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Abstract. In this paper we study ratio block sequences possessing an asymptotic distribution function. By
means of these distribution functions we define new families of subsets ofNwhich appear to be admissible
ideals. We characterize these ideals using the exponent of convergence and this characterization is useful
in decision if a given set belongs to a given ideal of this kind.

1. Introduction

In the whole paper we assume X = {x1 < x2 < · · · < xn < . . . } ⊂NwhereN denotes the set of all positive
integers.

The following sequence derived from X
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is called the ratio block sequence of the sequence X.
It is formed by the blocks X1,X2, . . . ,Xn, . . . where
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)
, n = 1, 2, . . .

is called the n-th block. This kind of block sequences was introduced by O. Strauch and J. T. Tóth [14] and
they studied the set G(Xn) of its distribution functions.

In this paper we will be interested in ratio block sequences of type (1) possessing an asymptotic distri-
bution function, i.e. G(Xn) is a singleton (see definitions in the next section). By means of these distribution
functions we define new families of subsets of N which appear to be admissible ideals. We characterize
these ideals using the exponent of convergence and this characterization is useful in decision if a given set
belongs to a given ideal of this kind.

The rest of our paper is organized as follows. In Section 2 and Section 3 we recall some known definitions,
notations and theorems, which will be used and extended. In Section 4 our new results are presented.
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2. Definitions

The following basic definitions are from papers [9], [11], [14] and [15].

• For each n ∈N consider the step distribution function

F(Xn, x) =
#{i ≤ n; xi

xn
< x}

n
,

for x ∈ [0, 1), and for x = 1 we define F(Xn, 1) = 1.

• A non-decreasing function 1 : [0, 1] → [0, 1], 1(0) = 0, 1(1) = 1 is called a distribution function
(abbreviated d.f.). We shall identify any two d.f.s coinciding at common points of continuity.

• A d.f. 1(x) is a d.f. of the sequence of blocks Xn, n = 1, 2, . . . , if there exists an increasing sequence
n1 < n2 < · · · of positive integers such that

lim
k→∞

F(Xnk , x) = 1(x)

a.e. on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding limit holds for every
point x ∈ [0, 1] of continuity of 1(x).

• Denote by G(Xn) the set of all d.f.s of Xn, n = 1, 2, . . . . The set of distribution functions of ratio block
sequences was studied in [1–7, 10–14].
If G(Xn) = {1(x)} is a singleton, the d.f. 1(x) is also called the asymptotic distribution function of Xn.
Especially, if G(Xn) = {x}, then we say that the sequence of blocks Xn is uniformly distributed in [0, 1].

• Let the function λ : 2N → [0, 1] defined by

λ(A) = inf
{
t > 0 :

∑
a∈A

1
at < ∞

}
be the exponent of convergence of a set A ⊂N.
If q > λ(A) then

∑
a∈A

1
aq < ∞ and if q < λ(A) then

∑
a∈A

1
aq = ∞. In the case when q = λ(A), the series∑

a∈A
1
aq can be either convergent or divergent.

From ([9], p.26, Exercises 113, 114) it follows that the set of all possible values of λ forms the whole
interval [0, 1], i.e. {λ(A) : A ⊂ N} = [0, 1] and if A = {a1 < a2 < · · · < an < · · · } then λ(A) can be
calculated by

λ(A) = lim sup
n→∞

log n
log an

.

Evidently the exponent of convergence λ is a monotone set function, i.e. λ(A) ≤ λ(B) for A ⊂ B ⊂ N
and also λ(A ∪ B) = max{λ(A), λ(B)} holds for all A,B ⊂N.

• By means of λ we can define the following sets:
I<q = {A ⊂N : λ(A) < q} for 0 < q ≤ 1,
I≤q = {A ⊂N : λ(A) ≤ q} for 0 ≤ q ≤ 1 and
I0 = {A ⊂N : λ(A) = 0}.
Obviously I≤0 = I0 and I≤1 = 2N.
For a finite set A ⊂ N we have λ(A) = 0. Consequently, I f = {A ⊂ N : A is finite} ⊂ I0. Families
I<q,I≤q and the well known family

I
(q)
c =

{
A = {a1 < a2 < · · · } ⊂N :

∞∑
n=1

1
aq

n
< ∞

}
are related for 0 < q < q′ < 1 by following inclusions (see [15])

I f ( I0 ( I<q ( I
(q)
c ( I≤q ( I<q′ ( I<1. (2)
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• Let I ⊂ 2N. Then I is called an admissible ideal of subsets of positive integers, if I is additive (if
A,B ∈ I then A∪ B ∈ I), hereditary (if A ∈ I and B ⊂ A then B ∈ I), containing all finite subsets ofN
and it does not containN.

3. Overwiew of known results

In this section we mention known results related to the topic of this paper and some other ones we use in
the proofs of our theorems. In the whole section in (A1)–(A8) we assume X = {x1 < x2 < · · · < xn < . . . } ⊂N.

(A1) We will use step function

c0(x) =

0 if x = 0,
1 if 0 < x ≤ 1.

Assume that G(Xn) is singleton, i.e., G(Xn) = {1(x)}. Then either 1(x) = c0(x) for x ∈ [0, 1]; or 1(x) = xq

for x ∈ [0, 1] and some fixed 0 < q ≤ 1. [[14], Th. 8.2]

(A2) Let 0 < q ≤ 1 be a real number. Then G(Xn) = {xq
} if and only if for every k ∈N

lim
n→∞

xkn

xn
= k

1
q .

[[6], Th. 1]

(A3) Let 0 < q ≤ 1 be a real number. If G(Xn) = {xq
} then

lim
n→∞

xn+1

xn
= 1.

[[4], Remark 3]

(A4) We have

G(Xn) = {c0(x)} ⇐⇒ lim
n→∞

1
nxn

n∑
i=1

xi = 0.

[[14], Th. 7.1]

(A5) We have

c0(x) ∈ G(Xn)⇐⇒ lim inf
n→∞

1
nxn

n∑
i=1

xi = 0.

[[4], Th. 4]

(A6) Let 0 < q ≤ 1 be a real number. Then

G(Xn) = {xq
} ⇐⇒ lim

n→∞

1
nxn

n∑
i=1

xi =
q

q + 1
.

[[1], Th. 1]

(A7) Let G(Xn) = {c0(x)}. Then

lim
n→∞

log n
log xn

= 0.

[[1], Th. 2]
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(A8) Let 0 < q ≤ 1 be a real number and G(Xn) = {xq
}. Then

lim
n→∞

log n
log xn

= q.

[[1], Th. 3]

(A9) Let 0 < q ≤ 1. Then each of the families I0, I<q and I≤q forms an admissible ideal, except for I≤1.

[[15], Th. 1]

(A10) We have

I0 =
⋂

0<q≤1

I<q =
⋂

0<q≤1

I
(q)
c =

⋂
0<q≤1

I≤q.

[[15], Th. 2]

(A11) Let 0 ≤ q < 1 be real, A ⊂N and A(x) = #{a ≤ x : a ∈ A} for x ≥ 1. Then A ∈ I≤q if and only if for every
δ > 0

lim
x→∞

A(x)
xq+δ

= 0.

[[15], Th. 3]

(A12) Let 0 < q ≤ 1 be a real number and A ⊂N. Then A ∈ I<q if and only if there exists δ > 0 such that

lim
x→∞

A(x)
xq−δ = 0.

[[15], Th. 4]

4. Results

The result (A1) provides motivation to introduce the following families of subsets ofN:

U(c0(x)) = {X ⊂N : G(Xn) = {c0(x)}},

I(c0(x)) = {A ⊂N : ∃X ∈ U(c0(x)),A ⊂ X},

and for 0 < q ≤ 1
U(xq) = {X ⊂N : G(Xn) = {xq

}},

I(xq) = {A ⊂N : ∃X ∈ U(xq),A ⊂ X}.

Obviously
U(c0(x)) ( I(c0(x)), U(xq) ( I(xq).

Sets X = {x1 < x2 < . . . } fromU(c0(x)) are characterized by (A4) and sets belonging toU(xq) are characterized
by (A2) and (A6).

In the sequel we will demonstrate some properties of these families and we will characterizeI(c0(x)) and
I(xq) by means of the exponent of convergence. From these properties follows also that families I(c0(x))
and I(xq) are ideals.

Theorem 1. The familyU(c0(x)) is additive, i.e. it is closed with respect to finite unions.
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Proof. Let A,B ∈ U(c0(x)) and

A = {x1 < x2 < · · · }, B = {y1 < y2 < · · · } .

Using (A4) for k→∞ and n→∞we have

1
kxk

∑
x∈A, x≤xk

x→ 0 and
1

nyn

∑
y∈B, y≤yn

y→ 0 . (3)

Let A ∪ B = {z1 < z2 < · · · } and zm ∈ A ∪ B.
For zm = yn and xk ≤ yn < xk+1 we have

1
mzm

∑
z∈A∪B, z≤zm

z ≤
1

myn

 ∑
x∈A, x≤xk

x +
∑

y∈B, y≤yn

y

 ≤
≤

k
m

1
kxk

∑
x∈A, x≤xk

x +
n
m

1
nyn

∑
y∈B, y≤yn

y .

As k
m ≤ 1, n

m ≤ 1, using (3) we obtain for m→∞ (k→∞ and n→∞)

1
mzm

∑
z∈A∪B, z≤zm

z→ 0 ,

and using (A4) again we have A ∪ B ∈ U(c0(x)). The case when zm = xn and yk ≤ xn < yk+1 follows in the
same way.

Example 1. The familyU(c0(x)) does not form an ideal as it is not hereditary, i.e. there exists sets C ∈ U(c0(x)) and
B ⊂ C such that B <U(c0(x)).

Proof. Put C = A ∪ B where A = {2n; n ∈N} and

B =

∞⋃
n=1

Bn where Bn = [2n!, 2n! + 2n) ∩N, (n = 1, 2, . . . ).

Then for a block Bn we have∑
b∈Bn

b =
(2n! + 2n! + 2n

− 1)2n

2
< 2n2n! + 22n

≤ 2n!2n+1,

∑
b∈Bn

b =
(2n! + 2n! + 2n

− 1)2n

2
> 2n!2n.

We will use these estimates in the rest of proof. We will show that C ∈ U(c0(x)) and B <U(c0(x)) by (A4).
1) C ∈ U(c0(x)). Let C = {c1 < c2 < · · · } and cn ∈ C where n is sufficiently large. Then there exists such

k ∈N, that 2k!
≤ cn < 2(k+1)!. Obviously n ≥ k!, thus we have

1
ncn

n∑
i=1

ci ≤
1

ncn

 ∑
i:2i≤cn

2i +

k∑
i=1

∑
b∈Bi

b

 ≤ 2cn

ncn
+

1
k!2k!

k∑
i=1

(2i!2i+1) ≤

≤
2
n

+
1

k!2k!

2k!
k∑

i=1

2i+1

 ≤ 2
n

+
2k+2

k!
.
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Thus we have 1
ncn

∑n
i=1 ci → 0 for n→∞, consequently also k→∞.

2) B <U(c0(x)). Let nk (k = 1, 2, . . . ) be such that bnk = 2k! + 2k
− 1. Then nk =

∑k
i=1 2i = 2k+1

− 2 and also

1
nkbnk

nk∑
i=1

bi ≥
1

(2k+1 − 2)(2k! + 2k)

∑
b∈Bk

b >
2k2k!

2k+1(2k! + 2k!)
=

1
4
.

The following theorem shows a natural extension ofU(c0(x)) to an ideal.

Theorem 2. The family I(c0(x)) is an ideal.

Proof. Its proof follows from the obvious fact that the set of all subsets of an additive family forms an
ideal.

On the other hand we have.

Theorem 3. The inclusion I(c0(x)) ⊂ I(q)
c holds for each 0 < q ≤ 1.

Proof. Let 0 < q ≤ 1 and B ∈ I(c0(x)). Then there exists a set A = {a1 < a2 < · · · } ⊂ N such that A ∈ U(c0(x))
and B ⊂ A. Choose p > 0 such that pq > 1. The relation in the statement (A7) yields existence of n0 ∈ N
such that an ≥ np holds for all n > n0. Thus we have

∞∑
n=n0+1

1
aq

n
<

∞∑
n=n0+1

1
nqp < +∞,

implying
∞∑

n=1

1
aq

n
< ∞, consequently A ∈ I(q)

c and also B ∈ I(q)
c .

Theorem 3 and the relation (A10) yield

Corollary 1.
I(c0(x)) ⊂

⋂
0<q≤1

I
(q)
c = I0.

In order to characterize the families I(c0(x)) and I(xq) the following theorem will be very useful.

Theorem 4. Let 0 < q ≤ 1, X = {x1 < x2 < · · · } ⊂ N, Y = {y1 < y2 < · · · } ⊂ N, let 1(x) ∈ {c0(x), xq
} be fixed and

assume that

Y ∈ U(1(x)) and lim
t→∞

X(t)
Y(t)

= 0. (4)

Then
X ∪ Y ∈ U(1(x)).

Proof. Let zm ∈ X ∪ Y. If zm = yn and xk ≤ yn < xk+1 then max{k,n} ≤ m ≤ k + n. Under assumptions, for
every 0 < x ≤ 1 we have

1(x) = lim
n→∞

#
{
i ≤ n : yi

yn
< x

}
n

= lim
n→∞

Y(xyn)
n

and
X(zm)
Y(zm)

=
k
n
→ 0

when m → ∞, i.e. also k → ∞ and n → ∞. Thus k
m → 0 and n

m → 1 for m → ∞. For every 0 < x ≤ 1 we
have the following estimation

Y(xyn)
n

n
m
≤

X ∪ Y(xzm)
m

≤
X(xxk+1)

k + 1
k + 1

m
+

Y(xyn)
n

n
m
.
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For m→∞we obtain

lim
m→∞

X ∪ Y(xzm)
m

= lim
n→∞

Y(xyn)
n

= 1(x), i. e. X ∪ Y ∈ U(1(x)) .

The proof in the case zm = xk and yn ≤ xk ≤ yn+1 is similar.

Corollary 2. Let 0 < q ≤ 1, X = {x1 < x2 < · · · } ⊂N, Y = {y1 < y2 < · · · } ⊂N. Assume that

Y ∈ U(xq) and lim
n→∞

xn

yn
= ∞. (5)

Then
X ∪ Y ∈ U(xq).

Proof. Let k ∈N and c > 0 such that c > k
1
q . From (5) according the (A2) there exist n0 ∈N such that

xn

yn
> c and

ykn

yn
< c .

holds for all positive integer n ≥ n0. Let now t be a real number and t > xn0 . Then xn ≤ t < xn+1 for some
n ≥ n0 and we obtained

X(t)
Y(t)

≤
X(xn+1)
Y(xn)

≤
X(xn+1)
Y(cyn)

≤
X(xn+1)
Y(ykn)

=
n + 1

kn
.

Here we used n→∞ for t→∞

lim sup
t→∞

X(t)
Y(t)

≤ lim
n→∞

n + 1
kn

=
1
k
.

The previous inequality is hold for every k ∈N, so

lim
t→∞

X(t)
Y(t)

= 0 .

Then by Theorem 4 we have X ∪ Y ∈ U(xq).

The following theorem shows I(c0(x)) = I0, it means that also the reverse inclusion to that in Corollary
1 is valid.

Theorem 5. Let X = {x1 < x2 < · · · } ⊂N. Then

X ∈ I(c0(x)) if and only if X ∈ I0 i.e. lim
n→∞

log n
log xn

= 0.

Proof. If X ∈ I(c0(x)) then there exists a set X′ ∈ U(c0(x)) such that X ⊂ X′. Put X′ = {x′1 < x′2 < · · · }. Then
(A7) yields lim

n→∞

log n
log x′n

= 0. As xn ≥ x′n holds for every n ∈N, we have lim
n→∞

log n
log xn

= 0 and λ(X) = 0.

We are going to prove the opposite implication. If lim
n→∞

log n
log xn

= 0 then xn = n f (n) for n ≥ 2 and function

f :N→ R+ such that f (n)→∞with n→∞.
Define a function 1 :N→N such that

(i) 1(1) = 1 and 1(n) ≤ max{1; 1
2 f ([
√

n])}, n = 2, 3, . . . ,
where [x] stands for the integer part of x.

(ii) 1(n) is nondecreasing and unbounded, i. e. lim
n→∞
1(n) = ∞.
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We use 1 to construct the set Y = {y1 < y2 < · · · } by yn = n1(n). We will show Y ∈ U(c0(x)) and X(t)
Y(t) → 0

for t→∞. Then an application of Theorem 4 yields X ∪ Y ∈ U(c0(x)), consequently X ∈ I(c0(x)).
I) First we show Y ∈ U(c0(x)). By (ii) and the definition of yn we have

1 ≥
#{i ≤ n : yi

yn
= i1(i)

n1(n) < x}

n
≥

#{i ≤ n :
(

i
n

)1(n)
< x}

n
.

Fix 0 < x ≤ 1. Then for every ε > 0 there exists a n0 ∈N such that

#{i ≤ n :
(

i
n

)1(n)
< x}

n
≥ 1 − ε

holds for all n ≥ n0. Here we used 1(n)→∞ for n→∞. As ε > 0 was arbitrary, for ε→ 0+ we have

lim
n→∞

#{i ≤ n :
(

i
n

)1(n)
< x}

n
= 1, i.e. Y ∈ U(c0(x)).

II) Now we prove X(t)
Y(t) → 0 for t→∞.

For sufficiently large n by (i) we have

X(yn) = max
{
k : k f (k) < yn = n1(n)

}
≤
√

n.

Let now t be a sufficiently large real number. Then yn−1 < t ≤ yn and n→∞ if t→∞moreover

0 ≤
X(t)
Y(t)

≤
X(yn)

Y(yn−1)
≤

√
n

n − 1
→ 0 for n→∞.

Consequently

lim
t→∞

X(t)
Y(t)

= 0 .

Theorem 6. Let 0 < q ≤ 1. Then

I<q ⊂ I(xq) ⊂ I≤q. (6)

Proof. We prove the first inclusion. Let X = {x1 < x2 < . . . } ⊂N be such that X ∈ I<q, i. e. λ(X) < q. Thus

lim inf
n→∞

log xn

log n
>

1
q
.

Then there exists a real number r > 1
q and a positive integer n0 such that

log xn

log n
≥ r, i. e. xn ≥ nr

holds for all n ≥ n0. Consider the sequence yn = [n
1
q ], (n = 1, 2, · · · ).

As 1
q ≥ 1, the inequality yn < yn+1 holds for every n ∈N.

Putting Y = {y1 < y2 < . . . } ⊂ N we have Y ∈ U(xq). Let now t be a real number. Then n < t ≤ n + 1.
Moreover, as 1

r − q < 0, we have

0 ≤
X(t)
Y(t)

≤
X(n + 1)

Y(n)
≤

(n + 1)
1
r

nq − 1
=

(n + 1
n

) 1
r n

1
r −q

1 − 1
nq

→ 0
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if n→∞. An application of Theorem 4 yields X ∪ Y ∈ U(xq), i. e. X ∈ I(xq).
Now we prove the second inclusion. Let X = {x1 < x2 < . . . } ⊂ N and X ∈ I(xq). Then there exists

X′ ∈ U(xq) such that X ⊂ X′. Let X′ = {x′1 < x′2 < . . . }. By (A8) we have

lim
n→∞

log n
log x′n

= q.

Using xn ≥ x′n we obtain

lim sup
n→∞

log n
log xn

≤ lim sup
n→∞

log n
log x′n

= q,

consequently λ(X) ≤ q, i.e. X ∈ I≤q .

Corollary 3. If 0 < q < q′ ≤ 1 then I(c0(x)) ⊂ I(xq) ⊂ I(xq′ ).

Proof. Theorem 5, (2) and Theorem 6 implies

I(c0(x)) = I0 ⊂ I<q ⊂ I(xq) ⊂ I≤q ⊂ I<q′ ⊂ I(xq′ ).

The following lemma gives a useful sufficient condition for a set A to belong toU(xq).

Lemma 1. Let 0 < q ≤ 1, X = {x1 < x2 < . . .} ⊂N and let its terms be given by

xn = [n
1
q +αn ] ,

where the sequence (αn) fulfils
lim
n→∞

αn = 0

and
lim
n→∞

(αkn − αn) log n = 0

for every k ∈N. Then X ∈ U(xq).

Proof. By (A2) it is sufficient to show that under assumptions the relation

lim
n→∞

xkn

xn
= k

1
q

holds for every positive integer k. Thus calculate

lim
n→∞

xkn

xn
= lim

n→∞

[(kn)
1
q +αkn ]

[n
1
q +αn ]

= lim
n→∞

k
1
q +αkn nαkn−αn =

= k
1
q lim

n→∞
e(αkn−αn) log n = k

1
q

and the statement of lemma follows.

The following theorem provides a nice characterization of the family I(xq). It follows that I(xq) = I≤q.
In the monography ([8] , p.7, exercise 1.13.) it is noted that X = N ∈ U(xq) in the case q = 1. This means
that N ∈ I(x1), but then A ∈ I(x1) holds for every A ⊂ N, i. e. I(x1) = 2N = I≤1. Thus it is sufficient to
prove the equality I(xq) = I≤q for 0 < q < 1.

Theorem 7. Let X = {x1 < x2 < · · · } ⊂N and 0 < q ≤ 1. Then

X ∈ I(xq) if and only if X ∈ I≤q i.e. lim sup
n→∞

log n
log xn

≤ q.
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Proof. Let X = {x1 < x2 < . . . } and 0 < q < 1. By virtue of (6) it is sufficient to prove the implication, if
λ(X) = q then X ∈ I(xq). Thus let us assume λ(X) = q. To complete the proof, it is sufficient to find a set
Y = {y1 < y2 < . . .} such that

X ∪ Y ∈ U(xq).

Thus we assume thatλ(X) = q, consequently its terms xn can be expressed by xn = n
1
q +αn where lim inf

n→∞
αn = 0.

To simplify technical manipulations we will start with a modification of parameters of the set X. For every
positive integer n put

βn = inf{αk; k = n,n + 1, . . .} −
1

log log(n + 2)
.

Then βn is a nondecreasing sequence of not positive numbers converging to 0 and

βn ≤ αn −
1

log log(n + 2)
(7)

holds for all n ∈N.
Let f : [1,∞)→ R be a very slowly increasing unbounded function such that

lim
x→∞

( f (px) − f (x)) log x = 0

holds for every p ∈ N. As an example of such function can serve log log log(x + 3). For every positive
integer n put δn = f (n + 1) − f (n) and construct the sequence (γn) as follows. Let γ1 = β1 and for n ∈N put
by induction

γn+1 =

γn + δn, if γn + δn ≤ βn+1,

γn, if γn + δn > βn+1 .

Then γn ≤ βn for all n ∈N, thus (7) holds also when βn is replaced by γn for every n ∈N. Also

lim
n→∞

γn = 0,

as both sequences (βn) and (δn) converge to 0. Moreover,

lim
n→∞

(γpn − γn) log n ≤ lim
n→∞

( f (pn) − f (n)) log n = 0,

thus the set of positive integers Y = {y1 < y2 < . . .}, where y1 = 1 and

yn+1 = max{yn + 1, [(n + 1)
1
q +γn+1 ]}

belongs toU(xq) by Lemma 1. The reason is that the maximum in the above formula is equal to the second
term for all sufficiently large n ∈N.

To complete the proof, calculate using γn ≤ βn and (7)

lim
n→∞

xn

yn
≥ lim

n→∞

n
1
q +αn

n
1
q +γn

= lim
n→∞

nαn−γn =

lim
n→∞

e(αn−γn) log n
≥ lim

n→∞
e(αn−βn) log n

≥ lim
n→∞

e
log n

log log(n+2) = ∞

and application of Corollary 2 proves X ∪ Y ∈ U(xq).

Corollary 4. Let 0 < q < 1 and a decreasing sequence 1 ≥ q1 > q2 > · · · > qn > . . . converges to q. Then

∞⋂
n=1

I(xqn ) = I(xq).
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Proof. Theorem 7 implies
∞⋂

n=1

I(xqn ) =

∞⋂
n=1

I≤qn = I≤q = I(xq).

Remark 1. In Theorem 5. and Theorem 7 there are characterized sets A ⊂N belonging to ideals I(c0(x)) and I(xq)
by means of the exponent of convergence of the corresponding sets, i.e. λ(A) = 0 or λ(A) ≤ q what means that A ∈ I0
or A ∈ I≤q. On the other hand, (A11) contains an alternative characterization of the above theorem saying that for
every δ > 0 we have lim

x→∞

A(x)
xδ = 0 or lim

x→∞

A(x)
xq+δ = 0. Let us also note that from Theorem 7 and (A9) follows that also

the family I(xq) is ideal. From (A8) we obtain also the following interesting inclusion holding for studied families of
sets (for characterization of I<q see (A12))

U(xq) ⊂ I≤q \ I<q wich implies I<q ⊂ I(xq) \ U(xq).
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