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A Tensor Product of Kantorovich-Stancu Type Operators with Shifted
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Abstract. In this paper, we introduce a tensor product of the Stancu-Kantorovich type operators defined
by I¢oz [11]. The rate of convergence of these operators is obtained in terms of the modulus of continuity
and the Peetre’s K-functional. Further, we consider a generalization of the above operators via Taylor’s
polynomials and examine their approximation behavior. Some applications of these two dimensional
generalized Stancu-Kantorovich type polynomials are also discussed. Finally, we present some numerical

examples and illustrations to show the convergence behavior of the operators under study using MATLAB
algorithms.

1. Introduction

For f € C(I), the space of all continuous functions on I = [0, 1] with sup-norm, Stancu [15] proposed a
sequence of polynomials

(B) .
Sl (fix) = Zf s i M
where the Bernstein basis functions by, j(x) are defined by
by 0) = (”;)m 9 xel, @

and showed that these polynomials converge to the function f(x) uniformly in x € I.

It is obvious that whenever @ = § = 0, the operators defined by equation (1) reduce to the classical Bernstein
operators defined by Bernstein [6]. Gadjiev and Ghorbanalizadeh [10] constructed Bernstein-Stancu type
polynomials with shifted knots involving some non-negative real numbers 6 and 6;,i = 1,2,3, as

(e)(f )_(T”_Jr@) 29(992)( )f(]+93) 3)

m+ 0
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where the basis functions Q;f’j@)(x) are defined by

@;ff”<x>=(7)(x— (- @

m+6/\m+06

m+e, ";:992] and 0 < 03 < 0, < 01 < 0. It is obvious that whenever 6 = 0; = 0 ;i = 1,2, 3, the operators
defined by equation (1.3) include the classical Bernstein operators. Wang et al. [17] obtained some direct
results and a converse result in approximation by the polynomials defined in (3). To make it possible
to approximate the Lebesgue integrable functions on I, Kantorovich [12] proposed a modification of the

Bernstein polynomials as

j+l

Kon(f;2) = (m+1)me (%) f f(tyt.

] =0 m+1

Inspired by the above idea, I¢oz [11] introduced a Kantorovich variant of the Bernstein-Stancu type poly-
nomials with shifted knots given by (3) as follows:

s+03+1

m+071+1
KO0 = ("0 v 0141 Z Qe [ ®)
m+61+1
where the basis functions Q(e 02) (x) are defined in (4) and x € [ el ";1992] Evidently, in the particular case,

0 =0 =0;i =123, the operators K( o reduce to the operators K;;. The author [11] established some
approximation results for the operators (5) in the continuous functions space with the aid of the usual
modulus of continuity and the Peetre’s K-functional and also investigated the approximation properties of
a k™ order generalization of these operators. For other contributions, in the direction of the above study,
we refer the reader to (cf. [1], [3] -[5], [14] etc.).

In this article, we introduce the following tensor product of Kantorovich-Stancu type polynomials on the

0, n+62] [ ¢2 m+¢’2]
n+60’ n+6 m+¢’ m+ed

nr 9) (mn-:qj)m(n+91 +1D)(m+p1+1)

rectangle O = [

S (e )i, ) = (

s+03+1 r+¢3+1

n m

0,0 , n+01+1 m+¢q+1
Y Y 0P Q) f f o f )dnd, ©)
s=0 r=0 n+613+1 m+o’713+1

where the basis functions Q (©, 62)(x) and Q((P 2) (y) are as defined in (4).

We investigate the uniform Convergence of these operators in the space C(I?) where I> = I x I and then
determine the degree of convergence by these operators using the modulus of continuity and the Peetre’s
K-functional. We also define a k" order generalization of these operators to study the approximation of
continuous functions having k order continuous partial derivatives on I?> and present some applications of
this study to bi-variate Bernstein type operators on a simplex. Finally, we validate the results of this paper
by some graphs and error estimation tables using MATLAB.

2. Auxiliary results

In our future consideration, ||||2) denotes the sup-norm on I2.

Lemma 2.1. Let ¢;j(fy, t2) = £ tj where i,j € IN U {0}. For x,y € O, the Kantorovich type generalized Bernstein-
Stancu operators 8 ’¢’ ¢)( f:x,y), defined by (6), possess the following properties:

@) Rn‘nfg(?(eoo;x, =1



B. Baxhaku et al. / Filomat 35:12 (2021), 4239-4255 4241

. _ _n+0 3—0> 1 .
(if) an@(’)(ew’x’ y) = o, ax n+61+1 + 2(n+6,+1)”

0;,0i . m+¢ P3—P2 1 .
(111) Rn,m,@,q)(em’x’ }/) m+¢1+1y + m+¢y+1 + 2(m+p1+1)”

: 6ii ) (1 _ 1\ (16 V(v _ O n+6 _ 6 )
(IV) Rn,m,e,q‘)(ezo’ X, y) - (1 Z) (n+91+1) (x n+9) + (263 + 1) (n+61+1)? (X n+0
o BOr0: g
(n+61+1)2x (n+061+1)2 3(n+06,+1)2”

; 1) (_mo )2 ¢2 )2 o ¢
(V) Rn ni@qb(eoz’x y) (1 - ﬁ) (m+¢1+1) (y - m+2¢>) + (2¢3 + 1) (m+¢r+1)2 (y - m:(p)
m+¢ P2—o+3 1
(m+d1+1)2 (m+¢1+1)2 3(m+pr+1)2°

Following ([11], Thm.1), the proof of this lemma easily follows. Consequently, in view of Theorems 2 and
4 of [11], we are led to;

Lemma 2.2. For the operator & ’¢ f x, ), following hold good:

() Sy o(hr = X%, y) = Jgqx + 302y Further, if 62 — 03 2 1, we have

1
9—61+92—63—§

0i/bi
1800t =55 Pllewy < —— g7

i 2pa—2)+1
(ii) Rn ¢9¢(t2 - ;X Y) = $+211+13/ (f;;:rqffﬁ) . Further, ¢2 — ¢3 > 1, we have

A

m+¢;+1

i,
IR, n(f0¢)( — ¥ Ylee) <

0i,0i n+0)? ) n+br
(iii) Rnrnqze(?((tl —X)%x,y) = m{[x(e ~61=1) = (02— 03 = DP + 0 (x = 02) (20 _ ) 36 - 0, -
1)-(0:-02+3).
Also, if 0 — 03 2 1 and 6 — 61 > 0, — O3, we get
2 n
0 . (O—-01)"+ 5+ 2'
IR, 0,6 (1 = 0%, Yllleay - < Tr 0, T 17
In the case 6 — 01 < O, — O3 such that 0, — 03 > 1, we obtain

2,1
01, 2. (62 — 63) + 1 +2
IR, 06 ((F1 =% Plice) < 70, 117

(iv) 800 (2 = 0755, ) = G {006 = 01 = 1) = (92 = 93 = DI + P52 (y = 25) (302 - y) = (o -
P1=1) = (3 — o + %)}
Also, if oo — p3 > 1 and ¢ — 1 > P2 — P3, we get
G- +5+2
(m+dr+1)2 7
In the case ¢ — 1 < ¢p — 3 such that ¢y — ¢z > 1, we obtain

2, m
0:,bi Yy (p2—3)" + 7 +2
IR, 0,6 ((F2 = 0%, Yllleay - < i+ b 12

0;,¢i
IRy o (2 = %% Wlicy <
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3. Rate of convergence by R ”¢ ( f:x,y)

In this section, we first give the following Korovkin type theorem on the convergence of ] 00 ( fix,y)

n,m,0,p
to f(x, v).
Theorem 3.1. Let f € C(I?). Then
lim max [} ' "P’ (f;x,y) — f(x, y)l
n,m—o0 (x y)e ¢
Proof. Taking into consideration the equalities in Lemma 2.1, we obtain
im max IR0 (e5%,) =51 =0 ™
for (i, 7) € {(0,0), (1,0), (0,1)}. Further
nlnlgloo [max Ian 10,6620 €02, X, ) = X -yl= 8)
Let us define
05,0 9% (f;x,y) if (x,y)en
aneq)(f'xf?/): { im0, . )
flx,y) if (x,y)el*\O.
Considering the above definition of the operators, we easily get
R*G Di — ] 0i,i . — 9
IR m0,0() — flle = max I8, [ g, (f3 %, y) = f( )l )

Now, using (7)-(8), we immediately get

«0i,0;
Hm (IR0 (ei) = eifllege) = 0,

n,m—>co n,1m,0,¢

for (i, j) € {(0,0), (1,0), (0, 1)} and

11rn (I xq)(,q)(ffzo +eg) = x> = llege) = 0.

Applying the two dimensional Korovkin’s type theorem (see [16]) to the sequence of operators R*n’nf”e o We

obtain
*9 1
Jim 1855 () = Fllee) =0,
for every continuous function f € C(I?). Therefore (9) gives

lim max IRffﬁ’erqﬁ(f; xy) = fyl=0

n,m—o0 (x,y)ED

This completes the proof. [J

In order to discuss the next results, we recall some definitions of the modulus of continuity.
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Definition 3.2. For f € C(I?) and 6 > 0 , the complete modulus of continuity is defined as

Wf;0)= sup  {|f(tuh) - fxy)|: (tt), (x y) € P (10)
V(B =x)2+(t2~y)?<6

The partial moduli of continuity of f with respect to x and y is given by
@V(f;0)= sup sup(|f(x1,y) - flxz, )}

[x1—x2|<6 yel

and
w?(f;6) =sup sup { (11)
xel |y1_y2|55
respectively. We shall use the following property of the complete modulus of continuity:
(1 = x)?+ (tr — y)?
1= 165,901 < 001+ L0 . (12)

It is known that these definitions satisfy the properties analogous to the usual modulus of continuity. For more details,
we refer to [2].

In the next result, we obtain an estimate of the rate of convergence in terms of the complete modulus of
continuity for the operators defined by (6).

Theorem 3.3. Let f € C(I?). If 0, — 05 > 1 and ¢y — (3 > 1, then the following inequalities hold:
0:,0i
||R,1,:% (- fll<
4(0-0,)? 8 4(—)2++8..
w© (f \/ ((n+6]1)+-;;l2+ ((Pmi})ﬁlr;lz ), if 0—0120,—03and ¢ —P1 > P — P3
40r-0:241+8  Hpo—GoPmi8 )
a)(c) (f \/ ((:l+631)+1r)1;+ ‘(fn+lq:1+17; ), if 0—-601<6,—03and ¢—p1 < P2 — Ps.

Proof. From the linearity and positivity of the operators (6), Cauchy-Schwarz inequality and Lemma 1, the
property (12) of the complete modulus of continuity gives

KRIC (= )2 + (b~ )% %, )
Zn?le¢(fx y) - f(x, y)' < w9 (f; 6)( \/ 1,0, 6 )I

where 0 > 0. Therefore considering Lemma 2.2, for 6 — 0; > 0, — 03 > 1 and ¢ — ¢1 = ¢ — ¢3 > 1, we have

(13)

(0-61)2+5+2  (p—P1)2+5+2

+
0;,¢i _ © (. (n+61+1)2 (m+¢p1+1)2 )
189 (=A< w9 (f;0) (1 N — ,
Now choosing 6 = \/ 4(?; féfi?s + 4(?":?;5)12:1’?;8, we obtain
||R6 i H-fll < §w(c) £ 40—-61)2+n+8 . 4p—r1)>+m+38
1,6, -2 ’ (n+ 01 +1)2 (m+¢1+12 |

Analogously, taking into account Lemma 2.2, for 0 — 01 < 0, — 03 and ¢ — ¢1 < ¢, — ¢3 such that
0y — 03,y — 3 > 1(with 6 = \/ UO—OaP 148 | AHpa— G 4miBy o oo Ted to

(n+61+1)? (m+¢1+1)?
;s 3 40— 032 +n+8 Apo—p3)?+m+8
Relrdl _ < N ()} ; + .
” n,m,e,(i)(f) f” ) w f (1’[ + 61 + 1)2 (m + @1 + 1)2
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In the forthcoming result, the degree of approximation of f by the operators (6) is estimated by means of
the partial moduli of continuity.
Theorem 3.4. Let f € C(I?). If 0, — 65 > 1 and ¢y — ¢3 > 1, then the following inequalities hold:

IRy o (F) = Fll <

2 (s V) + 0 Gt i if 0 012 02— 03 and ¢ - 1 > 62~ g

2(n+01+1) T 25(m+gr+D)

4(0,—-03)? 8 4(p2— 8 .
z[wﬂ)(f; M) + 0 (f; —W)] if 601 < 0y~ 03 and ¢ —dr < by — Ps.

Proof. From linearity and monotonicity of the operators Rzif '\, and the definitions of the partial moduli of

0.0
continuity with respect to x and y as defined in (11), we have ‘
K (Fl by y) = fy)| < K0 @Vl =2l y) + K0 (@2l - yix, y).

Now using the property of modulus of continuity similar to (12) and the Cauchy-Schwarz inequality, for
01,62 > 0, we get

S ) = )] < {1 5800, 0 - 07 ) a0

1
+ {1 + l(ﬁe"’@@ (2= y)%x, y)) }w(z)(f; 52),
62 n,m,0,¢
forall (x,y) € I2. Therefore, for ¢—P1=>¢Pr—Pp3>1and 60— 01 > O, — 03 > 1, using Lemma 2.2 we obtain

0, _ 1 (6 91)2 + +2\2 Ry
||R"’m’6’¢(f) fl = {1 * 61( (n+ 67+ 1)2 ) } U (fi00)

. {1 . 612((@5 — )+ 2);}(0(2)(](}62)-

(m+ ¢1 + 1)?
\/4(0-01)2+n+8 4P~ 2 +m+8 .
Choosing 6; = 2((n +91 J)n = and 6, = %, we obtain
by 40 -012+n+8 VA — P1)2 +m+8
RQZ/(PI _ < [ (1) . \/ M ].
I n,m,@,tf)(f) fl = 2] 2(n+ 61 +1) W 20o(n+ @1 +1)

This proves the first assertion of our result. Similarly, for 6 — 61 < 0, — 03 and ¢ — ¢1 < ¢ — ¢3 such that

— 2 — 2
02— 03,2 — 3 > 1, using Lemma 2 with 67 = e 08 g 5, = YA do) i

20050, 1) D) 7 We immediately find

the second assertion. [

0;,bi

n,m,0,¢ for

We study the rate of convergence of the bi-variate Bernstein-Stancu-Kantorovich type operators
elements of the Lipschitz class Lipp(y), for 0 < y < 1. We recall the following definition:

Definition 3.5. A function f € C(I) is said to be in Lipp(y) if
|f(t1, ) — f(x, )| < Mt - 02 + (2 - 9P},
holds for all (1, t2), (x,y) € I>.
Theorem 3.6. If O, — 03 > 1 and ¢y — 3 > 1, then fgr all f € Lippm(y), the following inequalities hold:

for 6 —012=060,—-03and ¢ — 1 = P2 — P3

(0-612+242  (p—P1)>+1+2 )5

0i,0i ( (n+61+1)? (m+¢r+1)?
IR (= flsmy T T,
- +244 - +my
( fn+§1+1§z (p(zmi);ﬁf)z ) fOl’ 0 - 91 < 92 - 93 and (P - (Pl < (PZ — ¢3_

where 0 < y <1 and M is a positive constant.
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Proof. From the assumption f € Lipp(y), we have

Ko (Flt by ) = floy)| < MSD (0 =27 + (8 = P53, ).

Now, applying the Holder’s inequality with p = ,, q= and Lemma 2.1, we obtain

R (Flt b)) = )| < MK (0 <P +(tz—y)2;x,y))i.

Finally using Lemma 2.2 and considering sup-norm, we reach to the desired result. [

Let C%(I?) be the space of all continuous function f having continuous partial derivatives upto the second
order. We consider the following norm on C*(I):

»’f
8xz9y

Ifllee = 8x1

a®) H Ay C(IZ) o)

We use the following definition in our upcoming result.

Definition 3.7. Let f € CX(I?) and & > 0. The Peetre’s K-functional and second-order modulus of smoothness of f
are given by
el

= g, (-l + ol

geC(12)
and

waf;0)= sup [AZ,
Vi2+52<6

2 .
where A7 f(x,y) = Y. (=1)*7 (?) f(x + jt,y + js), respectively.
: fr

In the next result, we establish an order of approximation for the bi-variate operator R:’;f 0, I terms of the

Peetre’s K-functional and the complete modulus of continuity.

Theorem 3.8. Forall f € C(I*) and 0, — 03, ¢ — ¢3 > 1, the following inequalities hold

IRy o) = fIl < {4K(f, 01) + @A), if 0012 0= 03and ¢ — 1 > 2 = 3

n,m,0,¢ 4K(f,62)+w(c)(f;A), if 0—01<0,—03and p —P1 < P — 3,
where
m
. 0- 51)2+—+2+ (¢>—¢1)2+Z+2)2+(6—61+62—83—%+¢—¢1+¢z—¢3—%)2]
v (n+ 67 +1)2 (m+ 1 +1)? n+0;+1 n+¢;+1 ’
. (02-0s2+4+2 (¢2—¢3)2+%+2)2+(6—61+62—93—%+¢—¢1+¢2—¢3—%)2]
2 (n+ 0y +1)? (m + Py + 1) n+6;+1 n+dr+1 '
and

A (9—91+92—93——) +(ql) (p1+¢2—(p3——)2.

n+60;+1 n+ ¢ +1
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Proof. We consider the following auxiliary operators:
9 i 9 i i, i 0i,i
n n(f)g g,(f X, y) n ,i@ﬁ(f/ X, y) + f(x/ ]/) - f(Rl’l,nT,Q,(p(tl; X, ]/)/ Rn,$9,¢(t2; X, y))

From Taylor expansion, for any i € C*(I%), we have

oh h *h(n, oh
) =hiy) = Ze L+ [ -5 i+ 2o -y

*h(x, &) R 92h(u, v)
fy (t, — &) T de + f . oud dudv, (14)

and, let IPh](fl,fz (f (t _ )8 h(ny) )l(fytz(tz _ E)azg(gxz,é)dg)].

Applying the auxiliary operator Rn;’(f’é » on the equation (14) and taking Rn’rz)’e JLxy) =1 RS n(f GRS

xx,Yy)=0= {Oui (t2 = ¥;x,y), we have

n,m,0,¢
6 i 6 i 9 1
R o, y) =he )l < IR (W, byl + 1R (W) (1, 82); %, )l
t 32
o°h
+ 21,;1)’94)([ f (w, Z))d dv; x, y)|. (15)
Further, applying the auxiliary operator Rn’m o o On 171;111’0 gives us
a W5 1) - lIllc2 () R0 (1t 2 QOO (1 _ 1 :
| anq)( h (b, )%, Yl < 2 n,m,@,(])(( 1= X)5%, ]/) + n,m,@,(f)( 1=5% y)
IAllc2
5 B+ 12,
where iy, and i1, are the second and first order central moments, respectively. Similarly,
[0 bt < hllc2 ) )
| nm9¢)( ( 1, 2) X, y)l = 2 {V2,y +v1,y}’

where v, , and vy, are the second and first order central moments, respectively. Also,

y 2 92h(u,v
o f f U tudos, )l < Wil { K5t (11 =tz = v, y)

nln?leqb(el()'x Y- x”ane(P(e()Lx y) - y|}

+

hence using the Cauchy-Schwarz inequality

& 2 2h(u,v 1
ff’wf f O s , ) < Wl (R0 (1~ 2053, )

x (2 (2 - P, y)) IR (= x5 I 12 = % )l

= Ilhllcaqey (/g vy + lknallval- (16)

Consequently, from the equation (14)

Wl (, 4
2 g1y
——{w

st y) =he < =G

n,m,0,¢ tv

P2V (i el + 1)) (17)
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Now, from the definition of auxiliary operator and equation (17), we may write
R (Fi ) = fO )l < IR (F =, )l + IR (3%, y) = b, )l + 1(f = B, y)l

(R b ), R0 (%) - )

IA

Wl
A{0F = ey + g {32+ V2R + Qpnal + o)

o )

Now, for 0 — 01 > 0, — 03 > 1 and ¢ — ¢1 > ¢, — ¢3 > 1, using Lemma 2.2 and taking infimum over all
h € C3(I?), we get

IR0 (= fll < AK(F,60) + @(f; A).

By a similar reasoning, for the other case 6 — 61 < 0, — 03 and ¢ — ¢1 < ¢ — Pz such that 0, — 03, P — 3 > 1,
we have

IR J(F) = fIl < 4K(f,80) + 0O (f; ).

This proves the required result. [

IA

Corollary 3.9. Considering the well-known relation [8] that

K(f;0) < sz(f;\/g), forany 6 >0,

where C is some positive constant, the result of the Theorem 3.8 takes the following form:

Swa(f, Vo1) + wO(f; ), if 6= 01> 6, — O3 and o — Pp1 > o — P3

0;,pi _
e ()~ Al < {ng(f, V&) + @O(f;A), if 0—01 <0y~ 0sand p— 1 < by — s,

4. A k' order generalization of the operators Ri"”f o 0

In this section, we use the method of Kirov and Popova [13] to introduce and investigate approxima-
tion properties of a k" order generalization of our bi-variate Bernstein-Stancu-Kantorovich type operator

2?@ ¢( x, ) defined in (6). Let C*(I?), k € IN U {0}, denote the set of all functions f : > — R having con-

tinuous partial derivatives upto the k" (s = 0,1,2,...) order on the box I>. We now define, for any function

0;,bi

f € Ck(1%),), the k™ order generalization of Bernstein-Stancu-Kantorovich type polynomials & " <P(' ;X,Y) as

n+ 0\

) (m)m(n +01+)(m+dr1+1)

S (Flw 0 y) = (

s+63+1 r+pz+1 k

) (f) N n+61+1 m+¢p+1 d (u v)
XZZQSQ)(JC)Q 92 (y) f f Y, / (18)
s=0 r=0 n+91+1 m+q‘)’1:1-1 1=0
N f(u,v
where d'f(1,0) = Z() afl(la (- )iy - )’

Now, there is a unit vector (y, ) for which (x — u, y — v) = w(y, ) where w > 0. Let

P(w) = f(u+wp,v+wn) = flu+x-u),v+y—-0)=f(xy). (19)

Following remarks can be made from the equations (18) and (19).
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Remark 4.1. Note that, when k = 0 in the equation (18), we immediately get the operator defined in (6), i.e.
61 1 1
K (Fixy) = Ko (fix,y)

Remark 4.2. The k' order derivative of the function P(w) has the following form (See chapter 3 in [7])

K" ,
P Zo‘ (z) = ;xivila; =, e, )

Also, using the equation (20), we can easily deduce that the Taylor’s formula for P(w) at w = 0 is the same as that of
f(x,y)at (u,v).

The following intermediate result is useful in the proof of some important corollaries which provide us
a deeper insight into the approximation behavior of the operators defined by (18):

Theorem 4.3. For each m,n,k € N, and for all f € C¥ (IZ) such that P¥(w) € Lipp(y), we have

011k My 01k ey
If = Koo Dl < G55 7gB0 0 ||Rn,n;,9,¢(|(x — 1,y — o) )llcaZ)/
where 0 <y <1, M > 0and B (y, k) denotes the usual Beta function.

Proof. Let f € C (12) and (x, y) € I?. By the definition of the operators Rz'n(f‘g o(f%, Y in (18), we see that for
any m,n,k €N,

%, n+ 0\ (m+
Flo) - 80 (o) = () (P 2) 01 1+ 1 + 1)
m s+03+1 r+p3+1 k 1
X by n+0;+1 My +1 d (u, '())
X Z Q0 (x) Q% (y) f . f " ( flx,y) - Z f ; dudv), (21)
5=0 =0 w0y Y ey Al 1=0 )

It is known from Taylor’s integral remainder formula for f(x, y) at (4, v) (see[7]) that

k-1 d ak ) .
ICTEDY (u 2 - (k- 1)v f (1-2)"x [ ( ) f +Z(xaxkuz)a:+2(y 0 (x—u)k_l(y—v)'J dz.
1=0
(22)
Using Remark 4.2, the equation (22) takes the form
k 1
P(u) - ZP’(O)wl = (sz i fo (1 — 2) [P (wz) — PX(0)]dz.
1=0 ’
Since P¥(w) € Lippm(y), it follows that
v 40 1 Ml
—ZZO‘ ; = ‘P( ) — ZP(O)w‘ < - f 2(1 - 2y 1dz. (23)

From the definition of Beta function, we have

! B(y, k)
y _ k—1 — — 7/ ‘)/’
fozu 2)"'dz = B(1 + 7, k) g
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Hence, the equation (23) takes the following from

k-1
df (u v) M yB(y,k ky
flx,y) - ZZ: k=1 y+k (x—uy—v) (24)
Finally, using (24) in (21) and taking supremum over all (x, y) € I, we obtain the desired result. [
Let g € C(I?) be a function defined by
k
gwo) = o=yl (25)

Since g € C(I?) and g(x, y) = 0, Theorem 3.1 yields

Gi: i
”Rn,rz),elqg(g; X, Wlley — 0 as m,n — oo,

Thus, Theorem 4.3 yields that for all f € C¥(I?) such that P¥(w) € Lipm(y),

H‘Qin?ﬁtp(f x,Y) = f(, Yllcgzy = 0as m,n — oco.

Taking into consideration Theorem 2, one can deduce the following result from Theorem 4.3 immediately:

Corollary 4.4. If 6, — 03 > 1 and ¢y — 3 > 1, then for each m,n € N, and for all f € C (12) such that
P(w) € Lipm(y) we have

6i,0i,
||f - Rnn(ig(p(f)HC(IZ) = 2(k 1)! y+kB(7//k) X
w© (g, \/4(6 Ofinsg oo qb1)2+m+8); for 0 =601 >0, — 03 and ¢ — 1 > Pp — P3

(n+61+1)? (m+¢p1+1)2

4(0,—03)? 8 4(pr—3)? 8
w(c) (g, \/ ((;21+631)+-1'—)’,2l+ + ('(;Jr/;l)Jr;T— ),‘ fOT’ 0 - 61 < 62 - 63 and (P - (Pl < (Pz - (1)3.

where g is given by (25).

Applying Theorem 3.6, the following result is immediate from Theorem 4.3:

Corollary 4.5. For each m,n € N,k € N U {0} and f € C* (Iz) such that f® € Lipy(y), and assuming that
g €Lip s (y)in Theorem 3.6, we have

" 22M
If = KymoeDllew < G —1y; 1), ZB(K)

(n+60,+1)2 (m+¢1+1)

_ 2,1 _ 2, m 2
(“’ Vi e i) +4:2) for 661> 6,6 and & — b1 > da — b3
.

—0.)24 1 _ 2, m 2
(“’2 OoP+i42 | (G2-03) +4+2) For 6— 61 < 62— 63 and ¢ — by < b — ba.

(n+61+1)? (m+d1+1)2

Lastly, taking into account Theorem 3.8, we can easily deduce the following from
Theorem 4.3:

Corollary 4.6. Forall f € Ct (Iz) such that f® € Lipp(y), if 02 — 03,2 — 3 > 1, then we obtain

)/ B( k)x{4K(g,61)+a)(C)(f;A), if 0—01>20,—03and ¢ —P1 > P — P3

ik M
If = R”’”H“)(f)n T (k=-1ly 4K(g, 52) + @O(f;A), if 0 —01 < 0, — 03 and ¢ —P1 < Pr—P3,

where 61,67, A are given in Theorem 3.8 and g is defined by (25).
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Example 1. Let f(x,y) = (x+2P3y*and 03 =1,0, =2,60, =3, 60 =4and ¢p3 =1, ¢ =2, ¢1 =3, ¢ = 4
The convergence of the operators & "7)’ ¢( f) and RG (P’ ( f) to the function f forn = m =5 and k = 2
and k = 5 is illustrated in Figure 1 and Figure 2 respectlvely It is seen that if f is differentiable k times

then Rz ;fle ¢( f) yields a better convergence in comparison to the classical Bernstein-Stancu-Kantorovich
i (Pl

n,m,0,

of the f(x, y) (x + 2)*y* by using the operators Rn’m ‘9 q) (f) as defined in (6) and ROk <¢>( f) as given in (18),

n,m,0,

0,0, 0,0,
e o = IR0 of = Fllce andamﬁw_nﬁn o 'of = fllc), respectively.

operator & <P( f). In Table 1, we obtain estimates of the maximum absolute errors in the approximation

namely &l

- Function f(x,y) = (x+2)3 * y4

- Derivative operator of orderk =0, m = 5,
Derivative operator of orderk =2, m =5,

n=5
n=5
- Derivative operator of orderk =5, m=5,n=5

1¢1
n,m,0,¢

(f) approximates f(x, y) much better than & i f)

n,m,0,p

Figure 1: 8

and Re‘ (‘b’ek for n = m = 5 and some values of k

Table 1: Comparison of Rei’(‘bi ¢

00 °

m,n | Error bound for R g (P’ 0,6 Derivative order k | Error bound Rz rZ)le o
55 2.2878 2 0.1323
55 2.2878 3 0.0263
55 2.2878 4 0.0015
55 2.2878 5 0.0002

Example 2. Form=n=5and 03 =1,0,=2,0,=3,0=4and ¢3 =1, ¢» = 2, ¢1 = 3, ¢ = 4, the estimates
of the maximum absolute errors in the approximation of the function f(x, y) = (x+ 3)%e’y by using operators

ff’e ¢( f)and RQ ¢’ ( f) are listed in Table 2. The convergence of the operators & ’ 4)’ ¢( f)and RQ ¢’ ( f) to
the function f for k 2 and k = 5 is illustrated in Figure 2. Further from the flgure 2 and Table 2 1t follows
0i.pi k
n,m,0,¢

comparison to the Bernstein-Stancu-Kantorovich operators Rg’}f 00 (f).

that, depending on the order of the derivative k, & (f) gives better approximation to the function f in
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20 I Function f(x,y) = (x+3)5/2 * exp(-y)

- Derivative operator of orderk =0, m=5,n=5
18 | | Derivative operator of orderk =2, m=5n=5
- Derivative operator of orderk =5, m=5,n=5

i Pik

Figure 2: Rn s ¢)( f) approximates f(x, y) much better than & ’77’ ¢( f)

Table 2: Comparison of Rz‘fg P and Rz rj)la y for n = m = 5 and some values of k

m,n | Error bound for RS‘f ie, 5 Derivative order k | Error bound for Rz’j ’ek 5
55 0.4851 2 0.0058

55 0.4851 3 0.00081

55 0.4851 5 0.00003595

5. Applications

We shall now consider some further generalized Bernstein type polynomials. To obtain an approxima-
tion process for k" order generalization of the operator of Bernstein-type, we introduce some examples;

5.1. Bivariate Bernstein operators in rectangle

In [10], Gadjiev and Ghorbanalizadeh also introduced two dimensional Bernstein polynomials on the

0,  m+6, n+¢,
reCtangle o= [m_-fe’ m+92] [n+¢’ n+¢

- (0 (2] £ ety 220, 22

m = m+ 0y n+ ¢

] and the polynomials BE,?/ ") defined as follows:

where the basis functions Qfﬁ’f”(x), ij’ﬁ’”(y); (x,y) € O are as defined in (4) and 6, ¢, 0;,¢;, i = 1,2,3 are
non-negative real numbers satisfying 0 < 03 < 62 <01 <0and0< 3 < o < Py < .

We consider the following generalization B(Q k) (f; x, y) of the above linear positive operators:

S+63 r+§b3

. b m+ 0\ (n+ o\ v v ) (m+91 n+<7>1)
By = (RO (129) ZZQ&%"”(x)Q&?ﬁ’(y)xZ : (26)

m s=0 r=0

where

il @7)

s+0; +¢s 1 3zf(;++9931 ;:f’al) s+0;\ 7 T
) = L=t boa)

m+ 01" n+ ¢ — ox=igyt m+ 0; n+ ¢
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Example 3. For 03 =1,0,=2,0,=3,0=4 f(x,y) = (x + B)Ee‘y and ¢3 =1, ¢ =2, 1 =3, ¢ =4, the

convergence of the operators B,(f, ’;;‘Pi’k) (f) towards the function f(x, y) for k = 0,2, 5isillustrated in Fig.3. From

Fig 3 it is clear that the operators B,(f, "99) () provides better approximation than the operator Biﬁ’f"’o) (f) for
both k = 2,5. In Table 3, we observe that as the value of the order k of the derivative increases, the error in

the approximation of function f by the operator Bﬁz ",’,(P"’k) (f) becomes smaller.

Table 3: Comparison of B:S[ i) and Bﬁi 08 for n = m = 5 and some values k

m,n | Error bound for Bfﬁ’f)") Derivative order k | Error bound B"/#%
5,5 0.4079 2 0.0103
5,5 0.4079 5 0.000004456

I Function f(x,y) = ()(4-3)5/2 * exp(-y)
- Derivative operator of orderk =0,m =5,n =5
24 —| | Derivative operator of orderk =2, m=5,n=5
- Derivative operator of orderk =5, m=5,n=5

01.ik
n,m,0,¢p

(f) approximates f(x, ) much better than 8%/% (f)

Figure 3: & 11,0,

5.2. Bivariate-Stancu type operators in a triangle

Gadjiev and Ghorbanalizadeh [10] defined another bivariate Bernstein-Stancu type operators on the

triangle A for the functions f : A = {(x,y) :x+y < m+292'x, > %21 _, R More precisel , in [10], the
g y y y P Y, y

m+60 ’/ m+0

considered %Z’gi with:
0,0

m-—s

0,9 m+9mm | s+0 7’+(P3
%m,&(f;x, Y) =( ) Z Zﬁfﬁ,ff)(x, y)f( - )

" s=0 r= m+ 61" m+ ¢
where the basis functions Qﬁff)(x) are defined by
(6,0) — (Mm-S ( 6 )S( 6 )r(m +20, )m_s‘r
Qm,s,‘r (x/y) (S)( . )x o y — = x—y ) (28)

and 0, ¢, 0;, ¢;, i = 1,2 are the positive numbers satisfying 0 < 6, < 03 <01 < Oand 0 < ¢ < P3 < 1 < ¢.

The authors [10] derived the rate of convergence in terms of the complete and partial moduli of continuity
0i,¢i

for operators B, ') o
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We now introduce the k" order generalization of the operators EBZ'Z)"(P:
. ¢ d f(ﬂ regs )
01,01 k m+60\" x m+01 7 m+éy
B (fixy) = ( — ) YY), ——— (29)
s=0 r=0 1=0 :

m+6,7 m+¢>1

Example 4. Let03=1,0,=2,0,=3,0=4, f(x,y) =y e and p3=1, ¢ =2, $1 =3, p =4,and m = 5.

where d' fl (ﬂ s ) is given by (27).

In Fig. 4, the comparison of convergence of the operators %:’g’i and B%?* k = 2,5 towards the function
,0,¢ m,0,¢p
f(x,y) is illustrated. From Table 4, it is clear that the Bernstein-Stancu-Taylor operators ok give us a

m,0,¢p
better approximation to f(x, y) compared to Bernstein-Stancu operators %:g’(ﬁ Further, it may be remarked

that the parameters 03, 0,, 01, 6 and ¢3, ¢, P1, @, play an important role to achieve a better approximation.

- Function f(x,y) = exp(-2"x) * y3
Derivative operator of orderk =0, m =5

\:lDerivaﬁve operator of orderk =2, m =5

-Derivative operator of orderk =5, m =5

04—

0.35 —

0.25 —

Figure 4: ®)’ ’Z’ Z,k(f ) approximates f(x, ) much better than 239"'2;; )

m,

Table 4: Comparison of i (f) and %ei,q),»,k( f) for m = 5 and some values of k

m,0,¢ m,0,¢
m | Error bound for %Z’gip Derivative order k | Error bound %sj’g’g
5 0.1675 2 0.0340
5 0.1675 5 0.0004425

5.3. Bivariate Stancu-Kantorovich operators in a triangle
Inspired by the work [10], we present the following bivariate extension of the operators (28) on the

; 20 0
triangle A = {(x, yV)ix+y< By > m—+26};
m—j j03+1 L+¢p3+1
0;,0i m+ 6 m I 00 m+0y+1 [T Test
B (fix,9) = (m + g1 + 1)om + 01 + 1)(—) Q% yx [ [T fu,v)dudo, (30)
a " =0 = oo Y g

where the basis functions Qif'],ef)(x, y) are as defined by (28). At last, we define the Bernstein-Stancu-
Kantorovich-Taylor extension of these operators as follows:



B. Baxhaku et al. / Filomat 35:12 (2021), 4239-4255 4254
For f € CK(I?),k € N U {0}, we propose

m—

—.

+0i,0ik o)y
G B R R e DI M)
j=0 1=0
j+03+1 Mozl g
m+01 +1 m+p1+1 drf(u/ U)
% fj+93 L3 Z r! dudvl (31)
m+07+1 miprl - r=0

where d’ f(u,v) = Erb (:)gf—f‘é;?(x —u)(y — o).

Remark 5.1. It is remarked that the results analogous to Theorem 4.3 and the resulting corollaries can be easily
deduced for the above k" order generalizations (26), (29) and (31).

Example 5. Since f(x,y) = e">y> is infinitely continuously differentiable on R?, we can use Bernstein-
Stancu-Kantorovich-Taylor operators to study the approximation of f on I?. It is observed that, we achieve
a better approximation by these operators in comparison to Bernstein-Stancu-Kantorovich operators, if
we make a suitable choice of the parameters. For m =5, k = 2,5and 03 = 1,0, =2,0, = 3,0 = 4

and ¢3 = 1, ¢» = 2, ¢1 = 3, ¢ = 4, the illustrative graphics of ‘B:’?’#), ‘B*S{’Z;‘j; ‘B*:"’g’f and the function

f(x,y) = ey are shown together in Fig. 5. From the estimates of the absolute maximum errors in the

approximation of f(x, y) by the operators ‘B:’g’(b in (30) and 13*::3%‘ in (31) for m = 5 and k = 2,5 presented

in Table 5, it turns out that as the value of k increases, the error becomes smaller.

- Function f(x,y) = exp(-2*x) * y3

- Derivative operator of orderk =0, m = 5
I:l Derivative operator of orderk =2, m = 5
- Derivative operator of orderk =5, m = 5

035 —

03— '@

0.25 —

02—

045 —

01—

0.05 —

01,k

mo, (f) approximates f(x, y) much better than PO (£)

Figure 5: B~ 0,0

Table 5: Comparison of ‘Bf:/’g’;p (f) and ‘B*Z’ﬁ i(;)k( f) for m = 5 and some values of k
0i,0ik
m,0,p

m | Error bound for ‘Bfn"’(g‘% Derivative order k | Error bound B*

0.1030 2 0.0228
5 0.1030 5 0.0002907

a1
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6. Conclusion

The Stancu-Kantorovich operators and the k™ order generalization of Bernstein-Stancu-Kantorovich type
operators for functions of two variables are constructed with the help of modified Bernstein basis functions

with shifted knots for x, y € [:2%;, %] x [m(pf(P, r:ﬂ;z

enable the shift of Bernstein basis functions over the subintervals of I. A simulation was performed through

MATLAB and it was shown that depending on the order of the derivative k, the k" order generalization
0:,0i

n,m,0,p
to a function compared to Bernstein-Stancu-Kantorovich operators which are presented in Examples 1 and
2. Finally, the k™ order generalizations of the generalized bivariate Bernstein type polynomials are studied

and elaborated by means of some examples.

]. By introducing the parameters 0, ¢, 0;, ¢;, i = 1,2,3 we

of Bernstein-Stancu-Kantorovich type polynomials & (.;x, y) shows much better approximation results
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