

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Tensor Product of Kantorovich-Stancu Type Operators with Shifted Knots and their k^{th} Order Generalization

Behar Baxhaku^a, Rahul Shukla^b, P. N. Agrawal^b

^a Department of Mathematics, University of Prishtina, Prishtina, Kosovo ^bDepartment of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India

Abstract. In this paper, we introduce a tensor product of the Stancu-Kantorovich type operators defined by Içöz [11]. The rate of convergence of these operators is obtained in terms of the modulus of continuity and the Peetre's K-functional. Further, we consider a generalization of the above operators via Taylor's polynomials and examine their approximation behavior. Some applications of these two dimensional generalized Stancu-Kantorovich type polynomials are also discussed. Finally, we present some numerical examples and illustrations to show the convergence behavior of the operators under study using MATLAB algorithms.

1. Introduction

For $f \in C(I)$, the space of all continuous functions on I = [0,1] with sup-norm, Stancu [15] proposed a sequence of polynomials

$$S_m^{(\alpha,\beta)}(f;x) = \sum_{j=0}^m f\left(\frac{j+\alpha}{m+\beta}\right) b_{m,j}(x),\tag{1}$$

where the Bernstein basis functions $b_{m,j}(x)$ are defined by

$$b_{m,j}(x) = \binom{m}{j} x^j (1-x)^{m-j}; \quad x \in I,$$
 (2)

and showed that these polynomials converge to the function f(x) uniformly in $x \in I$.

It is obvious that whenever $\alpha = \beta = 0$, the operators defined by equation (1) reduce to the classical Bernstein operators defined by Bernstein [6]. Gadjiev and Ghorbanalizadeh [10] constructed Bernstein-Stancu type polynomials with shifted knots involving some non-negative real numbers θ and θ_i , i = 1, 2, 3, as

$$G_{m,\theta}^{(\theta_i)}(f;x) = \left(\frac{m+\theta}{m}\right)^m \sum_{j=0}^m \Omega_{m,j}^{(\theta,\theta_2)}(x) f\left(\frac{j+\theta_3}{m+\theta_1}\right),\tag{3}$$

2020 Mathematics Subject Classification. Primary 41A10, 41A25, 41A36, 41A63.

Keywords. Kantorovich operators, Lipschitz-type space, K-functional, Modulus of continuity

Received: 03 August 2020; Accepted: 21 October 2020

Communicated by Miodrag Spalević

Email addresses: behar.baxhaku@uni-pr.edu (Behar Baxhaku), rshukla@ma.iitr.ac.in(Rahul Shukla), pnappfma@gmail.com(P. N. Agrawal)

where the basis functions $\Omega_{m,j}^{(\theta,\theta_2)}(x)$ are defined by

$$\Omega_{m,j}^{(\theta,\theta_2)}(x) = \binom{m}{j} \left(x - \frac{\theta_2}{m+\theta}\right)^j \left(\frac{m+\theta_2}{m+\theta} - x\right)^{m-j},\tag{4}$$

 $x \in \left[\frac{\theta_2}{m+\theta}, \frac{m+\theta_2}{m+\theta}\right]$ and $0 \le \theta_3 \le \theta_2 \le \theta_1 \le \theta$. It is obvious that whenever $\theta = \theta_i = 0$; i = 1, 2, 3, the operators defined by equation (1.3) include the classical Bernstein operators. Wang et al. [17] obtained some direct results and a converse result in approximation by the polynomials defined in (3). To make it possible to approximate the Lebesgue integrable functions on I, Kantorovich [12] proposed a modification of the Bernstein polynomials as

$$K_m(f;x) = (m+1)\sum_{j=0}^m b_{m,j}(x) \int_{\frac{j}{m+1}}^{\frac{j+1}{m+1}} f(t)dt.$$

Inspired by the above idea, Içöz [11] introduced a Kantorovich variant of the Bernstein-Stancu type polynomials with shifted knots given by (3) as follows:

$$K_{m,\theta}^{(\theta_i)}(f;x) = \left(\frac{m+\theta}{m}\right)^m (m+\theta_1+1) \sum_{s=0}^m \Omega_{m,s}^{(\theta_i,\theta_2)}(x) \int_{\frac{s+\theta_3}{m+\theta_1+1}}^{\frac{s+\theta_3+1}{m+\theta_1+1}} f(t)dt, \tag{5}$$

where the basis functions $\Omega_{m,j}^{(\theta,\theta_2)}(x)$ are defined in (4) and $x \in [\frac{\theta_2}{m+\theta}, \frac{m+\theta_2}{m+\theta}]$. Evidently, in the particular case, $\theta = \theta_i = 0; i = 1, 2, 3$, the operators $K_{m,\theta}^{(\theta_i)}$ reduce to the operators K_m . The author [11] established some approximation results for the operators (5) in the continuous functions space with the aid of the usual modulus of continuity and the Peetre's K-functional and also investigated the approximation properties of a kth order generalization of these operators. For other contributions, in the direction of the above study, we refer the reader to (cf. [1], [3] -[5], [14] etc.).

In this article, we introduce the following tensor product of Kantorovich-Stancu type polynomials on the rectangle $\Box = \left[\frac{\theta_2}{n+\theta}, \frac{n+\theta_2}{n+\theta}\right] \times \left[\frac{\phi_2}{m+\phi}, \frac{m+\phi_2}{m+\phi}\right]$ as:

$$\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f(t_{1},t_{2});x,y) = \left(\frac{n+\theta}{n}\right)^{n} \left(\frac{m+\phi}{m}\right)^{m} (n+\theta_{1}+1)(m+\phi_{1}+1)$$

$$\sum_{s=0}^{n} \sum_{r=0}^{m} \Omega_{n,s}^{(\theta,\theta_{2})}(x) \Omega_{m,r}^{(\phi,\phi_{2})}(y) \int_{\frac{s+\theta_{3}+1}{n+\theta_{1}+1}}^{\frac{s+\theta_{3}+1}{n+\theta_{1}+1}} \int_{\frac{r+\phi_{3}}{n+\theta_{1}+1}}^{\frac{r+\phi_{3}+1}{m+\phi_{1}+1}} f(t_{1},t_{2})dt_{1}dt_{2}, \tag{6}$$

where the basis functions $\Omega_{n,s}^{(\theta,\theta_2)}(x)$ and $\Omega_{m,r}^{(\phi,\phi_2)}(y)$ are as defined in (4). We investigate the uniform convergence of these operators in the space $C(I^2)$ where $I^2 = I \times I$ and then determine the degree of convergence by these operators using the modulus of continuity and the Peetre's K-functional. We also define a k^{th} order generalization of these operators to study the approximation of continuous functions having k^{th} order continuous partial derivatives on I^2 and present some applications of this study to bi-variate Bernstein type operators on a simplex. Finally, we validate the results of this paper by some graphs and error estimation tables using MATLAB.

2. Auxiliary results

In our future consideration, $\|\cdot\|_{C(I^2)}$ denotes the sup-norm on I^2 .

Lemma 2.1. Let $e_{ij}(t_1, t_2) = t_1^i t_2^j$ where $i, j \in \mathbb{N} \cup \{0\}$. For $x, y \in \square$, the Kantorovich type generalized Bernstein-Stancu operators $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y)$, defined by (6), possess the following properties:

(i)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(e_{00};x,y)=1;$$

(ii)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(e_{10};x,y) = \frac{n+\theta}{n+\theta_1+1}x + \frac{\theta_3-\theta_2}{n+\theta_1+1} + \frac{1}{2(n+\theta_1+1)};$$

(iii)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(e_{01};x,y) = \frac{m+\phi}{m+\phi_1+1}y + \frac{\phi_3-\phi_2}{m+\phi_1+1} + \frac{1}{2(m+\phi_1+1)}y$$

(iv)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(e_{20};x,y) = \left(1-\frac{1}{n}\right)\left(\frac{n+\theta}{n+\theta_1+1}\right)^2\left(x-\frac{\theta_2}{n+\theta}\right)^2 + (2\theta_3+1)\frac{n+\theta}{(n+\theta_1+1)^2}\left(x-\frac{\theta_2}{n+\theta}\right) + \frac{n+\theta}{(n+\theta_1+1)^2}x + \frac{\theta_3^2-\theta_2+\theta_3}{(n+\theta_1+1)^2} + \frac{1}{3(n+\theta_1+1)^2};$$

$$\begin{array}{l} \text{(v)} \ \ \Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(e_{02};x,y) = \left(1-\frac{1}{m}\right)\left(\frac{m+\phi}{m+\phi_1+1}\right)^2\left(y-\frac{\phi_2}{m+\phi}\right)^2 + \left(2\phi_3+1\right)\frac{m+\phi}{(m+\phi_1+1)^2}\left(y-\frac{\phi_2}{m+\phi}\right) \\ + \frac{m+\phi}{(m+\phi_1+1)^2}y + \frac{\phi_3^2-\phi_2+\phi_3}{(m+\phi_1+1)^2} + \frac{1}{3(m+\phi_1+1)^2}. \end{array}$$

Following ([11], Thm.1), the proof of this lemma easily follows. Consequently, in view of Theorems 2 and 4 of [11], we are led to;

Lemma 2.2. For the operator $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y)$, following hold good:

(i)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(t_1-x;x,y)=\frac{\theta-\theta_1-1}{n+\theta_1+1}x+\frac{2(\theta_3-\theta_2)+1}{2(n+\theta_1+1)}.$$
 Further, if $\theta_2-\theta_3\geq 1$, we have

$$\|\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(t_{1}-x;x,y)\|_{C(l^{2})} \leq \frac{\theta-\theta_{1}+\theta_{2}-\theta_{3}-\frac{1}{2}}{n+\theta_{1}+1}.$$

(ii)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(t_2-y;x,y) = \frac{\phi-\phi_1-1}{m+\phi_1+1}y + \frac{2(\phi_3-\phi_2)+1}{2(m+\phi_1+1)}$$
. Further, $\phi_2-\phi_3 \geq 1$, we have

$$\|\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(t_2-y;x,y)\|_{C(l^2)} \leq \frac{\phi-\phi_1+\phi_2-\phi_3-\frac{1}{2}}{m+\phi_1+1}.$$

(iii)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}((t_1-x)^2;x,y) = \frac{1}{(n+\theta_1+1)^2} \left\{ [x(\theta-\theta_1-1)-(\theta_2-\theta_3-1)]^2 + \frac{(n+\theta)^2}{n} \left(x-\frac{\theta_2}{n+\theta}\right) \left(\frac{n+\theta_2}{n+\theta}-x\right) - x(\theta-\theta_1-1) - (\theta_3-\theta_2+\frac{2}{3}) \right\}.$$

Also, if $\theta_2 - \theta_3 \ge 1$ and $\theta - \theta_1 \ge \theta_2 - \theta_3$, we get

$$\|\mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}((t_{1}-x)^{2};x,y)\|_{C(l^{2})} \leq \frac{(\theta-\theta_{1})^{2}+\frac{n}{4}+2}{(n+\theta_{1}+1)^{2}};$$

In the case $\theta - \theta_1 < \theta_2 - \theta_3$ such that $\theta_2 - \theta_3 \ge 1$, we obtain

$$\|\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}((t_1-x)^2;x,y)\|_{C(I^2)} \leq \frac{(\theta_2-\theta_3)^2+\frac{n}{4}+2}{(n+\theta_1+1)^2}.$$

(iv)
$$\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}((t_2-y)^2;x,y) = \frac{1}{(m+\phi_1+1)^2} \left\{ [y(\phi-\phi_1-1)-(\phi_2-\phi_3-1)]^2 + \frac{(m+\phi)^2}{m} \left(y-\frac{\phi_2}{m+\phi}\right) \left(\frac{m+\phi_2}{m+\phi}-y\right) - y(\phi-\phi_1-1) - (\phi_3-\phi_2+\frac{2}{3}) \right\}.$$

Also, if $\phi_2 - \phi_3 \ge 1$ and $\phi - \phi_1 \ge \phi_2 - \phi_3$, we get

$$\|\mathfrak{K}_{n,m,\theta,\phi}^{\theta_i,\phi_i}((t_2-y)^2;x,y)\|_{C(l^2)} \leq \frac{(\phi-\phi_1)^2+\frac{m}{4}+2}{(m+\phi_1+1)^2};$$

In the case $\phi - \phi_1 < \phi_2 - \phi_3$ such that $\phi_2 - \phi_3 \ge 1$, we obtain

$$\|\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}((t_2-x)^2;x,y)\|_{C(l^2)} \leq \frac{(\phi_2-\phi_3)^2+\frac{m}{4}+2}{(m+\phi_1+1)^2}.$$

3. Rate of convergence by $\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y)$

In this section, we first give the following Korovkin type theorem on the convergence of $\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y)$ to f(x,y).

Theorem 3.1. Let $f \in C(I^2)$. Then

$$\lim_{n,m\to\infty} \max_{(x,y)\in\square} |\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y) - f(x,y)| = 0.$$

Proof. Taking into consideration the equalities in Lemma 2.1, we obtain

$$\lim_{n,m\to\infty} \max_{(x,y)\in\Omega} |\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(e_{ij};x,y) - e_{ij}| = 0, \tag{7}$$

for $(i, j) \in \{(0, 0), (1, 0), (0, 1)\}$. Further

$$\lim_{n,m\to\infty} \max_{(x,y)\in\Omega} |\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(e_{20} + e_{02}; x, y) - x^2 - y^2| = 0.$$
(8)

Let us define

$$\mathfrak{K}^{*\theta_{i},\phi_{i}}_{n,m,\theta,\phi}(f;x,y) = \begin{cases} \mathfrak{K}^{\theta_{i},\phi_{i}}_{n,m,\theta,\phi}(f;x,y) & \text{if } (x,y) \in \square \\ f(x,y) & \text{if } (x,y) \in I^{2} \setminus \square. \end{cases}$$

Considering the above definition of the operators, we easily get

$$\|\Re_{n,m,\theta,\phi}^{*\theta_{i},\phi_{i}}(f) - f\|_{C(l^{2})} = \max_{(x,y)\in\Box} |\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f;x,y) - f(x,y)|. \tag{9}$$

Now, using (7)-(8), we immediately get

$$\lim_{n,m\to\infty} \|\mathfrak{R}^{*\theta_i,\phi_i}_{n,m,\theta,\phi}(e_{ij}) - e_{ij}\|_{C(I^2)} = 0,$$

for $(i, j) \in \{(0, 0), (1, 0), (0, 1)\}$ and

$$\lim_{n,m\to\infty} \|\Re^{*\theta_i,\phi_i}_{n,m,\theta,\phi}(e_{20}+e_{02}) - x^2 - y^2\|_{C(I^2)} = 0.$$

Applying the two dimensional Korovkin's type theorem (see [16]) to the sequence of operators $\Re^{*\theta_i,\phi_i}_{n,m,\theta,\phi'}$ we obtain

$$\lim_{n,m\to\infty} \|\mathfrak{R}^{*\theta_i,\phi_i}_{n,m,\theta,\phi}(f) - f\|_{C(I^2)} = 0,$$

for every continuous function $f \in C(I^2)$. Therefore (9) gives

$$\lim_{n,m\to\infty} \max_{(x,y)\in\square} |\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y) - f(x,y)| = 0.$$

This completes the proof. \Box

In order to discuss the next results, we recall some definitions of the modulus of continuity.

Definition 3.2. For $f \in C(I^2)$ and $\delta > 0$, the complete modulus of continuity is defined as

$$\omega^{(c)}(f;\delta) = \sup_{\sqrt{(t_1 - x)^2 + (t_2 - y)^2} \le \delta} \{ \left| f(t_1, t_2) - f(x, y) \right| : (t_1, t_2), (x, y) \in I^2 \}.$$
(10)

The partial moduli of continuity of f with respect to x and y is given by

$$\omega^{(1)}(f;\delta) = \sup_{|x_1 - x_2| \le \delta} \sup_{y \in I} \{ |f(x_1, y) - f(x_2, y)| \}$$

and

$$\omega^{(2)}(f;\delta) = \sup_{x \in I} \sup_{|y_1 - y_2| \le \delta} \{ |f(x, y_1) - f(x, y_2)| \}, \tag{11}$$

respectively. We shall use the following property of the complete modulus of continuity:

$$|f(t_1, t_2) - f(x, y)| \le \omega^{(c)}(f; \delta) \left(1 + \frac{\sqrt{(t_1 - x)^2 + (t_2 - y)^2}}{\delta} \right). \tag{12}$$

It is known that these definitions satisfy the properties analogous to the usual modulus of continuity. For more details, we refer to [2].

In the next result, we obtain an estimate of the rate of convergence in terms of the complete modulus of continuity for the operators defined by (6).

Theorem 3.3. Let $f \in C(I^2)$. If $\theta_2 - \theta_3 \ge 1$ and $\phi_2 - \phi_3 \ge 1$, then the following inequalities hold: $\|\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f) - f\| \le$

$$\begin{cases} \frac{3}{2} \, \omega^{(c)} \left(f; \, \sqrt{\frac{4(\theta - \theta_1)^2 + n + 8}{(n + \theta_1 + 1)^2} + \frac{4(\phi - \phi_1)^2 + m + 8}{(m + \phi_1 + 1)^2}} \right); \, if \, \theta - \theta_1 \geq \theta_2 - \theta_3 \, and \, \phi - \phi_1 \geq \phi_2 - \phi_3 \\ \frac{3}{2} \, \omega^{(c)} \left(f; \, \sqrt{\frac{4(\theta_2 - \theta_3)^2 + n + 8}{(n + \theta_1 + 1)^2} + \frac{4(\phi_2 - \phi_3)^2 + m + 8}{(m + \phi_1 + 1)^2}} \right); \, if \, \theta - \theta_1 < \theta_2 - \theta_3 \, and \, \phi - \phi_1 < \phi_2 - \phi_3. \end{cases}$$

Proof. From the linearity and positivity of the operators (6), Cauchy-Schwarz inequality and Lemma 1, the property (12) of the complete modulus of continuity gives

$$\left| \Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f;x,y) - f(x,y) \right| \leq \omega^{(c)} \left(f;\delta \right) \left(1 + \frac{\sqrt{\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}((t_{1}-x)^{2} + (t_{2}-y)^{2};x,y)}}{\delta} \right), \tag{13}$$

where $\delta > 0$. Therefore considering Lemma 2.2, for $\theta - \theta_1 \ge \theta_2 - \theta_3 \ge 1$ and $\phi - \phi_1 \ge \phi_2 - \phi_3 \ge 1$, we have

$$\|\mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f) - f\| \leq \omega^{(c)}(f;\delta) \left(1 + \frac{\sqrt{\frac{(\theta-\theta_{1})^{2} + \frac{n}{4} + 2}{(n+\theta_{1}+1)^{2}} + \frac{(\phi-\phi_{1})^{2} + \frac{m}{4} + 2}{(m+\phi_{1}+1)^{2}}}}{\delta_{mn}}\right).$$

Now choosing $\delta = \sqrt{\frac{4(\theta - \theta_1)^2 + n + 8}{(n + \theta_1 + 1)^2} + \frac{4(\phi - \phi_1)^2 + m + 8}{(m + \phi_1 + 1)^2}}$, we obtain

$$\|\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f)-f\| \leq \frac{3}{2}\,\omega^{(c)}\left[f;\,\sqrt{\frac{4(\theta-\theta_{1})^{2}+n+8}{(n+\theta_{1}+1)^{2}}+\frac{4(\phi-\phi_{1})^{2}+m+8}{(m+\phi_{1}+1)^{2}}}\right].$$

Analogously, taking into account Lemma 2.2, for $\theta-\theta_1<\theta_2-\theta_3$ and $\phi-\phi_1<\phi_2-\phi_3$ such that $\theta_2-\theta_3, \phi_2-\phi_3\geq 1$ (with $\delta=\sqrt{\frac{4(\theta_2-\theta_3)^2+n+8}{(n+\theta_1+1)^2}}+\frac{4(\phi_2-\phi_3)^2+m+8}{(m+\phi_1+1)^2}}$), we are led to

$$\|\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f) - f\| \leq \frac{3}{2} \omega^{(c)} \left[f; \sqrt{\frac{4(\theta_{2} - \theta_{3})^{2} + n + 8}{(n + \theta_{1} + 1)^{2}} + \frac{4(\phi_{2} - \phi_{3})^{2} + m + 8}{(m + \phi_{1} + 1)^{2}}} \right].$$

In the forthcoming result, the degree of approximation of f by the operators (6) is estimated by means of the partial moduli of continuity.

Theorem 3.4. Let $f \in C(I^2)$. If $\theta_2 - \theta_3 \ge 1$ and $\phi_2 - \phi_3 \ge 1$, then the following inequalities hold:

$$\begin{cases} 2\left[\omega^{(1)}(f; \frac{\sqrt{4(\theta-\theta_{1})^{2}+n+8}}{2(n+\theta_{1}+1)}) + \omega^{(2)}(f; \frac{\sqrt{4(\phi-\phi_{1})^{2}+m+8}}{2\delta_{2}(n+\phi_{1}+1)})\right]; & if \theta-\theta_{1} \geq \theta_{2}-\theta_{3} \text{ and } \phi-\phi_{1} \geq \phi_{2}-\phi_{3} \\ 2\left[\omega^{(1)}(f; \frac{\sqrt{4(\theta_{2}-\theta_{3})^{2}+n+8}}{(n+\theta_{1}+1)^{2}}) + \omega^{(2)}(f; \frac{\sqrt{4(\phi_{2}-\phi_{3})^{2}+m+8}}{(m+\phi_{1}+1)^{2}})\right]; & if \theta-\theta_{1} < \theta_{2}-\theta_{3} \text{ and } \phi-\phi_{1} < \phi_{2}-\phi_{3}. \end{cases}$$

Proof. From linearity and monotonicity of the operators $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}$ and the definitions of the partial moduli of continuity with respect to x and y as defined in (11), we have

$$\left| \Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f(t_{1},t_{2});x,y) - f(x,y) \right| \leq \Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\omega^{(1)}(f;|t_{1}-x|);x,y) + \Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\omega^{(2)}(f;|t_{2}-y|);x,y).$$

Now using the property of modulus of continuity similar to (12) and the Cauchy-Schwarz inequality, for $\delta_1, \delta_2 > 0$, we get

$$\left| \mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f(t_{1},t_{2});x,y) - f(x,y) \right| \leq \left\{ 1 + \frac{1}{\delta_{1}} \left(\mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}((t_{1}-x)^{2};x,y) \right)^{\frac{1}{2}} \right\} \omega^{(1)}(f;\delta_{1}) + \left\{ 1 + \frac{1}{\delta_{2}} \left(\mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}((t_{2}-y)^{2};x,y) \right)^{\frac{1}{2}} \right\} \omega^{(2)}(f;\delta_{2}),$$

for all $(x, y) \in I^2$. Therefore, for $\phi - \phi_1 \ge \phi_2 - \phi_3 \ge 1$ and $\theta - \theta_1 \ge \theta_2 - \theta_3 \ge 1$, using Lemma 2.2 we obtain

$$\|\mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f) - f\| \leq \left\{ 1 + \frac{1}{\delta_{1}} \left(\frac{(\theta - \theta_{1})^{2} + \frac{n}{4} + 2}{(n + \theta_{1} + 1)^{2}} \right)^{\frac{1}{2}} \right\} \omega^{(1)}(f;\delta_{1}) + \left\{ 1 + \frac{1}{\delta_{2}} \left(\frac{(\phi - \phi_{1})^{2} + \frac{m}{4} + 2}{(m + \phi_{1} + 1)^{2}} \right)^{\frac{1}{2}} \right\} \omega^{(2)}(f;\delta_{2}).$$

Choosing
$$\delta_1 = \frac{\sqrt{4(\theta - \theta_1)^2 + n + 8}}{2(n + \theta_1 + 1)}$$
 and $\delta_2 = \frac{\sqrt{4(\phi - \phi_1)^2 + m + 8}}{2(m + \phi_1 + 1)}$, we obtain

$$\|\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f) - f\| \leq 2 \left[\omega^{(1)}(f; \frac{\sqrt{4(\theta-\theta_1)^2 + n + 8}}{2(n+\theta_1+1)}) + \omega^{(2)}(f; \frac{\sqrt{4(\phi-\phi_1)^2 + m + 8}}{2\delta_2(n+\phi_1+1)}) \right].$$

This proves the first assertion of our result. Similarly, for $\theta-\theta_1<\theta_2-\theta_3$ and $\phi-\phi_1<\phi_2-\phi_3$ such that $\theta_2-\theta_3, \phi_2-\phi_3\geq 1$, using Lemma 2 with $\delta_1=\frac{\sqrt{4(\theta_2-\theta_3)^2+n+8}}{2(n+\theta_1+1)}$ and $\delta_2=\frac{\sqrt{4(\phi_2-\phi_3)^2+m+8}}{2(m+\phi_1+1)}$, we immediately find the second assertion. \square

We study the rate of convergence of the bi-variate Bernstein-Stancu-Kantorovich type operators $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}$ for elements of the Lipschitz class $Lip_M(\gamma)$, for $0 < \gamma \le 1$. We recall the following definition:

Definition 3.5. A function $f \in C(I^2)$ is said to be in $Lip_M(\gamma)$ if

$$|f(t_1, t_2) - f(x, y)| \le M\{(t_1 - x)^2 + (t_2 - y)^2\}^{\frac{\gamma}{2}},$$

holds for all $(t_1, t_2), (x, y) \in I^2$.

Theorem 3.6. If $\theta_2 - \theta_3 \ge 1$ and $\phi_2 - \phi_3 \ge 1$, then for all $f \in Lip_M(\gamma)$, the following inequalities hold:

$$\|\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f) - f\| \leq M \begin{cases} \left(\frac{(\theta - \theta_{1})^{2} + \frac{n}{4} + 2}{(n + \theta_{1} + 1)^{2}} + \frac{(\phi - \phi_{1})^{2} + \frac{m}{4} + 2}{(m + \phi_{1} + 1)^{2}} \right)^{\frac{r}{2}} & \text{for } \theta - \theta_{1} \geq \theta_{2} - \theta_{3} \text{ and } \phi - \phi_{1} \geq \phi_{2} - \phi_{3} \\ \left(\frac{(\theta_{2} - \theta_{3})^{2} + \frac{n}{4} + 2}{(n + \theta_{1} + 1)^{2}} + \frac{(\phi_{2} - \phi_{3})^{2} + \frac{m}{4} + 2}{(m + \phi_{1} + 1)^{2}} \right)^{\frac{r}{2}} & \text{for } \theta - \theta_{1} < \theta_{2} - \theta_{3} \text{ and } \phi - \phi_{1} < \phi_{2} - \phi_{3}. \end{cases}$$

where $0 < \gamma \le 1$ and M is a positive constant.

Proof. From the assumption $f \in Lip_M(\gamma)$, we have

$$\left| \mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f(t_{1},t_{2});x,y) - f(x,y) \right| \leq M \, \mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\{(t_{1}-x)^{2} + (t_{2}-y)^{2}\}^{\frac{\gamma}{2}};x,y).$$

Now, applying the Hölder's inequality with $p = \frac{2}{\gamma}$, $q = \frac{2}{2-\gamma}$ and Lemma 2.1, we obtain

$$\left|\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f(t_{1},t_{2});x,y)-f(x,y)\right| \leq M\left(\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}((t_{1}-x)^{2}+(t_{2}-y)^{2};x,y)\right)^{\frac{\gamma}{2}}.$$

Finally using Lemma 2.2 and considering sup-norm, we reach to the desired result. $\ \square$

Let $C^2(I^2)$ be the space of all continuous function f having continuous partial derivatives upto the second order. We consider the following norm on $C^2(I^2)$:

$$||f||_{C^{2}(I^{2})} = ||f||_{C(I^{2})} + \sum_{i=1}^{2} \left(\left\| \frac{\partial^{i} f}{\partial x^{i}} \right\|_{C(I^{2})} + \left\| \frac{\partial^{i} f}{\partial y^{i}} \right\|_{C(I^{2})} \right) + \left\| \frac{\partial^{2} f}{\partial x \partial y} \right\|_{C(I^{2})}.$$

We use the following definition in our upcoming result.

Definition 3.7. Let $f \in C^2(I^2)$ and $\delta > 0$. The Peetre's K-functional and second-order modulus of smoothness of f are given by

$$K(f;\delta) = \inf_{g \in C^{2}(I^{2})} \left\{ \left\| f - g \right\|_{C(I^{2})} + \delta \left\| g \right\|_{C^{2}(I^{2})} \right\},\,$$

and

$$\omega_2(f;\delta) = \sup_{\sqrt{t^2 + s^2} \le \delta} \left| \Delta_{t,s}^2 f(x,y) \right|,$$

where
$$\Delta_{t,s}^2 f(x,y) = \sum_{j=0}^{2} (-1)^{2-j} {2 \choose j} f(x+jt,y+js)$$
, respectively.

In the next result, we establish an order of approximation for the bi-variate operator $\mathfrak{A}_{n,m,\theta,\phi}^{\theta_i,\phi_i}$ in terms of the Peetre's K-functional and the complete modulus of continuity.

Theorem 3.8. For all $f \in C(I^2)$ and $\theta_2 - \theta_3$, $\phi_2 - \phi_3 \ge 1$, the following inequalities hold

$$\|\mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f)-f\| \leq \begin{cases} 4K(f,\delta_{1})+\omega^{(c)}(f;\Delta), & \text{if } \theta-\theta_{1}\geq\theta_{2}-\theta_{3} \text{ and } \phi-\phi_{1}\geq\phi_{2}-\phi_{3}\\ 4K(f,\delta_{2})+\omega^{(c)}(f;\Delta), & \text{if } \theta-\theta_{1}\leq\theta_{2}-\theta_{3} \text{ and } \phi-\phi_{1}\leq\phi_{2}-\phi_{3}, \end{cases}$$

where

$$\delta_{1} = \frac{1}{8} \left[\left(\sqrt{\frac{(\theta - \theta_{1})^{2} + \frac{n}{4} + 2}{(n + \theta_{1} + 1)^{2}}} + \sqrt{\frac{(\phi - \phi_{1})^{2} + \frac{m}{4} + 2}{(m + \phi_{1} + 1)^{2}}} \right)^{2} + \left(\frac{\theta - \theta_{1} + \theta_{2} - \theta_{3} - \frac{1}{2}}{n + \theta_{1} + 1} + \frac{\phi - \phi_{1} + \phi_{2} - \phi_{3} - \frac{1}{2}}{n + \phi_{1} + 1} \right)^{2} \right],$$

$$\delta_{2} = \frac{1}{8} \left[\left(\sqrt{\frac{(\theta_{2} - \theta_{3})^{2} + \frac{n}{4} + 2}{(n + \theta_{1} + 1)^{2}}} + \sqrt{\frac{(\phi_{2} - \phi_{3})^{2} + \frac{m}{4} + 2}{(m + \phi_{1} + 1)^{2}}} \right)^{2} + \left(\frac{\theta - \theta_{1} + \theta_{2} - \theta_{3} - \frac{1}{2}}{n + \theta_{1} + 1} + \frac{\phi - \phi_{1} + \phi_{2} - \phi_{3} - \frac{1}{2}}{n + \phi_{1} + 1} \right)^{2} \right],$$

and

$$\Delta^2 = \left(\frac{\theta - \theta_1 + \theta_2 - \theta_3 - \frac{1}{2}}{n + \theta_1 + 1}\right)^2 + \left(\frac{\phi - \phi_1 + \phi_2 - \phi_3 - \frac{1}{2}}{n + \phi_1 + 1}\right)^2.$$

Proof. We consider the following auxiliary operators:

$$\hat{\mathfrak{K}}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y) = \mathfrak{K}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y) + f(x,y) - f(\mathfrak{K}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(t_1;x,y),\mathfrak{K}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(t_2;x,y)).$$

From Taylor expansion, for any $h \in C^2(I^2)$, we have

$$h(t_1, t_2) - h(x, y) = \frac{\partial h(x, y)}{\partial x} (t_1 - x) + \int_x^{t_1} (t_1 - \eta) \frac{\partial^2 h(\eta, y)}{\partial \eta^2} d\eta + \frac{\partial h(x, y)}{\partial y} (t_2 - y)$$

$$+ \int_y^{t_2} (t_2 - \xi) \frac{\partial^2 h(x, \xi)}{\partial \xi^2} d\xi + \int_x^{t_1} \int_y^{t_2} \frac{\partial^2 h(u, v)}{\partial u \partial v} du dv,$$

$$(14)$$

and, let $\psi_h^{i,j}(t_1,t_2) = \left(\int_x^{t_1} (t_1-\eta) \frac{\partial^2 h(\eta,y)}{\partial \eta^2} d\eta\right)^i \left(\int_y^{t_2} (t_2-\xi) \frac{\partial^2 h(x,\xi)}{\partial \xi^2} d\xi\right)^j$.

Applying the auxiliary operator $\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_i,\phi_i}$ on the equation (14) and taking $\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(1;x,y)=1;\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(t_1-x;x,y)=0=\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(t_2-y;x,y)$, we have

$$|\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(h;x,y) - h(x,y)| \leq |\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\psi_{h}^{1,0}(t_{1},t_{2});x,y)| + |\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\psi_{h}^{0,1}(t_{1},t_{2});x,y)| + |\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\psi_{h}^{0,1}(t_{1},t_{2});x,y)| + |\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\psi_{h}^{0,1}(t_{1},t_{2});x,y)|$$

$$+ |\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\int_{x}^{t_{1}}\int_{y}^{t_{2}}\frac{\partial^{2}h(u,v)}{\partial u\partial v}dudv;x,y)|.$$
(15)

Further, applying the auxiliary operator $\hat{\mathbf{x}}_{n,m,\theta,\phi}^{\theta_i,\phi_i}$ on $\psi_h^{1,0}$ gives us

$$\begin{split} |\hat{\mathfrak{K}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\psi_{h}^{1,0}(t_{1},t_{2});x,y)| & \leq & \frac{||h||_{C^{2}(I^{2})}}{2} \Big\{ \mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}\Big((t_{1}-x)^{2};x,y\Big) + \Big(\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}\Big(t_{1}-x;x,y\Big) \Big)^{2} \Big\} \\ & = & \frac{||h||_{C^{2}(I^{2})}}{2} \{ \mu_{2,x} + \mu_{1,x}^{2} \}, \end{split}$$

where $\mu_{2,x}$ and $\mu_{1,x}$ are the second and first order central moments, respectively. Similarly,

$$|\hat{\mathbf{K}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\psi_{h}^{0,1}(t_{1},t_{2});x,y)| \leq \frac{||h||_{C^{2}(l^{2})}}{2} \{\nu_{2,y}+\nu_{1,y}^{2}\},$$

where $v_{2,y}$ and $v_{1,y}$ are the second and first order central moments, respectively. Also,

$$\begin{split} |\hat{\mathfrak{K}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\int_{x}^{t_{1}}\int_{y}^{t_{2}}\frac{\partial^{2}h(u,v)}{\partial u\partial v}dudv;x,y)| & \leq & ||h||_{C^{2}(I^{2})}\Big\{\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}\Big(|t_{1}-x||t_{2}-y|;x,y\Big) \\ & + & |\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(e_{1,0};x,y)-x||\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(e_{0,1};x,y)-y|\Big\}, \end{split}$$

hence using the Cauchy-Schwarz inequality

$$|\hat{\mathfrak{K}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(\int_{x}^{t_{1}}\int_{y}^{t_{2}}\frac{\partial^{2}h(u,v)}{\partial u\partial v}dudv;x,y)| \leq ||h||_{C^{2}(l^{2})}\left\{\left(\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(t_{1}-x)^{2};x,y\right)\right)^{\frac{1}{2}}\right\} \times \left(\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(t_{2}-y)^{2};x,y\right)^{\frac{1}{2}} + |\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(t_{1}-x;x,y)||\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(t_{2}-y;x,y)|\right\} = ||h||_{C^{2}(l^{2})}\left\{\mu_{2,x}^{1/2}v_{2,y}^{1/2} + |\mu_{1,x}||v_{1,y}|\right\}.$$

$$(16)$$

Consequently, from the equation (14)

$$|\hat{\mathbf{K}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(h;x,y) - h(x,y)| \leq \frac{||h||_{C^{2}(I^{2})}}{2} \left\{ (\mu_{2,x}^{1/2} + \nu_{2,y}^{1/2})^{2} + (|\mu_{1,x}| + |\nu_{1,y}|)^{2} \right\}. \tag{17}$$

Now, from the definition of auxiliary operator and equation (17), we may write

$$\begin{split} |\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f;x,y) - f(x,y)| & \leq |\hat{\mathfrak{K}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f-h;x,y)| + |\hat{\mathfrak{K}}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(h;x,y) - h(x,y)| + |(f-h)(x,y)| \\ & + |f\Big(\mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(t_{1};x,y), \mathfrak{K}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(t_{2};x,y)\Big) - f(x,y)| \\ & \leq 4\Big\{||f-h||_{C(I^{2})} + \frac{||h||_{C^{2}(I^{2})}}{8}\Big\{(\mu_{2,x}^{1/2} + \nu_{2,y}^{1/2})^{2} + (|\mu_{1,x}| + |\nu_{1,y}|)^{2}\Big\}\Big\} \\ & + \omega^{(c)}\Big(f;\sqrt{\left(\mu_{1,x}\right)^{2} + \left(\nu_{1,y}\right)^{2}}\Big). \end{split}$$

Now, for $\theta - \theta_1 \ge \theta_2 - \theta_3 \ge 1$ and $\phi - \phi_1 \ge \phi_2 - \phi_3 \ge 1$, using Lemma 2.2 and taking infimum over all $h \in C^2(I^2)$, we get

$$\|\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f) - f\| \leq 4K(f,\delta_1) + \omega^{(c)}(f;\Delta).$$

By a similar reasoning, for the other case $\theta - \theta_1 \le \theta_2 - \theta_3$ and $\phi - \phi_1 \le \phi_2 - \phi_3$ such that $\theta_2 - \theta_3$, $\phi_2 - \phi_3 > 1$, we have

$$\|\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f) - f\| \leq 4K(f,\delta_2) + \omega^{(c)}(f;\Delta).$$

This proves the required result. \Box

Corollary 3.9. *Considering the well-known relation* [8] *that*

$$K(f;\delta) \leq C \omega_2(f;\sqrt{\delta}), \text{ for any } \delta > 0,$$

where C is some positive constant, the result of the Theorem 3.8 takes the following form:

$$\|\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}(f) - f\| \leq \begin{cases} \frac{C}{4}\omega_{2}(f,\sqrt{\delta_{1}}) + \omega^{(c)}(f;\Delta), & \text{if } \theta - \theta_{1} \geq \theta_{2} - \theta_{3} \text{ and } \phi - \phi_{1} \geq \phi_{2} - \phi_{3} \\ \frac{C}{4}\omega_{2}(f,\sqrt{\delta_{2}}) + \omega^{(c)}(f;\Delta), & \text{if } \theta - \theta_{1} \leq \theta_{2} - \theta_{3} \text{ and } \phi - \phi_{1} \leq \phi_{2} - \phi_{3}, \end{cases}$$

4. A k^{th} order generalization of the operators $\Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i}}$

In this section, we use the method of Kirov and Popova [13] to introduce and investigate approximation properties of a k^{th} order generalization of our bi-variate Bernstein-Stancu-Kantorovich type operator $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(.;x,y)$ defined in (6). Let $C^k(I^2)$, $k \in \mathbb{N} \cup \{0\}$, denote the set of all functions $f:I^2 \to \mathbb{R}$ having continuous partial derivatives upto the k^{th} (s = 0, 1, 2, ...) order on the box I^2 . We now define, for any function $f \in C^k(I^2)$,), the k^{th} order generalization of Bernstein-Stancu-Kantorovich type polynomials $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(.;x,y)$ as

$$\Re_{n,m,\theta,\phi}^{\theta_{l},\phi_{l},k}(f(u,v);x,y) = \left(\frac{n+\theta}{n}\right)^{n} \left(\frac{m+\phi}{m}\right)^{m} (n+\theta_{1}+1)(m+\phi_{1}+1) \\
\times \sum_{s=0}^{n} \sum_{r=0}^{m} \Omega_{n,s}^{(\theta,\theta_{2})}(x) \Omega_{m,r}^{(\phi,\phi_{2})}(y) \int_{\frac{s+\theta_{3}+1}{m+\phi_{1}+1}}^{\frac{s+\theta_{3}+1}{m+\phi_{1}+1}} \int_{\frac{r+\phi_{3}+1}{m+\phi_{1}+1}}^{\frac{r+\phi_{3}+1}{m+\phi_{1}+1}} \sum_{l=0}^{k} \frac{d^{l} f(u,v)}{l!} du dv, \tag{18}$$

where $d^l f(u,v) = \sum_{i=0}^l \binom{l}{i} \frac{\partial^l f(u,v)}{\partial x^{l-i} \partial y^i} (x-u)^{l-i} (y-v)^i$. Now, there is a unit vector (μ,η) for which $(x-u,y-v) = w(\mu,\eta)$ where w>0. Let

$$P(w) = f(u + w\mu, v + w\eta) = f(u + (x - u), v + (y - v)) = f(x, y).$$
(19)

Following remarks can be made from the equations (18) and (19).

Remark 4.1. Note that, when k = 0 in the equation (18), we immediately get the operator defined in (6), i.e.

$$\Re^{\theta_i,\phi_i,0}_{n,m,\theta,\phi}(f;x,y)=\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(f;x,y)$$

Remark 4.2. The k^{th} order derivative of the function P(w) has the following form (See chapter 3 in [7])

$$P^{k}(w) = \sum_{i=0}^{k} {k \choose i} \frac{\partial^{k} f(u + w\mu, v + w\eta)}{\partial x^{k-i} \partial y^{i}} \mu^{k-i} \eta^{i}, \quad (k \in N).$$

$$(20)$$

Also, using the equation (20), we can easily deduce that the Taylor's formula for P(w) at w = 0 is the same as that of f(x, y) at (u, v).

The following intermediate result is useful in the proof of some important corollaries which provide us a deeper insight into the approximation behavior of the operators defined by (18):

Theorem 4.3. For each $m, n, k \in \mathbb{N}$, and for all $f \in C^k(I^2)$ such that $P^k(w) \in Lip_M(\gamma)$, we have

$$||f-\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}(f)||_{C(l^2)} \leq \frac{M}{(k-1)!}\frac{\gamma}{\gamma+k}B\left(\gamma,k\right)\times ||\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}\left(|\left(x-u,y-v\right)|^{k+\gamma}\right)||_{C(l^2)},$$

where $0 < \gamma \le 1, M > 0$ and $B(\gamma, k)$ denotes the usual Beta function.

Proof. Let $f \in C^k(I^2)$ and $(x, y) \in I^2$. By the definition of the operators $\mathfrak{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y)_k$ in (18), we see that for any $m,n,k \in \mathbb{N}$,

$$f(x,y) - \Re_{n,m,\theta,\phi}^{\theta_{i},\phi_{i},k}(f(u,v);x,y) = \left(\frac{n+\theta}{n}\right)^{n} \left(\frac{m+\phi}{m}\right)^{m} (n+\theta_{1}+1)(m+\phi_{1}+1)$$

$$\times \sum_{s=0}^{n} \sum_{r=0}^{m} \Omega_{n,s}^{(\theta,\theta_{2})}(x) \Omega_{m,r}^{(\phi,\phi_{2})}(y) \int_{\frac{s+\theta_{3}+1}{n+\theta_{1}+1}}^{\frac{s+\theta_{3}+1}{n+\theta_{1}+1}} \int_{\frac{r+\phi_{3}}{m+\phi_{1}+1}}^{\frac{r+\phi_{3}+1}{m+\phi_{1}+1}} \left(f(x,y) - \sum_{l=0}^{k} \frac{d^{l}f(u,v)}{l!} du dv\right), \quad (21)$$

It is known from Taylor's integral remainder formula for f(x, y) at (u, v) (see[7]) that

$$f(x,y) - \sum_{l=0}^{k-1} \frac{d^l f(u,v)}{l!} = \frac{1}{(k-1)!} \int_0^1 (1-z)^{k-1} \times \left(\sum_{i=0}^k \binom{k}{i} \frac{\partial^k f(u+z(x-u),v+z(y-v))}{\partial x^{k-i} \partial y^i} (x-u)^{k-i} (y-v)^i \right) dz.$$
(22)

Using Remark 4.2, the equation (22) takes the form

$$P(u) - \sum_{l=0}^{k} P^{l}(0)w^{l} = \frac{w^{k}}{(k-1)!} \int_{0}^{1} (1-z)^{k-1} [P^{k}(wz) - P^{k}(0)] dz.$$

Since $P^k(w) \in Lip_M(\gamma)$, it follows that

$$\left| f(x,y) - \sum_{l=0}^{k-1} \frac{d^l f(u,v)}{l!} \right| = \left| P(u) - \sum_{l=0}^k P^l(0) w^l \right| \le \frac{M |w|^{k+\gamma}}{(k-1)!} \int_0^1 z^{\gamma} (1-z)^{k-1} dz. \tag{23}$$

From the definition of Beta function, we have

$$\int_0^1 z^{\gamma} (1-z)^{k-1} dz = B(1+\gamma,k) = \frac{\gamma B(\gamma,k)}{\gamma+k},$$

Hence, the equation (23) takes the following from

$$\left| f(x,y) - \sum_{l=0}^{k-1} \frac{d^l f(u,v)}{l!} \right| \leq \frac{M}{(k-1)!} \frac{\gamma B(\gamma,k)}{\gamma+k} \left| \left(x - u, y - v \right) \right|^{k+\gamma}$$
 (24)

Finally, using (24) in (21) and taking supremum over all $(x, y) \in I^2$, we obtain the desired result. \square

Let $q \in C(I^2)$ be a function defined by

$$g(u,v) = \left| (u,v) - (x,y) \right|^{k+\gamma} \tag{25}$$

Since $g \in C(I^2)$ and g(x, y) = 0, Theorem 3.1 yields

$$\|\mathcal{R}_{n,m,\theta,\phi}^{\theta_i,\phi_i}(g;x,y)\|_{C(I^2)} \to 0 \text{ as } m,n \to \infty.$$

Thus, Theorem 4.3 yields that for all $f \in C^k(I^2)$ such that $P^k(w) \in Lip_M(\gamma)$,

$$\|\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}(f;x,y)-f(x,y)\|_{C(I^2)}\to 0 \text{ as } m,n\to\infty.$$

Taking into consideration Theorem 2, one can deduce the following result from Theorem 4.3 immediately:

Corollary 4.4. If $\theta_2 - \theta_3 \ge 1$ and $\phi_2 - \phi_3 \ge 1$, then for each $m, n \in \mathbb{N}$, and for all $f \in C^k(I^2)$ such that $P^k(w) \in Lip_M(\gamma)$ we have

$$\begin{aligned} &P^{K}(w) \in Lip_{M}(\gamma) \ we \ have \\ &\|f - \Re^{\theta_{i},\phi_{i},k}_{n,m,\theta,\phi}(f)\|_{C(l^{2})} \leq \frac{3M}{2(k-1)!} \frac{\gamma}{\gamma+k} B(\gamma,k) \times \\ &\left\{ \begin{array}{l} \omega^{(c)} \left(g; \sqrt{\frac{4(\theta-\theta_{1})^{2}+n+8}{(n+\theta_{1}+1)^{2}} + \frac{4(\phi-\phi_{1})^{2}+m+8}{(m+\phi_{1}+1)^{2}}}\right); & for \ \theta - \theta_{1} \geq \theta_{2} - \theta_{3} \ and \ \phi - \phi_{1} \geq \phi_{2} - \phi_{3} \\ \omega^{(c)} \left(g; \sqrt{\frac{4(\theta_{2}-\theta_{3})^{2}+n+8}{(n+\theta_{1}+1)^{2}} + \frac{4(\phi_{2}-\phi_{3})^{2}+m+8}{(m+\phi_{1}+1)^{2}}}\right); & for \ \theta - \theta_{1} < \theta_{2} - \theta_{3} \ and \ \phi - \phi_{1} < \phi_{2} - \phi_{3}. \end{aligned}$$

$$where \ g \ is \ given \ by \ (25). \end{aligned}$$

Applying Theorem 3.6, the following result is immediate from Theorem 4.3:

Corollary 4.5. For each $m, n \in \mathbb{N}$, $k \in \mathbb{N} \cup \{0\}$ and $f \in C^k(I^2)$ such that $f^{(k)} \in Lip_M(\gamma)$, and assuming that $g \in Lip_{\gamma_{\frac{k}{2}}}(\gamma)$ in Theorem 3.6, we have

$$\begin{split} \|f - \mathfrak{R}_{n,m,\theta,\phi}^{\theta_{i},\phi_{i},k}(f)\|_{C(l^{2})} &\leq \frac{2^{\frac{k}{2}}M}{(k-1)!} \frac{\gamma}{\gamma + k} B(\gamma,k) \\ & \left\{ \begin{array}{l} \left(\frac{(\theta - \theta_{1})^{2} + \frac{n}{4} + 2}{(n+\theta_{1}+1)^{2}} + \frac{(\phi - \phi_{1})^{2} + \frac{m}{4} + 2}{(m+\phi_{1}+1)^{2}} \right)^{\frac{\gamma}{2}} & \text{for } \theta - \theta_{1} \geq \theta_{2} - \theta_{3} \text{ and } \phi - \phi_{1} \geq \phi_{2} - \phi_{3} \\ \left(\frac{(\theta_{2} - \theta_{3})^{2} + \frac{n}{4} + 2}{(n+\theta_{1}+1)^{2}} + \frac{(\phi_{2} - \phi_{3})^{2} + \frac{m}{4} + 2}{(m+\phi_{1}+1)^{2}} \right)^{\frac{\gamma}{2}} & \text{for } \theta - \theta_{1} < \theta_{2} - \theta_{3} \text{ and } \phi - \phi_{1} < \phi_{2} - \phi_{3}. \end{split}$$

Lastly, taking into account Theorem 3.8, we can easily deduce the following from Theorem 4.3:

Corollary 4.6. For all $f \in C^k(I^2)$ such that $f^{(k)} \in Lip_M(\gamma)$, if $\theta_2 - \theta_3$, $\phi_2 - \phi_3 \ge 1$, then we obtain

$$||f - \Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)|| \leq \frac{M}{(k-1)!} \frac{\gamma}{\gamma + k} B(\gamma,k) \times \begin{cases} 4K(g,\delta_1) + \omega^{(c)}(f;\Delta), & \text{if } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\ 4K(g,\delta_2) + \omega^{(c)}(f;\Delta), & \text{if } \theta - \theta_1 \leq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \leq \phi_2 - \phi_3, \end{cases}$$

where δ_1 , δ_2 , Δ are given in Theorem 3.8 and q is defined by (25).

Example 1. Let $f(x,y)=(x+2)^3y^4$ and $\theta_3=1$, $\theta_2=2$, $\theta_1=3$, $\theta=4$ and $\phi_3=1$, $\phi_2=2$, $\phi_1=3$, $\phi=4$. The convergence of the operators $\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(f)$ and $\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)$ to the function f for n=m=5 and k=2 and k=5 is illustrated in Figure 1 and Figure 2 respectively. It is seen that if f is differentiable k times then $\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)$ yields a better convergence in comparison to the classical Bernstein-Stancu-Kantorovich operator $\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)$. In Table 1, we obtain estimates of the maximum absolute errors in the approximation of the $f(x,y)=(x+2)^3y^4$ by using the operators $\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(f)$ as defined in (6) and $\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)$ as given in (18), namely $\mathcal{E}^{\theta_i,\phi_i}_{n,m,\theta,\phi}=\|\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(f)\|_{\mathcal{C}(l^2)}$ and $\mathcal{E}^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}=\|\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)\|_{\mathcal{C}(l^2)}$, respectively.

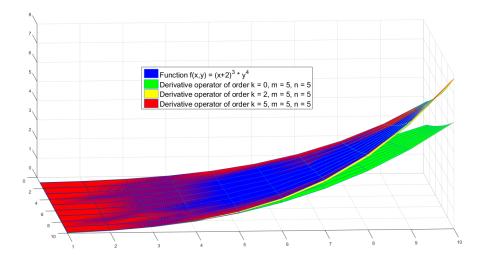


Figure 1: $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}(f)$ approximates f(x,y) much better than $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f)$

Table 1: Comparison of $\Re_{n,m}^{\theta_i,\phi}$	and $\Re^{\theta_i,\phi_i,k}$	for $n = m = 5$ and som	ne values of k
Table 1. Companson of $\mathcal{N}_{n,m}$	a_{\perp} and $n_{\mu \mu \rho d}$	$\frac{101}{5}$ 101 $H - H - 3$ and som	ie varues or k

m,n	Error bound for $\Re^{ heta_i,\phi_i}_{n,m, heta,\phi}$	Derivative order k	Error bound $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}$
5,5	2.2878	2	0.1323
5,5	2.2878	3	0.0263
5,5	2.2878	4	0.0015
5,5	2.2878	5	0.0002

Example 2. For m=n=5 and $\theta_3=1$, $\theta_2=2$, $\theta_1=3$, $\theta=4$ and $\phi_3=1$, $\phi_2=2$, $\phi_1=3$, $\phi=4$, the estimates of the maximum absolute errors in the approximation of the function $f(x,y)=(x+3)^{\frac{5}{2}}e^{-y}$ by using operators $\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(f)$ and $\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)$ are listed in Table 2. The convergence of the operators $\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(f)$ and $\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)$ to the function f for k=2 and k=5 is illustrated in Figure 2. Further from the figure 2 and Table 2 it follows that, depending on the order of the derivative k, $\Re^{\theta_i,\phi_i,k}_{n,m,\theta,\phi}(f)$ gives better approximation to the function f in comparison to the Bernstein-Stancu-Kantorovich operators $\Re^{\theta_i,\phi_i}_{n,m,\theta,\phi}(f)$.

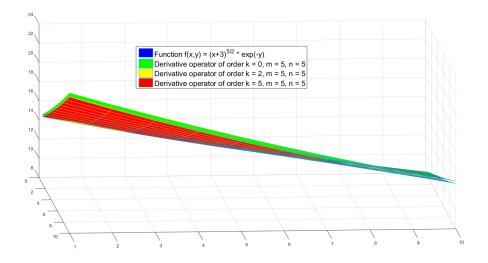


Figure 2: $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}(f)$ approximates f(x,y) much better than $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f)$

Table 2: Comparison of $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}$ and $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}$ for n=m=5 and some values of k

m,n	Error bound for $\Re_{n,m, heta,\phi}^{ heta_i,\phi_i}$	Derivative order k	Error bound for $\Re_{n,m, heta,\phi}^{ heta_i,\phi_i,k}$
5,5	0.4851	2	0.0058
5,5	0.4851	3	0.00081
5,5	0.4851	5	0.00003595

5. Applications

We shall now consider some further generalized Bernstein type polynomials. To obtain an approximation process for k^{th} order generalization of the operator of Bernstein-type, we introduce some examples;

5.1. Bivariate Bernstein operators in rectangle

In [10], Gadjiev and Ghorbanalizadeh also introduced two dimensional Bernstein polynomials on the rectangle $\Box = [\frac{\theta_2}{m+\theta}, \frac{m+\theta_2}{m+\theta}] \times [\frac{\phi_2}{n+\phi}, \frac{n+\phi_2}{n+\phi}]$ and the polynomials $B_{m,n}^{(\theta_i,\phi_i)}$ defined as follows:

$$B_{m,n}^{(\theta_i,\phi_i)}(f;x,y) = \left(\frac{m+\theta}{m}\right)^m \left(\frac{n+\phi}{n}\right)^n \sum_{s=0}^m \sum_{r=0}^n \Omega_{m,s}^{(\theta,\theta_2)}(x) \Omega_{n,r}^{(\phi,\phi_2)}(y) f\left(\frac{s+\theta_3}{m+\theta_1},\frac{r+\phi_3}{n+\phi_1}\right),$$

where the basis functions $\Omega_{m,s}^{(\theta,\theta_2)}(x)$, $\Omega_{n,r}^{(\phi,\phi_2)}(y)$; $(x,y) \in \square$ are as defined in (4) and θ , ϕ , θ_i , ϕ_i , i=1,2,3 are non-negative real numbers satisfying $0 \le \theta_3 \le \theta_2 \le \theta_1 \le \theta$ and $0 \le \phi_3 \le \phi_2 \le \phi_1 \le \phi$. We consider the following generalization $B_{m,n}^{(\theta_i,\phi_i,k)}(f;x,y)$ of the above linear positive operators:

$$B_{m,n}^{(\theta_{i},\phi_{i},k)}(f;x,y) = \left(\frac{m+\theta}{m}\right)^{m} \left(\frac{n+\phi}{n}\right)^{n} \sum_{s=0}^{m} \sum_{r=0}^{n} \Omega_{m,s}^{(\theta,\theta_{2})}(x) \Omega_{n,r}^{(\phi,\phi_{2})}(y) \times \sum_{l=0}^{k} \frac{d^{l} f\left(\frac{s+\theta_{3}}{m+\theta_{1}}, \frac{r+\phi_{3}}{n+\phi_{1}}\right)}{l!}, \tag{26}$$

where

$$d^{l}f\left(\frac{s+\theta_{3}}{m+\theta_{1}},\frac{r+\phi_{3}}{n+\phi_{1}}\right) = \sum_{i=0}^{l} \binom{l}{i} \frac{\partial^{l}f\left(\frac{s+\theta_{3}}{m+\theta_{1}},\frac{r+\phi_{3}}{n+\phi_{1}}\right)}{\partial x^{l-i}\partial y^{i}} \times \left(x-\frac{s+\theta_{3}}{m+\theta_{1}}\right)^{l-i} \left(y-\frac{r+\phi_{3}}{n+\phi_{1}}\right)^{i}. \tag{27}$$

Example 3. For $\theta_3 = 1$, $\theta_2 = 2$, $\theta_1 = 3$, $\theta = 4$ $f(x,y) = (x+3)^{\frac{5}{2}}e^{-y}$ and $\phi_3 = 1$, $\phi_2 = 2$, $\phi_1 = 3$, $\phi = 4$, the convergence of the operators $B_{m,n}^{(\theta_i,\phi_i,k)}(f)$ towards the function f(x,y) for k=0,2,5 is illustrated in Fig.3. From Fig 3 it is clear that the operators $B_{m,n}^{(\theta_i,\phi_i,k)}(f)$ provides better approximation than the operator $B_{m,n}^{(\theta_i,\phi_i,0)}(f)$ for both k=2,5. In Table 3, we observe that as the value of the order k of the derivative increases, the error in the approximation of function f by the operator $B_{m,n}^{(\theta_i,\phi_i,k)}(f)$ becomes smaller.

Table 3: Comparison of $B_{m,n}^{(\theta_i,\phi_i)}$ and $B_{m,n}^{(\theta_i,\phi_i,k)}$ for n=m=5 and some values k

m,n	Error bound for $B_{m,n}^{(\theta_i,\dot{\phi}_i)}$	Derivative order k	Error bound $B_{m,n}^{(\theta_i,\phi_i,k)}$
5,5	0.4079	2	0.0103
5,5	0.4079	5	0.000004456

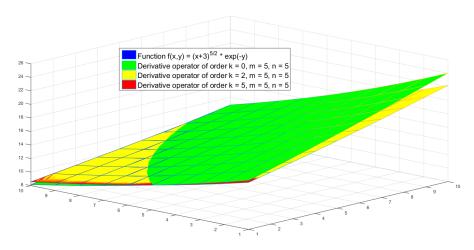


Figure 3: $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i,k}(f)$ approximates f(x,y) much better than $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(f)$

5.2. Bivariate-Stancu type operators in a triangle

Gadjiev and Ghorbanalizadeh [10] defined another bivariate Bernstein-Stancu type operators on the triangle Δ for the functions $f: \Delta = \left\{ (x,y): x+y \leq \frac{m+2\theta_2}{m+\theta}; x,y \geq \frac{\theta_2}{m+\theta} \right\} \to \mathbb{R}$. More precisely, in [10], they considered $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}$ with:

$$\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}(f;x,y) = \left(\frac{m+\theta}{m}\right)^m \sum_{s=0}^m \sum_{r=0}^{m-s} \Omega_{m,s,r}^{(\theta,\theta_2)}(x,y) f\left(\frac{s+\theta_3}{m+\theta_1},\frac{r+\phi_3}{m+\phi_1}\right),$$

where the basis functions $\Omega_{m,s,r}^{(\theta,\theta_2)}(x)$ are defined by

$$\Omega_{m,s,r}^{(\theta,\theta_2)}(x,y) = \binom{m}{s} \binom{m-s}{r} \left(x - \frac{\theta_2}{m+\theta}\right)^s \left(y - \frac{\theta_2}{m+\theta}\right)^r \left(\frac{m+2\theta_2}{m+\theta} - x - y\right)^{m-s-r},\tag{28}$$

and $\theta, \phi, \theta_i, \phi_i, i = 1, 2$ are the positive numbers satisfying $0 < \theta_2 \le \theta_3 \le \theta_1 \le \theta$ and $0 < \phi_2 \le \phi_3 \le \phi_1 \le \phi$. The authors [10] derived the rate of convergence in terms of the complete and partial moduli of continuity for operators $\mathfrak{B}^{\theta_i,\phi_i}_{m,\theta,\phi}$.

We now introduce the k^{th} order generalization of the operators $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}$.

$$\mathfrak{B}_{m,\theta,\phi}^{\theta_{i},\phi_{i},k}(f;x,y) = \left(\frac{m+\theta}{m}\right)^{m} \sum_{s=0}^{m} \sum_{r=0}^{m-s} \Omega_{m,s,r}^{(\theta,\theta_{2})}(x,y) \sum_{l=0}^{k} \frac{d^{l} f\left(\frac{s+\theta_{3}}{m+\theta_{1}}, \frac{r+\phi_{3}}{m+\phi_{1}}\right)}{l!},$$
(29)

where $d^l f\left(\frac{s+\theta_3}{m+\theta_1}, \frac{r+\phi_3}{m+\phi_1}\right)$ is given by (27).

Example 4. Let $\theta_3 = 1$, $\theta_2 = 2$, $\theta_1 = 3$, $\theta = 4$, $f(x,y) = y^3 e^{-2x}$ and $\phi_3 = 1$, $\phi_2 = 2$, $\phi_1 = 3$, $\phi = 4$, and m = 5. In Fig. 4, the comparison of convergence of the operators $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}$ and $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i,k}$, k = 2,5 towards the function f(x,y) is illustrated. From Table 4, it is clear that the Bernstein-Stancu-Taylor operators $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i,k}$ give us a better approximation to f(x,y) compared to Bernstein-Stancu operators $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}$. Further, it may be remarked that the parameters θ_3 , θ_2 , θ_1 , θ and ϕ_3 , ϕ_2 , ϕ_1 , ϕ , play an important role to achieve a better approximation.

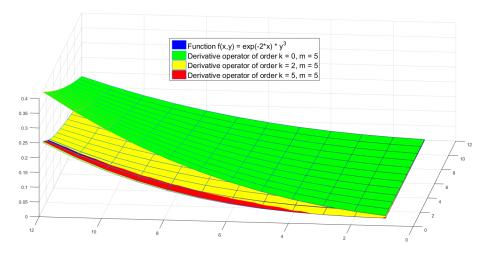


Figure 4: $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i,k}(f)$ approximates f(x,y) much better than $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}(f)$

Table 4: Comparison of $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}(f)$ and $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i,k}(f)$ for m=5 and some values of k

π,ο,φ			
m	Error bound for $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i}$	Derivative order k	Error bound $\mathfrak{B}_{m,\theta,\phi}^{\theta_i,\phi_i,k}$
5	0.1675	2	0.0340
5	0.1675	5	0.0004425

5.3. Bivariate Stancu-Kantorovich operators in a triangle

Inspired by the work [10], we present the following bivariate extension of the operators (28) on the triangle $\Delta = \{(x,y): x+y \leq \frac{m+2\theta_2}{m+\theta}; x,y \geq \frac{\theta_2}{m+\theta}\}$:

$$\mathfrak{P}_{m,\theta,\phi}^{\theta_{i},\phi_{i}}(f;x,y) = (m+\phi_{1}+1)(m+\theta_{1}+1)\left(\frac{m+\theta}{m}\right)^{m}\sum_{j=0}^{m}\sum_{l=0}^{m-j}\Omega_{m,j,l}^{(\theta,\theta_{2})}(x,y) \times \int_{\frac{j+\theta_{3}+1}{m+\theta_{1}+1}}^{\frac{j+\theta_{3}+1}{m+\theta_{1}+1}}\int_{\frac{l+\phi_{3}}{m+\theta_{1}+1}}^{\frac{l+\phi_{3}+1}{m+\phi_{1}+1}}f(u,v)dudv, (30)$$

where the basis functions $\Omega_{m,j,l}^{(\theta,\theta_2)}(x,y)$ are as defined by (28). At last, we define the Bernstein-Stancu-Kantorovich-Taylor extension of these operators as follows:

For $f \in C^k(I^2)$, $k \in \mathbb{N} \cup \{0\}$, we propose

$$\mathfrak{P}_{m,\theta,\phi}^{*\theta_{i},\phi_{i},k}(f(u,v);x,y) = (m+\phi_{1}+1)(m+\theta_{1}+1)\left(\frac{m+\theta}{m}\right)^{m} \sum_{j=0}^{m} \sum_{l=0}^{m-j} \Omega_{m,j,l}^{(\theta,\theta_{2})}(x,y) \\
\times \int_{\frac{j+\theta_{3}+1}{m+\theta_{1}+1}}^{\frac{j+\theta_{3}+1}{m+\theta_{1}+1}} \int_{\frac{l+\phi_{3}+1}{m+\phi_{1}+1}}^{\frac{l+\phi_{3}+1}{m+\phi_{1}+1}} \sum_{r=0}^{k} \frac{d^{r} f(u,v)}{r!} du dv, \tag{31}$$

where
$$d^r f(u, v) = \sum_{i=0}^r {r \choose i} \frac{\partial^r f(u, v)}{\partial x^{r-i} \partial y^i} (x - u)^{r-i} (y - v)^i$$
.

Remark 5.1. It is remarked that the results analogous to Theorem 4.3 and the resulting corollaries can be easily deduced for the above k^{th} order generalizations (26), (29) and (31).

Example 5. Since $f(x,y)=e^{-2x}y^3$ is infinitely continuously differentiable on \mathbb{R}^2 , we can use Bernstein-Stancu-Kantorovich-Taylor operators to study the approximation of f on I^2 . It is observed that, we achieve a better approximation by these operators in comparison to Bernstein-Stancu-Kantorovich operators, if we make a suitable choice of the parameters. For m=5, k=2,5 and $\theta_3=1$, $\theta_2=2$, $\theta_1=3$, $\theta=4$ and $\phi_3=1$, $\phi_2=2$, $\phi_1=3$, $\phi=4$, the illustrative graphics of $\mathfrak{P}^{\theta_i,\phi_i}_{m,\theta,\phi}$, $\mathfrak{P}^{*\theta_i,\phi_i,\delta}_{m,\theta,\phi}$, and the function $f(x,y)=e^{-2x}y^3$ are shown together in Fig. 5. From the estimates of the absolute maximum errors in the approximation of f(x,y) by the operators $\mathfrak{P}^{\theta_i,\phi_i}_{m,\theta,\phi}$ in (30) and $\mathfrak{P}^{*\theta_i,\phi_i,k}_{m,\theta,\phi}$ in (31) for m=5 and k=2,5 presented in Table 5, it turns out that as the value of k increases, the error becomes smaller.

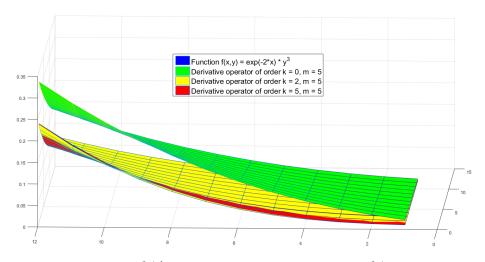


Figure 5: $\mathfrak{P}^{*\theta_i,\phi_i,k}_{m,\theta,\phi}(f)$ approximates f(x,y) much better than $\mathfrak{P}^{\theta_i,\phi_i}_{m,\theta,\phi}(f)$

Table 5: Comparison of $\mathfrak{P}_{m,\theta,\phi}^{\theta_i,\phi_i}(f)$ and $\mathfrak{P}_{m,\theta,\phi}^{*\theta_i,\phi_i,k}(f)$ for m=5 and some values of k

m	Error bound for $\mathfrak{P}_{m, heta,\phi}^{ heta_i,\phi_i}$	Derivative order k	Error bound $\mathfrak{P}^{*\theta_{i},\phi_{i},k}_{m, heta,\phi}$
5	0.1030	2	0.0228
5	0.1030	5	0.0002907

6. Conclusion

The Stancu-Kantorovich operators and the k^{th} order generalization of Bernstein-Stancu-Kantorovich type operators for functions of two variables are constructed with the help of modified Bernstein basis functions with shifted knots for $x,y\in [\frac{\theta_2}{n+\theta},\frac{n+\theta_2}{n+\theta}]\times [\frac{\phi_2}{m+\phi},\frac{m+\phi_2}{m+\phi}]$. By introducing the parameters $\theta,\phi,\theta_i,\phi_i,i=1,2,3$ we enable the shift of Bernstein basis functions over the subintervals of I. A simulation was performed through MATLAB and it was shown that depending on the order of the derivative k, the k^{th} order generalization of Bernstein-Stancu-Kantorovich type polynomials $\Re_{n,m,\theta,\phi}^{\theta_i,\phi_i}(.;x,y)$ shows much better approximation results to a function compared to Bernstein-Stancu-Kantorovich operators which are presented in Examples 1 and 2. Finally, the k^{th} order generalizations of the generalized bivariate Bernstein type polynomials are studied and elaborated by means of some examples.

References

- [1] P. N. Agrawal, B. Baxhaku, R. Chauhan, The approximation of bivariate Chlodowsky-Szasz-Kantorovich-Charlier-type operators, J Inequal Appl 195 (2017), https://doi.org/10.1186/s13660-017-1465-1.
- [2] G. A. Anastassiou, S. G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation., Birkhäuser Boston, Inc., Boston, MA (2000).
- [3] D. Bărbosu, Kantorovich-Schurer bivariate operators, Miskolc Math Notes 5 (2004) 129-136.
- [4] B. Baxhaku, P. N. Agrawal, Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Appl. Math. Comput. 306 (2017), 56-72.
- [5] B. Baxhaku, A. Kajla, Blending type approximation by bivariate generalized Bernstein type operators. Quaes. Math., (2019) 1-17.
- [6] S. N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilities., Commun. Soc. Math Kharkow. 13(2) (1912) 1-2.
- [7] J. Callahan, Advanced Calculus: A Geometric View. Undergraduate Texts in Mathematics Springer (2010).
- [8] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, (1993).
- [9] E. Dobrescu, I. Matei, The approximation by Bernstein type polynomials of bidimensional continuous functions., An. Univ. Timişoara Ser. Şti. Mat.-Fiz. 4 (1966) 85-90.
- [10] A. D. Gadjiev, A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables., Appl. Math Comput. 216(3) (2010) 890-901.
- [11] G. Içöz, A Kantorovich variant of a new type Bernstein-Stancu polynomials, Appl. Math. Comput. 218(17) (2012) 8552-8560.
- [12] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. bernstein., C. R Acad URSS. 20 (1930) 563-568.
- [13] G. Kirov, I. Popova, A generalization of liner positive operators, Math Balkanica, 7 (1993) 149-162.
- [14] S. Rahman, M. Mursaleen, A. M. Acu, Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots., Math Meth. Appl. Sci. (2019) 1-12.
- [15] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl, 13 (1968) 1173-1194.
- [16] V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables., Dokl. Akad. Nauk. SSSR (N.S) 115 (1957) 17-19.
- [17] M. Wang, D. Yu, P. Zhou, On the approximation by operators of Bernstein-Stancu types. Appl. Math. Comput. 246(1) (2014) 79-87.