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Mean Boundedness, Global Attractivity and Almost Periodic Sequence
of Stochastic Neural Networks with Discrete-Time Analogue

Shumin Suna, Yanhong Lia

aCity College, Kunming University of Science and Technology, Kunming 650051, China

Abstract. A class of stochastic neural networks with discrete-time analogue is investigated in this paper.
By employing contraction mapping principle and some stochastic analysis techniques, we establish some
sufficient conditions for mean boundedness, global attractivity and almost periodic sequence of the model.
An example and graphic illustrations are displayed to visually expound the main contributions. The
research techniques in this literature are suitable for other stochastic models in science and engineering.

1. Introduction

Neural networks have been found useful in areas of signal processing, image processing, associative
memories, pattern classification. So the dynamics and applications of neural networks arouse great interest
by many authors, we can refer to [1–9]. However, in the applications of neural networks, it is very important
to formulate a discrete-time system which is a discrete-time analogue of continuous-time neural network.
The familiar schemes such as Euler scheme and Runge-Kutta scheme may show spurious equilibria or
spurious stable behavior [10–12]. However, by using the discretization schemes introduced by [13–16], the
convergent dynamics of the continuous-time neural networks are preserved in the discrete-time analogues
for autonomous neural system. Especially, Huang et al. [17] considered the following neural network with
piecewise constant argument

dxi(t)=−ai([t])xi(t)dt +
m∑

j=1
bi j([t]) f j(x j([t]))dt + Ii([t])dt, i = 1, 2, . . . ,m,

where [t] denotes the integer part of t, xi(t) denotes the potential of the cell i at time t, ai(t) denotes the
rate with which the cell i resets its potential to the resting state when isolated from other cells and inputs,
f j(·) denotes a non-linear output function, bi j(t) denotes the strengths of connectivity between the j-th cell
and the i-th cell, Ii(t) denotes the i-th component of an external input source introduced from outside the
network to the cell i, i, j = 1, 2, . . . ,m. In [17], some sufficient conditions of existence and attractivity of an
almost periodic sequence solution were given for the corresponding discrete-time analogue

xi(n + 1) = xi(n)e−ai(n) +
1 − e−ai(n)

ai(n)

[ m∑
j=1

bi j(n) f j(x j(n)) + Ii(n)
]
, i = 1, 2, . . . ,m. (1)
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Stochastic differential equations are basically differential equations with an additional stochastic term.
The deterministic term, which is common to ordinary differential equations, describes the “average” dy-
namical behaviour of the phenomenon under study and the stochastic term describes the “noise”, i.e.,
the random perturbations that influence the phenomenon. Of course, in the particular case where such
random perturbations are absent (deterministic case), the SDE becomes an ordinary differential equation.
As the dynamical behaviour of many natural phenomena can be described by differential equations, SDEs
have important applications in basically all fields of science and technology whenever we need to consider
random perturbations in the environmental conditions (environment taken here in a very broad sense)
that affect such phenomena in a relevant manner. The concept of almost periodic stochastic process is of
great importance in probability for investigating stochastic process. Recently, the existence and stability of
almost periodic solution to stochastic neural networks were considered [19–22]. In this paper, we consider
the following stochastic neural networks

dxi(t)=−ai(t)xi(t)dt +
m∑

j=1
bi j(t) f j(x j(t))dt +

m∑
j=1

ci j(t)σ j(x j(t))dBit + Ii(t)dt, (2)

where σ j(·) denotes a non-linear output function, Bit is the standard Brownian motion defined on a complete
probability space, i = 1, 2, . . . ,m. The corresponding model of system (2) with piecewise constant argument
is described as

dxi(t)=−ai([t])xi(t)dt +
m∑

j=1
bi j([t]) f j(x j([t]))dt +

m∑
j=1

ci j([t])σ j(x j([t]))dBit + Ii([t])dt, (3)

where i = 1, 2, . . . ,m. For any t ∈ R, there exists an integer n ∈ Z such that n ≤ t < n + 1, where R denotes
the set of real numbers, Z denotes the set of integer numbers. Then (3) becomes

dxi(t)=−ai(n)xi(t)dt +
m∑

j=1
bi j(n) f j(x j(n))dt +

m∑
j=1

ci j(n)σ j(x j(n))dBit + Ii(n)dt, i = 1, 2, . . . ,m. (4)

An integration of (4) over [n, t) and letting t→n + 1 lead to

xi(n + 1) = xi(n)e−ai(n) + Li(n)
m∑

j=1
ci j(n)σ j(x j(n)) + 1−e−ai (n)

ai(n)

[ m∑
j=1

bi j(n) f j(x j(n)) + Ii(n)
]
, (5)

where Li(n) =

∫ n+1

n eai(n)s dBis

eai(n)(n+1)
, i = 1, 2, . . . ,m,n ∈ Z. The non-autonomous difference equation (5) is a

discrete-time analogue of (2). The existence of solution of (5) on Z is guaranteed by the existence of the
solution of (2) on R.

Remark 1.1. If ci j ≡ 0 in (5), then stochastic model (5) is transformed into model (1). So the model studied in this
article extends the main researching model in literature [17, 18].

The main aim of this paper is to study mean boundedness, mean global attractivity and the existence of a
unique mean almost periodic sequence to model (5). The main contributions of this literature are described
as follows:

(1) A semi-discrete model is obtained for continuous-time stochastic cellular neural networks.

(2) Mean boundedness and mean global attractivity of semi-discrete model (5) are researched.

(3) A decision theorem for the existence of a unique mean almost periodic sequence of semi-discrete
model (5) is acquired. The research findings improve and extend the works in literature [17, 18].
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The organization of the paper is as follows. In Section 2, some useful definitions and lemmas are listed.
In Section 3, mean boundedness and mean global attractivity of semi-discrete model (5) are studied. In
Section 4, the existence of a unique mean almost periodic sequence of semi-discrete model (5) is discussed. In
Section 5, an illustrative example is provided to demonstrate the main results in this article. The conclusion
and discussion are given in Section 6.

This article uses the following notations. Let Z denote the set of integers, Rn denote the n-dimensional
real vector space, (Ω,F ,P) be a complete probability space. Let L1(Ω,Rn) denote the set of all integrable
Rn-valued random variables and E(·) be the expectation operator. We use B(Z,L1(Ω,Rn)) to stand for the
set of all bounded functions from Z to L1(Ω,Rn).

2. Preliminaries

Before we derive our main results, we shall introduce several basic definitions.

Definition 2.1. ([23]) Suppose that X ∈ L1(Ω,Rn), then the number

EX =

∫
Ω

XdP (6)

is the expectation of X.

Definition 2.2. ([23]) A bounded solution X(n) = (x1(n), x2(n), ..., xm(n))T of (5) is said to be mean globally attractive
if for any other solution Y(n) = (y1(n), y2(n), ..., ym(n))T of (1.4), we have

lim
n→∞

E|xi(n) − yi(n)| = 0, i = 1, 2, . . . ,m.

Definition 2.3. ([21]) A real valued sequence x(n) is called a mean almost periodic sequence if the ε-translation set

E{ε, x} = {τ ∈ Z : E|x(n + τ) − x(n)| < ε f or all n ∈ Z}

is a relaticely dense set in Z for all ε > 0, that is, for any given ε > 0, there exists an integer l(ε) > 0 such that each
interval of length l(ε) contains an integer τ ∈ E{ε, x} such that

E|x(n + τ) − x(n)| < ε f or all n ∈ Z.

τ is called ε-translation number or ε-almost period. The collection of such sequences will be denoted AP(Z).

Definition 2.4. ([23]) Suppose that {ωt : t ∈ R+} is an m-dimensional adaptive stochastic process and it satisfies the
following conditions:

(C1) ω0 = 0, a.s.;

(C2) Normality: if 0 ≤ s < t < ∞, then ωt − ωs ∼ N
(
0, (t − s)Σ

)
, Σ = [σki] ∈ Rm×m is a normal matrix;

(C3) Incremental independence: if 0 ≤ s < t < ∞, thenωt−ωs is a process with stationary and mutually independent
increments.

Then ωt is said to be a Brownian movement or Wiener process; especially when Σ = I, then ωt is said to be a standard
Brownian movement.

Lemma 2.5. ([23]) Suppose that 1 ∈ L2(J,Rm×n), p > 0, then

E
[

sup
t∈J
|

∫ t

t0

1(s)dω(s)|p
]
≤ CpE

[ ∫ T

t0

|1(t)|2dt
] p

2

, (7)

where

Cp =


(32/p)p/2, 0 < p < 2,
4, p = 2,[

pp+1

2(p−1)(p−1)

] p
2

, p > 2.
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Set
a∗i = sup

n∈Z
|ai(n)|, b∗i j = sup

n∈Z
|bi j(n)|, c∗i j = sup

n∈Z
|ci j(n)|, I∗i = sup

n∈Z
|Ii(n)|,

P∗i =

m∑
j=1

c∗i jσ
∗

j, αi =

m∑
j=1

b∗i jL
f
j , βi =

m∑
j=1

c∗i jL
σ
j .

Throughout this letter, we suppose that the following conditions are satisfied:

(H1) | f j(x)| ≤ f ∗j , |σ j(x)| ≤ σ∗j and | f j(x) − f j(y)| ≤ L f
j |x − y|, |σ j(x) − σ j(y)| ≤ Lσj |x − y| for all x, y ∈ R, where

f ∗j > 0, σ∗j > 0, L f
j > 0, Lσj > 0, j = 1, 2, . . . ,m.

(H2) ai∗ = inf
n∈Z

ai(n) > 0, K∗i =
m∑

j=1
b∗i j f ∗j + I∗i > 0 and there exists a constant ri > 0 such that

lim
n→∞

1
n

n∑
k=1

ai(l − k) = ri

holds uniformly for all l ∈ Z, i = 1, 2, . . . ,m.

(H3) ai, bi j, ci j and Ii are almost periodic sequences with real values, i, j = 1, 2, . . . ,m.

3. Mean boundedness and mean global attractivity

In applications, many important properties of semi-discrete model (5) depend on its boundedness and
global attractivity. So it is worth investigating boundedness and global attractivity of semi-discrete model
(5).

Theorem 3.1. Assume that (H1)-(H2) hold, suppose further that

(H4) d = max1≤i≤m

[
e−ai∗ + 1−e−ai∗

ai∗
αi +

4(1−e−2a∗i )
1
2

√
ai∗

βi

]
< 1,

then model (5) has a unique mean bounded solution X(n), which is mean globally attractive.

Proof. By (H2), it has

exp
[
−

n∑
k=1

ai(l − k)
]

= exp(−nri +

n∑
k=1

ρi(l − k)), (8)

where
n∑

k=1

ρi(l − k) = −

n∑
k=1

ai(l − k) + nri → 0 as n→∞,

l ∈ Z. Since
∑n

k=1 ρi(l− k) is bounded for l ∈ Z, let |
∑n

k=1 ρi(l− k)| ≤ ∆i , where ∆i is independent of any l ∈ Z.
(8) implies

exp(−
n∑

k=1

ai(l − k)) = exp(−nri +

n∑
k=1

ρi(l − k)) ≤ e−nrie∆i
→ 0,

as n→∞. From model (5), it gets

xi(n) = xi(0) exp(−
n−1∑
k=0

ai(k)) +

n∑
k=1

{1 − e−ai(n−k)

ai(n − k)
exp

[
−

k−1∑
p=1

ai(n − p)
]
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j=1

bi j(n − k) f j(x j(n − k)) + Ii(n − k)
]}

+

n∑
k=1

{
Li(n − k) exp

[
−

k−1∑
p=1

ai(n − p)
]

m∑
j=1

ci j(n − k)σ j(x j(n − k))
}
, n ≥ 1, i = 1, 2, . . . ,m.

Let Y(n) = (y1(n), . . . , ym(n))T be another solution of (5) on Z. The solution can be described as

yi(n) =

∞∑
k=1

{1 − e−ai(n−k)

ai(n − k)
exp

[
−

k−1∑
p=1

ai(n − p)
][ m∑

j=1

bi j(n − k) f j(x j(n − k)) + Ii(n − k)
]}

+

∞∑
k=1

{
Li(n − k) exp

[
−

k−1∑
p=1

ai(n − p)
] m∑

j=1

ci j(n − k)σ j(x j(n − k))
}
, i = 1, 2, . . . ,m.

By Lemma 2.5, it has

E|Li(n)| = E
∣∣∣∣∣
∫ n−k+1

n−k eai(n)sdBis

eai(n)(n+1)

∣∣∣∣∣ ≤ √
32

eai(n)(n+1)
E
[ ∫ n+1

n
e2ai(n)sds

] 1
2

≤
4(1 − e−2ai∗(n))

1
2√

ai∗(n)
, i = 1, 2, . . . ,m.

Then

E|yi(n)| ≤
∞∑

k=1

[K∗i
ai∗

+ E|Li(n − k)|P∗i
]
e−(k−1)ri e∆i =

[K∗i
ai∗

+
4P∗i
√

ai∗

] e∆i

1 − e−ri
= Mi, i = 1, 2, . . . ,m.

Set

Ω = {x = (x1, x2, ..., xm) ∈ Rm : E|xi| ≤Mi, i = 1, 2, . . . ,m}.

Clearly, Y(n) ⊂ Ω. Define

V(n) = max
1≤i≤m

E|xi(n) − yi(n)|, i = 1, 2, . . . ,m.

Then

V(n + 1) = max
1≤i≤m

E|xi(n + 1) − yi(n + 1)|

≤ max
1≤i≤m

[
e−ai(n)E|xi(n) − yi(n)| +

1 − e−ai(n)

ai(n)

m∑
j=1

|bi j(n)|L f
j E|x j(n) − y j(n)|

+

m∑
j=1

|ci j(n)|Lσj E
|

∫ n+1

n |xi(n) − yi(n)|eai(n)sdBis|

eai(n)(n+1)

]
≤ max

1≤i≤m

[
e−ai∗ +

1 − e−ai∗

ai∗
αi +

4(1 − e−2a∗i )
1
2

√
ai∗

βi

]
V(n),

So

V(n + 1) ≤ dV(n)

implies

0 ≤ V(n + 1) ≤ dn+1V(0)→ 0 as n→∞.

It leads to

lim
n→∞

max
1≤i≤m

E|xi(n) − yi(n)| = 0.
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Then model (5) has a unique bounded solution X(n), which is globally attractive. This completes the
proof.

4. Mean almost periodic sequence

In real-world applications, the system parameters of model (5) are considered to be periodic or almost
periodic or asymptotically periodic [24, 25], since many important factors like habit, competition for limiting
resources and available food are periodically forced. So it is worth investigating almost periodicity of semi-
discrete model (5).

Let

Ci =
1 − e−a∗i

ai∗(1 − e−ai∗ )
K∗i +

4P∗i
√

ai∗(1 − e−ai∗ )
, i = 1, 2, . . . ,m.

Theorem 4.1. If (H1), (H3) and (H4) hold, then model (5) admits a unique mean almost periodic sequence.

Proof. Let

Ω =
{
X ∈ AP(Z) : E|xi| ≤ Ci, i = 1, 2, . . . ,m

}
.

Defining T on Ω by TX = U = (u1, . . . ,um)T, where

ui(n + 1) = xi(n)e−ai(n) +

∫ n+1

n eai(n)s dBis

eai(n)(n+1)

m∑
j=1

ci j(n)σ j(x j(n))

+
1 − e−ai(n)

ai(n)

[ m∑
j=1

bi j(n) f j(x j(n)) + Ii(n)
]
, n ∈ Z, i = 1, 2, . . . ,m.

Next, T : Ω→ Ω will be proved. It follows that

E|Txi(n)| = E|ui(n + 1)|

= E
∣∣∣∣∣xi(n)e−ai(n) +

∫ n+1

n eai(n)s dBis

eai(n)(n+1)

m∑
j=1

ci j(n)σ j(x j(n)) +
1 − e−ai(n)

ai(n)

[ m∑
j=1

bi j(n) f j(x j(n)) + Ii(n)
]∣∣∣∣∣

≤ E
∣∣∣∣∣xi(n)e−ai(n) +

1 − e−ai(n)

ai(n)

[ m∑
j=1

b∗i j f ∗j + I∗i
]

+

∫ n+1

n eai(n)s dBis

eai(n)(n+1)

m∑
j=1

c∗i jσ
∗

j

∣∣∣∣∣
= E

∣∣∣xi(n)e−ai(n)
∣∣∣ +

1 − e−ai(n)

ai(n)
K∗i +

P∗i
eai(n)(n+1)

E
∣∣∣∣∣ ∫ n+1

n
eai(n)s dBis

∣∣∣∣∣ (9)

≤ e−ai(n)E|xi(n)| +
1 − e−ai(n)

ai(n)
K∗i +

P∗i
eai(n)(n+1)

·

√

32 · E
[ ∫ n+1

n
e2ai(n)t dt

] 1
2

≤ e−ai(n)Mi +
1 − e−ai(n)

ai(n)
K∗i +

P∗i
eai(n)(n+1)

·

√

32 ·
[ 1
2ai(n)

e2ai(n)(n+1)−e2ai (n)n
] 1

2

≤ e−ai∗Mi +
1 − e−a∗i

ai∗
K∗i +

4P∗i
√

ai∗

= Ci, i = 1, 2, . . . ,m.

For any ε > 0, from (H1), (H3) and literature [22], there must exist positive constants λ1, λ2, λ3, λ4, λ5,
λ6, λ7, λ8 such that

E
∣∣∣∣∣xi(n + τ)e−ai(n+τ)

− xi(n)e−ai(n)
∣∣∣∣∣ ≤ E

∣∣∣∣∣xi(n + τ)(e−ai(n+τ)
− e−ai(n))

∣∣∣∣∣ + E
∣∣∣∣∣(xi(n + τ) − xi(n))e−ai(n)

∣∣∣∣∣
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≤ λ1ε + λ2ε, (10)

E
∣∣∣∣∣Li(n + τ)

m∑
j=1

ci j(n + τ)σ j(x j(n + τ)) − Li(n)
m∑

j=1

ci j(n)σ j(x j(n))
∣∣∣∣∣

≤ E
∣∣∣∣∣(Li(n + τ) − Li(n))

m∑
j=1

ci j(n + τ)σ j(x j(n + τ))
∣∣∣∣∣ + E

∣∣∣∣∣Li(n)
m∑

j=1

(ci j(n + τ) − ci j(n))σ j(x j(n + τ))
∣∣∣∣∣

+E
∣∣∣∣∣Li(n)

m∑
j=1

ci j(n)(σ j(x j(n + τ)) − σ j(x j(n)))
∣∣∣∣∣

≤ λ3ε + λ4ε + λ5ε, (11)

E
∣∣∣∣∣1 − e−ai(n+τ)

ai(n + τ)
Ii(n + τ) −

1 − e−ai(n)

ai(n)
Ii(n)

∣∣∣∣∣ ≤ λ6ε, (12)

E
∣∣∣∣∣1 − e−ai(n+τ)

ai(n + τ)

m∑
j=1

bi j(n + τ) f j(x j(n + τ)) −
1 − e−ai(n)

ai(n)

m∑
j=1

bi j(n) f j(x j(n))
∣∣∣∣∣

≤ E
∣∣∣∣∣ m∑

j=1

1 − e−ai(n+τ)

ai(n + τ)
bi j(n + τ)( f j(x j(n + τ)) − f j(x j(n)))

∣∣∣∣∣
+E

∣∣∣∣∣ m∑
j=1

[
1 − e−ai(n+τ)

ai(n + τ)
bi j(n + τ) −

1 − e−ai(n)

ai(n)
bi j(n)] f j(x j(n))

∣∣∣∣∣
≤ λ7ε + λ8ε, (13)

where n ∈ Z, i = 1, 2, . . . ,m.
From (10)-(13), we obtain

E|Txi(n + τ) − Txi(n)| = E
∣∣∣∣∣xi(n + τ)e−ai(n+τ) + Li(n + τ)

m∑
j=1

ci j(n + τ)σ j(x j(n + τ))

+
1 − e−ai(n+τ)

ai(n + τ)

[ m∑
j=1

bi j(n + τ) f j(x j(n + τ)) + Ii(n + τ)
]

−xi(n)e−ai(n)
− Li(n)

m∑
j=1

ci j(n)σ j(x j(n))

−
1 − e−ai(n)

ai(n)

[ m∑
j=1

bi j(n) f j(x j(n)) + Ii(n)
]∣∣∣∣∣

≤ E
∣∣∣∣∣xi(n + τ)e−ai(n+τ)

− xi(n)e−ai(n)
∣∣∣∣∣ + E

∣∣∣∣∣Li(n + τ)
m∑

j=1

ci j(n + τ)σ j(x j(n + τ))

−Li(n)
m∑

j=1

ci j(n)σ j(x j(n))
∣∣∣∣∣ + E

∣∣∣∣∣1 − e−ai(n+τ)

ai(n + τ)[ m∑
j=1

bi j(n + τ) f j(x j(n + τ)) + Ii(n + τ)
]
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−
1 − e−ai(n)

ai(n)

[ m∑
j=1

bi j(n) f j(x j(n)) + Ii(n)
]∣∣∣∣∣

≤ (λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8)ε,

which implies that Txi is mean almost periodic. So T : Ω→ Ω.
For any X = (x1(n), . . . , xm(n))T, X̃ = (x̃1(n), . . . , x̃m(n))T

∈ Ω, letting TX = U,TX̃ = Ũ, where U(n) =
(u1(n), . . . ,um(n))T and Ũ = (ũ1(n), . . . , ũm(n))T. Define

‖TX − TX̃‖ = sup
n∈Z

max
1≤i≤m

E|ui(n) − ũi(n)|, ‖X − X̃‖ = sup
n∈Z

max
1≤i≤m

E|xi(n) − x̃i(n)|.

From the proof of Theorem 3.1, it gets

max
1≤i≤m

E|ui(n + 1) − ũi(n + 1)| ≤ max
1≤i≤m

[
e−ai(n) +

1 − e−ai(n)

ai(n)
αi +

4(1 − e−2ai(n))
1
2√

ai(n)
βi

]
‖X − X̃‖, n ∈ Z.

Then

‖TX − TX̃‖ ≤ d‖X − X̃‖.

By (H4), d ∈ (0, 1) and T is a contraction. Therefore, there exists a unique mean almost periodic sequence of
model (5) by employing Banach contraction mapping principle. The proof of Theorem 4.1 is completed.

Remark 4.2. If the stochastic terms are vanished in model (5), i.e., βi = 0(i = 1, 2, . . . ,n) in assumption (H4), then
the obtained Theorems 3.1 and 4.1 are changed into the corresponding results in Refs. [17, 18]. So the current research
findings complement and extend the corresponding works in literatures [17, 18].

Remark 4.3. Observing the conditions of Theorem 3.1 and 4.1, (H4) is more complicated then other conditions. To
ensure that model (5) has a unique bounded globally attractive mean almost periodic sequence, in application, the
following rules should be followed:

Rule 1. The coefficients ai of model (5) are best to be selected to meet (H4) with large enough numbers, i = 1, 2, . . . ,n.

Rule 2. Choosing the activation functions f j and σ j in model (5) with some small enough constants L f
j and Lσj , (H4)

is easier to be satisfied, j = 1, 2, . . . ,n.

Rule 3. Selecting all coefficients in model (5) excluding ai(i = 1, 2, . . . ,n) with some small enough constants, (H4) is
easier to be satisfied.

5. A numerical illustrative example

Example 5.1. In this section, an example is provided to illustrate the results in previous sections. Considering the
following semi-discrete stochastic neural networks

x1(n + 1) = x1(n)e−(2+sin
√

2n) + 1−e−(2+sin
√

2n)

2+sin
√

2n
{0.01 sin n f (x1(n)) + 0.01 cos n f (x2(n)) + sin

√
5n}

+L1(n){(0.006 + 0.005 sin
√

3n)σ(x1(n)) + (0.006 + 0.005 cos n)σ(x2(n))}
x2(n + 1) = x2(n)e−(2+cos n) + 1−e−(2+cos n)

2+cos n {0.01 cos n f (x1(n)) + 0.01 sin n f (x2(n)) + cos
√

2n}
+L2(n){(0.005 + 0.004 cos

√
2n)σ(x1(n)) + (0.005 + 0.004 sin

√
3n)σ(x2(n))},

(14)

where
a1(n) = 2 + sin

√

2n, b11(n) = 0.01 sin n, b12(n) = 0.01 cos n, I1(n) = sin
√

5n,

c11(n) = 0.006 + 0.005 sin
√

3n, c12(n) = 0.006 + 0.005 cos n, a2(n) = 2 + cos n, b21(n) = 0.01 cos n,

b22(n) = 0.01 sin n, I2(n) = cos
√

2n, c21(n) = 0.005 + 0.004cos
√

2n, c22(n) = 0.005 + 0.004sin
√

3n,

L1(n) =

∫ n+1

n e(2+sin
√

2n)s dB1s

e(2+sin
√

2n)(n+1)
, L2(n) =

∫ n+1

n e(2+cos n)s dB2s

e(2+cos n)(n+1)
, fi(x) = σi(x) =

ex
− e−x

ex + e−x , i = 1, 2.
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Figure 1 Mean almost periodicity of state variable x1 for model (14)

By simple calculation, we can see that the conditions (H1), (H2), (H3) are satisfied and we can obtain that
L f

1 = L f
2 = Lσ1 = Lσ2 = 4 .

Now we will show that the condition (H4) is satisfied too.

a1∗ = inf
n∈Z

a1(n) = 1, b∗11 = sup
n∈Z
|b11(n)| = 0.01, b∗12 = sup

n∈Z
|b12(n)| = 0.01,

c∗11 = sup
n∈Z
|c11(n)| = 0.011, c∗12 = sup

n∈Z
|c12(n)| = 0.011,

a2∗ = inf
n∈Z

a2(n) = 1, b∗21 = sup
n∈Z
|b21(n)| = 0.01, b∗22 = sup

n∈Z
|b22(n)| = 0.01,

c∗21 = sup
n∈Z
|c21(n)| = 0.009, c∗22 = sup

n∈Z
|c22(n)| = 0.009.

Because
α∗1 = b∗11L f

1 + b∗12L f
2 = 0.08, β∗1 = c∗11Lσ1 + c∗12Lσ2 = 0.088,

α∗2 = b∗21L f
1 + b∗22L f

2 = 0.08, β∗2 = c∗21Lσ1 + c∗22Lσ2 = 0.072,

we have

e−a1∗ +
1 − e−a1∗

a1∗
α∗1 +

4(1 − e−2a1∗)
1
2

√
a1∗

β∗1 = e−1 +
1 − e−1

1
× 0.08 +

4 × (1 − e−2)
1
2

1
× 0.088

= e−1 + 0.08 − 0.08e−1 + 0.352(1 − e−2)
1
2

≤ 0.08 + 0.92e−1 + 0.352 < 1,

e−a2∗ +
1 − e−a2∗

a2∗
α∗2 +

4(1 − e−2a2∗)
1
2

√
a2∗

β∗2 = e−1 +
1 − e−1

1
× 0.08 +

4 × (1 − e−2)
1
2

1
× 0.072

= e−1 + 0.08 − 0.08e−1 + 0.288(1 − e−2)
1
2

≤ 0.08 + 0.92e−1 + 0.288 < 1.

This shows that the condition (H4) is satisfied. So by Theorems 1-2, there exists a unique mean globally
attractive almost periodic sequence of model (14), which can be seen in Figures 1-6.
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Figure 2 Mean almost periodicity of state variable x2 for model (14)

0 2 4 6 8 10 12 14 16 18 20

time n

-2

-1

0

1

2

3

4

5

x
1
(n

)

Figure 3 Mean global attractivity of state variable x1 for model (14)
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Figure 4 Mean global attractivity of state variable x2 for model (14)
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Figure 5 Phase response of state variables (x1, x2)T of model (14)

Figure 6 State trajectory in 3D space of state variables (x1, x2)T of model (14)
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6. Conclusion and discussion

In this paper, the stochastic perturbation

m∑
j=1

ci j(t)σ j(x j(t))dBit

is added to the following differential equation

dxi(t) = −ai(t)xi(t)dt +

m∑
j=1

bi j(t) f j(x j(t))dt + Ii(t)dt, i = 1, 2, . . . ,n.

We can summarize as follows:

(D1) A non-autonomous difference equation corresponding to system (2) is given by model (5).

(D2) In (H4), the stochastic perturbation leads to a change (i.e., βi). In view of Theorem 3.1 and Theorem 4.1,
the stochastic perturbation has a negative effect on the existence of mean almost periodic solutions
and mean global attractivity of model (5).

(D3) If the stochastic perturbation is removed from model (5), we can know that the work of paper [17] is
a special case of this article, and this paper is the extension of [17, 18].

(D4) The approaches used in this article could be applied to research other stochastic models in science and
engineering, such as biomathematical model [24], fractional dynamic model [25], impulsive model
[26], etc.
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