a solution of system (6) with initial conditions (P0,F0,M0) ∈ R3
+, then for

δP0 ≤ d3, E (P(t)) ≥ LP. Here,
LP = min

{
P0, a − αK2(1)P0 − βM0P0 − d1P0 − c1K1(2)

}
; K1(q) and K2(q) are as in Theorem 4.1.

Proof. From the differential equation of plankton in the system (6), we have

dP =
(
a − αFP − βMP − d1P − c1P2

)
dt − σ1Pdw1
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We consider V4(t) = Pet and apply Itô formula:

d(V4(t)) =
[
Pet + et

(
a − αFP − βMP − d1P − c1P2

)]
dt − σ1Petdw1

=et
(
a + P − αFP − βMP − d1P − c1P2

)
dt − σ1Petdw1

Integrating and taking expectation on both sides and using Theorem 4.1, we get

E(Pet) =P0 +

∫ t

0
erE

(
a + P − αFP − βMP − d1P − c1P2

)
dr

≥P0 +

∫ t

0
erE

(
a − αK2(1)P0 − βM0P0 − d1P0 − c1K1(2)

)
dr

=P0 +
(
a − αK2(1)P0 − βM0P0 − d1P0 − c1K1(2)

)
(et
− 1)

Hence,
E(P) ≥ P0e−t +

(
a − αK2(1)P0 − βM0P0 − d1P0 − c1K1(2)

)
(1 − e−t)

i.e., for t = 0, E(P) ≥ P0 and for t→∞,
E(P) ≥

(
a − αK2(1)P0 − βM0P0 − d1P0 − c1K1(2)

)
Therefore, E (P(t)) ≥ LP, where
LP = min

{
P0, a − αK2(1)P0 − βM0P0 − d1P0 − c1K1(2)

}
. Hence the theorem.

5. Discussion on extinction

One of the most important terms in population dynamics is extinction. Death of last existing member
of a population is called extinction of this population, i.e., if there exists no members of a species which can
reproduce or create a new generation in the habitat, it is called the extinction of this species. In ecology,
extinction usually refers to local extinction, in which a species goes to extinct in the chosen area of study,
but may still exist elsewhere. In this article, we have considered a model where both fish (F) and mussel (M)
depend on plankton (P) for food. So, density of plankton should play an important role in the condition
of extinction of fish and mussel both. Let us define extinction mathematically and verify these facts in the
next theorem.

Definition 5.1. Population x(t) is said to be going extinct with probability one if

lim
t→∞

x(t) = 0 a.s.

Theorem 5.1. Let (P(t),F(t),M(t)) be the solution of system (6). The fish population goes extinct if γP0 < d2 +
σ2

1

2
,

i.e.,

lim
t→∞

F(t) = 0 a.s. i f γP0 < d2 +
σ2

1

2
.

And mussel population goes extinct if δP0 < d3 +
σ2

3

2
, i.e.,

lim
t→∞

M(t) = 0 a.s. i f δP0 < d3 +
σ2

3

2
.

Proof. From the second equation of system (6), we have

dF = F
(
γP − ηF − d2 − c2F2

)
dt − σ2Fdw2.
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Now, we apply Itô formula:

d(log F(t)) =

(
γP − ηF − d2 − c2F2

−
σ2

2

2

)
dt − σ2dw2

≤

(
γP0 − d2 −

σ2
2

2

)
dt − σ2dw2 [using Theorem 4.1]

Integrating both sides and dividing by t, we get

log F(t)
t

≤
log F0

t
+

(
γP0 − d2 −

σ2
2

2

)
−

M2

t

⇒ lim sup
t→∞

log F(t)
t

≤

(
γP0 − d2 −

σ2
2

2

)

Hence, fish population goes extinct if γP0 < d2 +
σ2

2

2
.

Again, from the second equation of system (6), we have

dM = M
(
δP − d3 −

d′

1 + θF

)
dt − σ3Mdw3

Applying Itô formula, we get

d(log M(t)) =

δP − d3 −
d′

1 + θF
−
σ2

3

2

 dt − σ3dw3

≤

δP0 − d3 −
σ2

3

2

 dt − σ3dw3 [using Theorem 4.1]

Integrating both sides and dividing by t, we get

log M(t)
t

≤
log M0

t
+

δP0 − d3 −
σ2

3

2

 − M3

t

⇒ lim sup
t→∞

log M(t)
t

≤

δP0 − d3 −
σ2

3

2


Therefore, mussel population goes extinct if δP0 < d3 +

σ2
3

2
.

Hence the theorem.

From Theorem 5.1, it can be observed that low density of plankton causes extinction of fish and mussel
both, which is also biologically significant. In the condition for extinction of mussel, we observe that it
goes extinct when transferred energy from highest level of food (plankton) is less than the minimum death

rate (d3) of mussel, which occurs for very large value of F or θ
(
∵ lim

F→∞
µ(F, θ) = lim

θ→∞
µ(F, θ) = d3

)
, i.e., huge

biomass of fish or maximum contact rate of glochidia larvae (of mussel) with fish cannot make mussel
population to survive in a very low density of plankton.

6. Discussion on persistence

In this section, we shall discuss the most important properties of a dynamical system called persistence
in mean and stability.
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Theorem 6.1. Let (P(t),F(t),M(t)) be a solution of system (6), then almost every sample path of (P(t),F(t),M(t)) is

uniformly continuous on t ≥ 0 for any initial value (P0,F0,M0) ∈ R3
+ if δP0 +

q − 1
2

σ2
3 ≤ d3.

Proof. The proof is same as in the research articles [3–7].

Lemma 6.1. [2] Let f : [0,∞)→ [0,∞) be an integrable and uniformly continuous function. Then lim
t→∞

f (t) = 0.

Lemma 6.2. [4] Suppose Z(t) ∈ C(Ω × [0,∞),R+).
(a) If there exists T, δ, δ0 ∈ R+ such that

log Z(t) ≤ δt − δ0

∫ t

0
Z(s)ds +

n∑
i=1

αiW(t) a.s. ∀t ≥ T, where αi are constants for i = 1, 2, ...,n, then

 lim sup
t→∞

〈Z〉t ≤
δ
δ0
, a.s. if δ > 0,

lim
t→∞
〈Z〉t = 0, a.s. if δ < 0.

(b) If there exists T, δ, δ0 ∈ R+ such that

log Z(t) ≥ δt − δ0

∫ t

0
Z(s)ds +

n∑
i=1

αiWi(t) a.s. ∀ t ≥ T,

where αi are constants for i = 1, 2, ...,n, then

lim inf
t→∞

〈Z〉t ≥
δ
δ0

a.s.

Definition 6.1. If lim inf
t→∞

〈F〉t > 0 a.s., then system (6) is said to be persistent in the mean. Here 〈F〉t =
1
t

∫ t

0
F(r)dr.

Now, we shall find the conditions for which that system (6) is persistent in mean.

Theorem 6.2. If (P(t),F(t),M(t)) be a solution of system (6) for any initial value (P0,F0,M0) ∈ R3
+, then system (6)

is persistent in mean if γLP > d2 + c2K2(2) +
σ2

2

2
.

Proof. From the differential equation of fish, we have

dF = F
(
γP − ηF − d2 − c2F2

)
dt − σ2Fdw2

We consider the Lyapunov function F1(t) = log F(t) and apply Itô formula:

d(log F) =

(
γP − ηF − d2 − c2F2

−
σ2

2

2

)
dt − σ2dw2

≥

[(
γLP − d2 − c2K2(2) −

σ2
2

2

)
− ηF

]
dt − σ2dw2

Integrating both sides and dividing by t, we get

log F(t) − log F0

t
≥

(
γLP − d2 − c2K2(2) −

σ2
2

2

)
−
η

t

∫ t

0
F(r)dr −

M2

t
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So, applying Lemma 6.2, we get

lim inf
t→∞

〈F〉t ≥
γLP − d2 − c2K2(2) −

σ2
2

2

η

Now, if γLP > d2 + c2K2(2) +
σ2

2

2
, then lim inf

t→∞
〈F〉t > 0.

Hence the theorem.

7. Globally attractive in mean

In this section, we shall verify whether the solution of the underlying system (6) is globally attractive in
mean or not. First, we define when a solution is called globally attractive in mean.

Definition 7.1. Let (P1(t),F1(t),M1(t)) and (P2(t),F2(t),M2(t)) be two arbitrary solutions of system (6) with initial
values (P0

1,F
0
1,M

0
1) ∈ R3

+ and (P0
2,F

0
2,M

0
2) ∈ R3

+, respectively. Then system (6) is called globally attractive in mean if

lim
t→∞

[E|P1(t) − P2(t)| + E|F1(t) − F2(t)| + E|M1(t) −M2(t)|] = 0 a.s.

Theorem 7.1. Solutions of system (6) is globally attractive in mean if

(i) d1 > γK′2(1) + δM0
1, (ii) d2 > γP0

2 + d′θM0
2, (iii) d3 > max

{
δP0

1, δP0
2

}
(10)

where K′2(1) = max

F0
1,

(
1
η

) 1 + γP0
1 − d2

2

2 (obtained from Theorem 4.1).

Proof. Let (P1(t),F1(t),M1(t)) and (P2(t),F2(t),M2(t)) be two arbitrary solutions of system (6) with initial
values (P0

1,F
0
1,M

0
1) ∈ R3

+ and (P0
2,F

0
2,M

0
2) ∈ R3

+ respectively. Consider, U(t) = |P1(t) − P2(t)| + |F1(t) − F2(t)| +
|M1(t) −M2(t)| and apply generalized Itô formula:

d(U(t)) =s1n(P1(t) − P2(t))
(
−αF1P1 − βM1P1 − d1P1 − c1P2

1 + αF2P2 + βM2P2

+d1P2 + c1P2
2

)
dt + s1n(F1(t) − F2(t))

(
γP1F1 − ηF2

1 − d2F1 − c2F3
1

−γP2F2 + ηF2
2 + d2F2 + c2F3

2

)
dt + s1n(M1(t) −M2(t)) (δP1M1 − d3M1

−
d′M1

1 + θF1
− δP2M2 + d3M2 +

d′M2

1 + θF2

)
dt

=
{[
−αF1 − βM1 − d1 − c1(P1 + P2) + γF1 + δM1

]
|P1(t) − P2(t)| + [−αP2

+γP2 − η(F1 + F2) − d2 − c2(F2
1 + F1F2 + F2

2) +
d′θM2

(1 + θF1)(1 + θF2)

]
×|F1(t) − F2(t)| +

[
−βP2 + δP2 − d3 −

d′

(1 + θF1)(1 + θF2)

−
d′θF2

(1 + θF1)(1 + θF2)

]
|M1(t) −M2(t)|

}
dt

Taking expectation on both sides and using Theorem (4.1), we get

E(d(U(t))) ≤E
{[
−d1 + γK′2(1) + δM0

1

]
|P1(t) − P2(t)| +

[
γP0

2 − d2 + d′θM0
2

]
×|F1(t) − F2(t)| +

[
δP0

2 − d3

]
|M1(t) −M2(t)|

}
dt

=
{[
−d1 + γK′2(1) + δM0

1

]
E|P1(t) − P2(t)| +

[
γP0

2 − d2 + d′θM0
2

]
×E|F1(t) − F2(t)| +

[
δP0

2 − d3

]
E|M1(t) −M2(t)|

}
dt
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Integrating both sides, we get

E(U(t)) ≤E(U(0)) +
[
−d1 + γK′2(1) + δM0

1

] ∫ t

0
E|P1(r) − P2(r)|dr +

[
γP0

2 − d2

+d′θM0
2

] ∫ t

0
E|F1(r) − F2(r)|dr +

[
δP0

2 − d3

] ∫ t

0
E|M1(r) −M2(r)|dr

Hence,

E(U(t)) +
[
d1 − γK′2(1) − δM0

1

] ∫ t

0
E|P1(r) − P2(r)|dr +

[
d2 − γP0

2 − d′θM0
2

]
×

∫ t

0
E|F1(r) − F2(r)|dr +

[
d3 − δP0

2

] ∫ t

0
E|M1(r) −M2(r)|dr ≤ U(0) < ∞

So, if the given conditions (10) hold then it is easy to observe that∫ t

0 E|P1(r) − P2(r)|dr < ∞,
∫ t

0 E|F1(r) − F2(r)|dr < ∞,
∫ t

0 E|M1(r) −M2(r)|dr < ∞.
i.e., E|P1(t) − P2(t)|,E|F1(t) − F2(t)|,E|M1(t) −M2(t)| ∈ L1[0,∞).
So, lim

t→∞
E|P1(t) − P2(t)| = lim

t→∞
E|F1(t) − F2(t)| = lim

t→∞
E|M1(t) −M2(t)| = 0.

Hence, lim
t→∞
{E|P1(t) − P2(t)| + E|F1(t) − F2(t)| + E|M1(t) −M2(t)|} = 0.

Hence the theorem.

8. Numerical simulation

In this section, we verify our mathematical findings and investigate some effects of fish in reproduction
of mussel with numerical simulation using MATLAB. We set some values of environmental parameters in
Table 1 with initial point (2, 1.2, 1.5) and we deal with noise intensities σ1 = σ2 = σ3 = 0.01.

a α β d1 c1 γ η d2 c2 δ d3 d′ θ

1 0.5 0.4 0.1 0.125 0.4 0.1 0.2 0.255 0.3 0.1 0.3 0.6

Table 1: Values of environmental parameters.

Simulating the underlying systems ((4) and (6)), we get the trajectories of the solutions in Figure 2
((2.a) and (2.b)).
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Figure 2: Trajectories for both the deterministic (2.a) and the stochastic (2.b) systems for the values in Table 1.
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In this section, we handle both deterministic (4) and stochastic (6) systems. In each figure, we depict
both images side by side to understand the effect of environmental noise on these systems.
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Figure 3: Fish does not go extinct for the deterministic (3.a) system but both the species go extinct for the stochastic (3.b) system, a specific region
of (3.a) is in (3.c).

Now, we consider γ = 0.2, d2 = 0.48 and d3 = 0.6 to satisfy the conditions of extinction of fish and mussel,
which are proved mathematically in Theorem 5.1. Keeping all other parametric values same as in Table 1
other than γ, d2 and d3,we simulate both the systems and observe in Figure 3, that both the species (fish and
mussel) go extinct (see Figure (3.b)) in stochastic system (6) but fish does not go to extinct in deterministic
system (4)(see Figures (3.a) and (3.c)). For a clear view and better understanding, a specific portion of Figure
(3.a) is displayed in Figure (3.c).

In our model, θ is described as the contact rate of glochidia larvae (of mussel) with fish. Now, we shall
verify the effect of this consideration by changing the value of θ.
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Figure 4: Effect of zero contact rate of glochidia larvae (of mussel) with fish (θ = 0) on the systems (4) and (6).

First, we consider the case when glochidia larvae does not find any suitable host, i.e., θ = 0. In that case,
mussel riches to their maximum death rate (d). Taking θ = 0, we simulate the systems and the output is
depicted in Figure 4.
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Second, we consider the case when a suitable host is easily available and most of the microscopic larvae
(glochidia) find a host fish to infect with glochidia to complete the reproductive process. We take θ = 10 (a
high value of θ) and simulate the system to observe the effect (see Figure 5).
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Figure 5: Effect of respectively high contact rate of glochidia larvae (of mussel) with fish (θ = 10) on the systems (4) and (6).

In the third case, we consider θ→∞, i.e., d′ = 0, in that case mussel survives with minimum death rate
(d3).We simulate the systems to verify the consideration of fish dependent death rate of mussel (see Figure
6).
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Figure 6: Effect of maximum contact rate of glochidia larvae (of mussel) with fish (θ→∞) on systems (4) and (6).

We verify the effect of toxicity by considering the values of c1 and c2 very high. We consider c1 = 1.2 and
c2 = 1.5 and the results are depicted in Figure 7.
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Figure 7: Effect of high toxicity on the systems (4) and (6).
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Figure 8: Phase portrait of deterministic (8.a) and stochastic (8.b) system, starting from different initial points A(0.7, 1.7, 2.5), B(1.2, 0.9, 2) and
C(2, 1.2, 1.5), where (X,Y,Z) ≡ (P,F,M).

In Figure 8 ((8.b) and (8.a)), we see in a phase portrait that starting from different initial points
A(0.7, 1.7, 2.5), B(1.2, 0.9, 2) and C(2, 1.2, 1.5), the solutions converge to the point (1.054, 0.74, 0.842) for the
underlying system (6) (stochastic system) and to the point (1.029, 0.7335, 0.9436) for the underlying system
(4) (deterministic system), i.e. both the systems are asymptotically stable.

Now, we consider a high input rate of plankton into the system and investigate the effects. Taking a = 10
and keeping all other parameters same as Table 1, we simulate the systems, depicted in Figure 9.

In this section, we find effects of various factors on the systems by changing numerical values of the
parameters. In the next section, we shall discuss the effects and shall try to reach at some conclusions which
should be biologically meaningful.
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Figure 9: Effect of high constant input rate (a = 10) of plankton on the systems (4) and (6).

9. Discussion and conclusion

We have considered a three species model where one is a primary link of a food chain and other two
species depend on it for survival. It is taken into consideration the reproduction procedure of a parasite on
other species by introducing host dependent death rate. Effect of external toxic substance is also considered
to formulate the model. The dependency of growth rate, death rate, reproduction procedure on various
natural factors such as temperature, humidity, environmental pollution etc. lead us to study the dynamics
of the system in a randomly fluctuating environment. This model may be used to study the dynamics of
an ecosystem which includes parasite. This model can also be used in fish farm by considering P as an
external food source and the input rate can be controlled as per requirement.

In mathematical studies, we have proved that global positive solution exists uniquely for both the
deterministic (4) and stochastic (6) systems. Boundedness of solutions are also proved. Since plankton has
a constant input rate in the system, it can not extinct and it should have a lower bound which is also found
mathematically. Extinction criterion for fish and mussel are derived and it is observed that the conditions
involve effective transferred energy rate, initial value of plankton (food source), death rate and intensity
of noise. These conditions clearly indicate that species will go extinct when (i) food is not available, (ii)
zooplankton is unavailable to transfer the energy from phytoplankton, (iii) death rate becomes very high
for any external reasons (environment or artificial reasons) or (iv) random change of climate highly affects
on the death rate of these species. Numerically, we have justified the result in Figure 3. In Figure 3, it is also
found that fish does not go extinct (3.a) in deterministic system although it goes extinct (3.b) in stochastic
system for the same parametric values. This fact leads us to realize the effect of environmental noise on the
system, i.e., environmental factors should not be ignored.

Mathematically, we have derived the conditions for persistence in mean of the system and numerically
have shown that the system is stochastically asymptotically stable under some conditions. Through trajec-
tories of solutions in Figure 1 we have justified our finding of persistence. We have also proved that the
solutions of the underlying system (6) are globally attractive in mean.

The effects of consideration of dependent death rate of mussel on host species (fish) are investigated
through numerical simulation using MATLAB. The function of death rate involves contact rate (θ) of
microscopic larvae with fish. We have considered θ = 0, 0.6, 10 and θ → ∞ to realize the behaviour.
Comparing Figures 4, 1, 5 and 6 (respectively for corresponding values of θ), it can be concluded that
our consideration meets the biological expectation that high contact rate can increase mussel population.
It is also found in Figure 6 that if each and every microscopic larvae is able to find a host fish for their
reproduction, then huge mussel population causes extinction of fish from this habitat.

Effect of toxic substance in the models ((4) and (6)) is also interesting. From Figure 7, it can be concluded
that consideration of high value toxic coefficient causes extinction of mussel population although toxic does
not affect directly on mussel. Since plankton and fish are directly affected by environmental toxic substance,
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high toxicity causes low density of both these species, and, since mussel is totally dependent on plankton
for food and fish for reproduction, low density of both these species causes extinction of mussel.

In Figure 9, we observe that high constant input rate of plankton mostly benefits mussel population,
i.e., more availability of food highly increases the mussel but fish does not go to extinct. So, it is observed
that high input rate of food does not affect the coexistence of species.

The model we have studied can be made more interesting if we take the functional responses as Holling

Type II [13]. Consumption rates can be considered as
αP

h1 + P
and

βP
h2 + P

towards plankton by fish and

mussel respectively, where h1 and h2 are half saturation constants for fish and mussel respectively. The
following model can be used for future studies:

dP =

(
a −

αP
h1 + P

F −
βP

h2 + P
M − d1P − c1P2

)
dt − σ1Pdw1

dF = F
(
γP

h1 + P
− ηF − d2 − c2F2

)
dt − σ2Fdw2

dM = M
(
δP

h2 + P
− d3 −

d′

1 + θF

)
dt − σ3Mdw3

(11)

with initial conditions P0 > 0, F0 > 0 and M0 > 0. Here, all the parameters are same as in the model (6) and
h1, h2 are half saturation constants.

Harvesting can also be introduced in these models ((6) and (11)) and may be used to study the fish farm
ecosystem without neglecting environmental factors.
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