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Abstract. Given any sequence z = (z,),; Of positive real numbers and any set E of complex sequences,
we write E, for the set of all sequences y = (y),»; such that y/z = (y,/z4),,, € E; in particular, s? denotes
the set of all sequences y such that y/z tends to zero. Here, we deal with some extensions of sequence
spaces inclusion equations (SSIE) and sequence spaces equations (SSE) with operator. They are determined by an
inclusion or identity each term of which is a sum or a sum of products of sets of the form (x,)  and (x»), where x
is any of the symbols s, s, or s, a is a given sequence in U*, x is the unknown, and A is an infinite matrix.
Here, we explicitely calculate the inverse of the triangle B (r,s, ) represented by the operator defined by
(B(r,s,t)y), = ry1, (B(r,s5,t)y), = ryo +sy; and (B(1,5,8)y), = rYu + SYu-1 + tYn—o for all n > 3. Then we
determine the set of all x that satisfy the (SSIE) (Xx)B(Ts,r) C Xx, and the (SSE) fo)B(Ts,t) = x., where x € {s,s°}
and B@jt) is the infinite tridiagonal matrix obtained from B (1, s, t) by deleting its first row. For x = s the
solvability of the (SSE) (Xx)Bfr,\{;r) = X consists in determining the set of all x € U* for which
TYn+1 + SYn + t]/n—l y

. —>0<=)—n—>0(n—>oo)forally.

1. Introduction.

As usual we denote by w the set of all complex sequences iy = (¥4)n>1 and by ¢, ¢ and €. the subsets
of all null, convergent and bounded sequences, respectively. Also let U* denote the set of all sequences
u = (Up),s1 with u, > 0 for all n. Given a sequence a4 € w and a subset E of w, Wilansky [23] introduced

the notation a™ ! = E = {y €w:ay = (anYn),s € E}. In [7] we introduced the notations s,, s and sff) for the

sets ((1/11,,),,21)_1 + E for any sequence a € U™ and E € {{w, o, c}. In [8] we considered the sum x, + x; and
the product x, * x;, where x and x’ are any of the symbols s, s?

, or s©. Then we gave characterizations
of matrix transformations in the sets s, + (sg)N and s, + (s;f)>m, where A is the operator of the first difference.

In [15] we gave characterizations of the classes of matrix transformations from (s,),s to x3, where yx is any
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of the symbols s, s, or s). In [18] we gave applications of the measure of noncompactness to operators on

the spaces s, s%, s and ¢, to determine compact operators between some of these spaces. In [3, 12] we

introduced the notion of sequence spaces inclusion equations (SSIE) and sequence spaces equations (SSE), with
operators which are determined by an inclusion or identity each term of which is a sum or a sum of products
of sets of the form (x,)r and (Xf(x))T where x is any of the symbols s, s°, or s, a is a given sequence in U*,
x is the unknown, f maps U* to itself and T is a triangle. In [13] we dealt with the class of (SSIE) of the
form F C E, + F;, where F € {cy, {7, Wy, We} and E, F’ € {co, ¢, {oo, {7, Wy, Weo}, (p 2 1). In [14] writing D, for the
diagonal matrix with (D,),,, = r"", we dealt with the solvability of the (SSIE) using the operator of the first
difference A, defined by ¢ C D, * Ex + ¢, with E = ¢y, or 51. Then we dealt with the (SSIE) ¢ C D, * Ec, + sff)
with E = cp, c or 51, and s; C D, * Ec, + s, where E = ¢, or 51 and C; is the Cesaro operator defined by
(C1), y = (i yx) /n. In [1] Altay and Basar defined the generalized operator of the first difference defined by
B(r,s),y = ryn + sy,—1 for all n > 2 and B (r,s); y1 = ry1. Then these authors dealt with the fine spectrum of
the generalized difference operator B (r, s) over the sequence spaces cy and ¢. Then, in [11, 17] we dealt with
the (SSIE) (Xx)p(s) C (Xx)Bp sy and the (SSE) (Xx)p(s) = (Xx)(r 5y, Where x ='s, sY, or s©. Then we stated
some results on the spectrum of B (r, s) considered as an operator from y to itself, where x = s, or s’; and on

the solvability of the (SSE) x, + (s;”)B(H) = sgf) where x = s, s, or s© and x was the unknown. Note that for

x = 8, the previous (SSE) consists in determining the set of all x € U* such that y,/x, — I (n — o) if and
only if there are u, v such that y = u + v and u,/a, — 0 and (rv, + sv,—1) /x, = I’ (n — oo) for all y € w and
for some scalars [ and I’. Then, in 2007 Furkan, Bilgic and Altay [4] dealt with the spectrum of the operator
represented by the triangle

~~
95}
<

B(r,s,t) =

o

over ¢g and c. Then, Bilgic and Furkan [2] dealt with the fine spectrum of B (r, 5, t) over the sequence spaces
l; and bv. Finally, in 2010 Furkan, Bilgic and Basar [5] studied the fine spectrum of the operator B (r, s, t)
over the sequence spaces [, and bv,.

In this paper, we extend some results stated in the papers [11, 17] and we consider an extension of

the notion of (SSIE) and (SSE) where we use the operator A = B /(-r,\sft) obtained from B (r, s, t) by deleting
the first row of B (r,s,t) which is not a triangle but an infinite tridiagonal matrix and we determine the
sets of all positive sequences x = (xy),»; for which (xx)4 C xx and (Xx)o = Xx, Where x is any of the
symbols s, or s’. In this way we are led to determine the set of all positive sequences x for which
limy o0 (FYns1 + SYn + tYu-1) /xn = 0 if and only if lim,e yu/x, = O for all y. Notice that, if r = 0 then
A = B(0,s,t) is a triangle and we are refered to the papers [11, 17]. So the inclusion (xx), C X« is associated
with the statement limy,_,0 (Sy + t/y-1) /X, = 0 implies lim, o ¥»/X, = 0 for all y.

This paper is organized as follows. In Section 2, we recall some results on AK and BK spaces and on
the set S,;. In Section 3, we consider the operator C (&) and its inverse A (), and recall the definitions

and properties of the sets T, C, T and C;. In Section 4, we recall some results on the triangular Toeplitz
matrices of S, and we consider the isomorphism ¢ from the algebra of the power series into the algebra M of
corresponding matrices. Then using ¢ we explicitely calculate the inverse of the infinite triple band matrix

B(r,s,t). In Section 5, we consider the infinite tridiagonal matrix B (17571‘) obtained from B (1, s, t) by deleting

its first row, and determine the set of all x such that ()(X)Bf(m) C xx where x is any of the symbols s, or s’.

Finally in Section 6 we deal with the (SSE) (xx) Boan = Xx where y is any of the symbols s, or s’.
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2. Notations and preliminary results

Let A = (4,k)ni>1 be an infinite matrix and v = (yx)k>1 be a sequence. Then we write

Ay = Z ayx for any integer n > 1 1)
k=1

and Ay = (A,Y),5; provided all the series in (1) converge. Let E and F be any subsets of . Then we write
(E,F), (see for instance [6]), for the class of all infinite matrices A for which the series in (1) converge for
ally € Eand all n, and Ay € F forall y € E. So if A € (E,F) then we are led to the study of the operator
A = Aq : E — F defined by Ay = Ay and we identify the operator A to the matrix A. A Banach space
E of complex sequences is said to be a BK space if each projection P, : E — C defined by P,(y) = y, for
all vy = (Yn)u>1 € E is continuous. A BK space E is said to have AK if every sequence y = (Yx)k>1 € E
has a unique representation y = Y,;7; yxe® where ¢® is the sequence with 1 in the k-th position and 0
otherwise. To simplify the notations, we use the diagonal matrix D, defined by [D,]., = a, for all n, write
D,*E = (1/a)" ' E = {(yn)uz1 € @ : (Yu/an)n>1 € E} for any a € U and any E C w, and define s, = D, * (s,
s) = D, *co and sl(,c) =D, * ¢, (see, for instance, [7, 9, 10, 18]). Each of the spaces D,, * x, where x € {{, co, c},
is a BK space normed by [|¢[ls, = sup,,.;(I$nl/a,) and s? has AK. Now, let a = (a,)n>1,b = (by)ns1 € U™. By
S.» we denote the set of all infinite matrices A = (Auk)ni>1 such that [|Alls,, = sup,,., (b;1 Y I/\nk|ak) < oo.
It is well known that A € (s,, sp) if and only if A € S;,. So, we can write (s4, sp) = S;p. When s, = s, we
obtain the Banach algebra with identity S, = S, (see [7]), normed by [|Alls, = [|Alls,,. We also have A € (s, s;)

if and only if A € S,. If a = ("),21, the sets S,, s,, 0 and s are denoted by S,, s,, s and s, respectively

(see [8]). When r = 1, we obtain s; = £«, 8J = cp and sgc) = ¢, and witing e = (1,1, ...) we have §; = S,. It is
well known that (s1,s1) = (co,81) = (c,81) = S1 (see, for instance, [23]). We also have A € (co, ¢p) if and only
if A €Sy and lim,—,eo Ay = 0 for k =1, 2, .... In the sequel we use the next property. We have A € ()(a,)(;) if
and only if Dy, AD, € (x., x.) where x, x’ are any of the symbols s°, s©, or s. For any subset E of w, we put
AE ={n€w :n=Ayforsome y € E}. If Fis a subset of w, we write F(A) = FA = {y € w : Ay € F} for the
matrix domain of A in F.

3. The operators C(&), A(E) and the sets f, E, I and 51

An infinite matrix T = (f,x)ni>1 is said to be a triangle if t,; = 0 for k > n and t,,, # 0 for all n. Now let U
be the set of all sequences (u,),>1 € w with u,, # 0 for all n. If £ = (&,)u>1 € U, we define by C(&) the triangle
defined by [C(&)],x = 1/&, for k < n, (see, for instance, [9, 10], and [19, 21]). It is easy to see that the triangle
A(&) whose the nonzero entries are defined by [A(£)],, = &q and [A(E)],,,,-1 = &n-1 is the inverse of C(€),
that is, C(E)(A(E)y) = A(E)(C(&)y) = y for all y € w. If £ = e we obtain A(e) = A, where A is the well-known
operator of the first difference defined by A,y = vy, — y,—1 for all ¥y € w and all n > 1, with the convention
Yo = 0. It is usual to write Z = C(e). We note that A and I are inverse to one another, and A, X € Sk for any
R >1.

To simplify notation, for £ € U*, we write ¢,(&) = & Yi_1 &k for all n. We also consider the sets C

and 61 of all positive sequences & such that (c,(£)), € ¢, sup, ¢, (§) < oo, respectively. Then we write

E* = (&)),51 Where & = &,_1/&, with the convention &} = 1/&1, and we define byfand I' the sets of all
positive sequences such that lim, . &, < 1 and limsup, &5, < 1, respectively. Finally, by G; we define
the set of all positive sequences such that &, > Cy" for all n, and for some C > 0 and y > 1. Note that if &

and 7 € C1, then we have & + nand &n € C;. It can easily be seen that (R"), € C if and only if R > 1, and

there is no real number a for which the sequence (n%),; belongs to C;.
By ([7], Proposition 2.1, p. 1786) and ([16], Proposition 2.2 p. 88) we obtain the following lemma.

Lemma 3.1. We have E:fc I'c 51 c Gq.
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Concerning the identity (x,), = Xa for x = s or s” it was shown in [8], Proposition 9, pp. 300-301] the
following results.

Lemma 3.2. Let a € U* and let x be any of the symbols s or s°. Then the following statements are equivalent (i)
a € Cy. (ii) (Xa)a = Xa- (i11) (Xa)a C Xa- (iv) The operator A € (x,, Xa) is sutjective.

Lemma 3.3. ([8], Proposition 9, p. 300) For each a € w we have a € T if and only zf( (C)) =Y.

In the following we consider the sets Coand C; of all positive sequences x that satisfy (1/x,) Y.,_; (1 —k + 1) x; =
O(1) and (1/x,) Yooy (1 —k + 1) x41 = O(1) (n — o0), with the convention xy = 1, respectively. We obtain
the following result.

Lemma 3.4. We have 62 = a = 51

Proof. First we show 61 = 62 Letx € 51 By Lemma 3.2 with y = s we have x € 61 implies (sy), = sy and
trivially we obtain (sy),2 = ((Sx)a)s = (Sx)a = Sx. Then we have A2 = X2 € (s,, s,) and since Dy/,X?Dy is the
triangle defined by [Dl/szDx]nk =m—-k+1)xc/x,, fork < n,wededuce x € C,. So we have shown C; C C,.

n n
Now sincen—k+1 > 1fork =1, 2,..., n and for all n we easily see that x;' Y (n —k + 1) xx > x;* Y x for
k=1 k=1

all n, and trivially we obtain (’f\z C 61 and since 61 C (’3\2 we conclude (::1 = (’f\z Now, we show 62 = E; For
this, notice that for every n we have

—_
,_.
S
,_.

n— n—

n—k+Dxe=Y (1— k)xk+2xk—2(n k+1)xk1+ xp. )

1 1

=~
I

1

=~
I
=~
I

Now, let x € a Then we have x € 61 since

n n

1 1 1 v
il xk_l:x_zxk_lsE;(n_k—i_l)xk_lSK

X
" k=1 k=2

for all n for some K > 0. Then we have a C 61 = (’1\2 Now we show 62 C a For this, we let x € 62 Then,
by (2) we have

n—-1

1 v 1 1
oy = — (n - k+1)xk1—EZ(n k+1)x; — —Z;xk

X X
n = n

and o € €. We conclude x € E; and 62 C E; and we have shown 62 = E; O

4. Calculation of the inverse of the triple band matrix B (7, s, t) using the isomorphism ¢

4.1. Triangular Toeplitz matrices of S, and power series.
A Toeplitz matrix is an infinite matrix whose the entries are of the form (M), = a,_, with n, k > 1. Here
we focus on triangular Toeplitz matrices and consider M as an operator mapping s, into itself, with r > 0. Let

(o)

fay=Y au 3)

k=0

be a power series defined in the open disk |u| < R. We can associate with f the upper infinite triangular
G a1 @
a aq

Toeplitz matrix M = ¢ (f) € No<r<rS, defined by @ (f) = | a

. For practical reasons, we write
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@ [f ()] instead of ¢ (f). So we can associate with 1 the matrix I and we can associate with u* for k integer,
the matrix whose the only nonzero entries are equal to 1 and are on the diagonal of equation m = n + k.
From [22] we obtain the next result.

Lemma 4.1. The map ¢ : f — M is an isomorphism from the algebra of the power series defined in |u| < R into the
algebra M of the corresponding matrices.

4.2. Application to the calculation of the inverse of the infinite tridiagonal matrix B (r,s, t).

In this section we explicitly calculate the inverse of the infinite triangular Toeplitz matrix B (r,s, )
using the function ¢. The triangle B (r, s, t) is represented by the operator defined by (B(r,s,f)y), = ry1,
(B(r,5,t)y), = ry2+syrand (B (r,s,t) y),, = rYn +SYn-1+ty,— foralln > 3, wherer, s, t are complex numbers.
Throughout this paper we assume, except in special cases, that r, s and t are nonzero real numbers. Since
[B(r,s, t)]T = (r +su + tuz), we associate with the matrix B (r, 5, t) the equation

b(u) =r+su+ tu* = 0. 4)

We denote by u; and u, the roots of (4). Since r, t # 0 all the roots of (4) are distinct from zero. We can state
the next result where we let A= s? — 4tr.

Lemma 4.2. If A# 0, then u; = (—s - \/K) /2t and up = (—s + \/K) /2t are the real or complex roots of (4). Then
the inverse of B (r, s, t) is a triangle whose the nonzero entries are defined for k < n, in the following way.
(i) If A+ O, then we have

2 1 1fA > (),
([B (r,s, t)]fl)nk = i(ulé—n—l _ ul{—n—l)

if A <0.
(ii) If A= 0, then uy = —s/2t is the double root of (4) and the non-zero entries of the inverse of B (r,s, t) are defined
by
(IBG,s,017") = 1 (n—k+1)ul™"
el }’lk r 1 .
Proof. (i) We have A= s?> — 4tr # 0 and B (r,s, H' = (p(tu2 + su + r) = @[t (u—u)(u—up)], where u; =

—aq — 8/2t, up = a; — s/2 are the roots of b (u) = 0. Then we have a; = \/K/Zt if A>0,and a1 =i V-A/2t if
A < 0. By Lemma 4.1 we have [B (7,s, t)T]_1 =¢ ((tu2 +su + r)_l) =@ [(t (u—up)(u— uz))_ll, but

k

R(u) = o _uj(u e %Z[Zu ]u] k]uk for |u| < min (jus], [uz]) .

t_: .
tkO j=0

00

Since trivially we have [B (r,s, H]! ([B (r,s,t) ] ) we obtain

n—k

(Bosor), = f" oY (L)
j=0
_ 1u;n[1_(;_§)”"““]1_12

231

_ 1w ( ken-1 _ kn- 1)
= U Uy ,
ruy —up
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and

([B (r,s, t)]fl)nk = 2t1a (ulg n-1 u’{_”_l) fork < n. (5)

Since we have =2ty = — VA if A > 0 and —2ta; = —i V=A if A < 0 we conclude (i) holds.
(ii) Here A= 0 and u; = uy = —s/2t. We have [B (s, t‘)T]_1 =g [(tu2 +su + r)_l] =@ (1/t (u - ul)z), and

k+1 y
u) = = for |u| < |uq].
t(u—ul) s2 kZ 1

Since A= 0 we have 4t/s> = 1/r, and([B (7,s, t)]_l)nk =rt(m-k+ 1)u’{‘" for k < n. This completes the
proof. [J

In all that follows, when A< 0, we write u; = pe'® and uy = u7 = pe™™® with p > 0 and 0 ¢ nZ for the
roots of the equation in (4). We then obtain another expression of the inverse of B (r, s, t), which is given in
the next result.

Corollary 4.3. Assume A< 0, and let uy = pe'® be a root of (4). Then the inverse of B (r,s, t) is a triangle whose the
non-zero entries are given by

lsin(n—k+ 16
r o p"ksin6

([B (r, S/ t)]_l)l’lk =

Proof. For A< 0 we have u; = pe'” with p > 0 and 6 # mn for all integer m. By (5) we successively obtain
Up =1y, iy = P2, Uy — Uy = =21 = 2ipsin 0, uk™"1 — k1 = —2ipF T sin [(k — n — 1) 6] and

- 1P
(Besnl") = —;Zipiinempk”1sm[(k—n—1)9]
_ lpk_ns1n[(n—k+1)9] fork<n O

r sin 6

Remark 4.4. In the case when A# 0, by elementary calculations the inverse of B (r,s, t) is the triangle whose the
nonzero entries are given by,

@ty [( -1 ) . ( 1 )n-m] .
- -|—— ifA>0,
([B (r,s, t)]—l)nk _ VA [\s+ VA . s+ VA ,,

i(2t)”‘k+1( -1 ) “_( 1 )"‘“].
V3 \sviva rivaa  |PAcC

5. Application to the (SSIE) (x.) 5554 € xx Where x = s, or s?

In this section, we consider the tridiagonal matrix B (1,5, 1) obtained from B (r, s, t) by deleting the first

row and we determine the sets of all x € U™ such that (SX)B(rs ) C Sx and ( )B(\“ c sY, respectively. The

previous problems consists in determining the set of all x € U* for which (ry,+1 + Syn + tyn-1) /%, = k(1)
implies y,,/x, = x (1) (n — o0) for all y where « is either of the symbols o, or O.
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5.1. General case.

Here we consider the infinite tridiagonal matrix B (r,\s,/t) obtained from B (r,s,t) by deleting the first

s r 0
row, that is, B(r,s,t) = t s r . The operator associated with the matrix B (r,s,t) is defined
0

by [B(;?sjt)y]l = sy; + ryz, and [B(r?sjt)y]n = tYn—1 + SYu + "Yus1 for all w > 2. Consider the sets S =
{x € U™ : (so)yzsy C sx} and & = {x elU": (sg)B@\;t) c sg}. We then have x € S if and only if the condition
(rynﬂ + sy, + tyn_1| /%, < Ky implies ( yn) /x, < K; for all y, for all n and for some K; and K; > 0. Similarly

we have x € 8% if and only if the condition (Y41 + sy, + tyn—1) /x, — 0 implies y,,/x, — 0 (n — o) for all
y. Now, we state the next result, where we associate with the sequence x € U* the sequence x~ defined by
[x71, = x-1 for all n > 1 with the convention [x~]; = 1. So we write xg = 1 in all that follows.

Lemma 5.1. (i) We have x € S if and only if (x-)p(,s s C Sx- (i) We have x € S0 if and only if(sg,)B(rS y © sd.

Proof. We have B(;?sjt) = (B(r,s,t)y), foralln > 2and for all y. Then we have x;* B(;sjt) =0(1)
Y),4 Y y n v),

if and only if x 1, (B(r,s,£) y), = O(1) (n = ), and x € S if and only if x, (B(r,s,£) y), = O(1) implies
Yn/xn = O(1) (n — oo) for all y € w, and we conclude for (i). (ii) can be shown in a similar way. [

From Lemma 4.2 we obtain the following results where we use the convention x = 1.

Proposition 5.2. (i) Assume A+ 0 and let uy and u, denote the roots of (4).

a) x egifandonlyif
1 n
sup = Z |u’§‘"‘1 - u’l“"_l) Xi—1 | < o0. (6)
" k=1

b) x € S if and only if (6) holds and

lim (s = )2y =0 (1 > ) fork=1,2,... 7)

n—co X,

(ii) Assume A= 0, and let u; be the double root of (4). Then S=8andxeS if and only if (Ju1]" x,) 51 € C1,

that is,

1

n
- i Fx = O (1) (n— ).
11" x P

=1

Proof. (i) a) From Lemma 5.1 we have x € Sifand only if (x-)p(ss C Sx- This means [B (r,s, O € (sv-,80),

and Dy, [B(r,s, t)]_1 D, € S1. By Part (i) of Lemma 4.2 we obtain (6). b) we have x € 3\0 if and only if
(SO )B(rst) c Sg and

-

Dl/x [B (7", S, t)]_l Dx‘ € (COI CO) . (8)
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From the characterization of (cy, ¢p) and Part (i) of Lemma 4.2, we conclude (8) holds if and only if (6) and
(7) hold.

(ii) First, by Lemma 4.2 (ii), we easily see that x € Sifand only if

Z(n k+ 1) i 3 | < oo 9)

R

su
i |u1|

This means (Juq]" x,),51 € Cz and since by Lemma 3.4, we have Cz = C1, then (Juq|" xn)n>1 € C1 This shows
xeSifand only if (Ju1]" xn),s1 € C1. It remains to show S=38. Trivially we have x € S0 if and only if (8)

holds, which is equivalent to (9) and

lim
n—oo }’],[1

(n- k+1)uxk1—0fork—12 (10)

and since (9) is equivalent to (|u1]|" x,),51 € C1 we have shown S0 ¢ S. Now we show S c S0. Take x € S.

As we have just seen we have (Ju1|" x,),51 € C1 Now, since by Lemma 3.1 we have C1 C Gy, thereare y > 1
and K > 0 such that i1]" x,, = Ky" for all n, and since

-k+1
nox+ < 1 fork=1,2,..,n, and for all n,
PG

we deduce (10) holds and x € S0. We conclude S ¢ 8. So we have shown S0 = S. O
We immediately deduce the following,
Corollary 5.3. If (6) holds and x,u} — oo (n — o) for j = 1,2, then x € S0,

Proof. This result is a direct consequence of the fact that the condition x,,u?’ — oo (n—o)forj=1,2
implies (7). O

Remark 5.4. From the characterization of (co, c) and the proof of (ii) in Proposition 5.2 it can easily be seen that the
set SO = SO where

5% = {ve urs () <5}

B(r %)
5.2. Relations between the sets :§ 35 and Ea fora #0.

In this subsection we establish a relation between the sets §, or SO and the set Ea = Dam,., * 61

5.2.1. Case A >0.
For any nonzero real number a, we write

ED, = D(‘ay’)nzl * 6\1 = {x elU": (xn/ |a|n)n21 € 61}/
that is,
= la” x~ X
C,={xelU" :su —
evr oS L

Note that 6a = /C\w. It is trivial that if x and x’ € Ea then we have x + x’ € Ea. We may state the following
result where we confine our study to the case when A >0.
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Theorem 5.5. Let uy # uy be the roots of (4) for A> 0 and let uy = uy = —s/2t be the double root of (4) for A =0. We
have:

(i)
S=80= { E::f\naX(Il/u1|,|1/uz|).ifA >0, "
Cijus if A =0.
(ii)
Ji_?gox;z < min (|u1], [ua]) implies x € S, for A > 0, W
and

limx} < || implies x € S, for A =0.
n—oo

Proof. (i) First we show S = Cpax(1/u11/m) for A> 0. By Proposition 5.2 we have x € § if and only if (6)
holds. As we have seen, since r # 0, we have u; and u; # 0, and since s and f are different from zero, then
we have —s/t = u1 + up # 0,50 |u;| > 0 fori =1, 2, and |uq| # |up]. Now we consider the case 0 < |u1| < |u].
For any given n and for k = 1,2,...,n, we successively obtain 0 < |u1/uy| < 1, Iul/uzln_kJr1 < |ui/us|,

1 — |ug/up| < |1 - (ul/uz)n_kﬂ‘ <2,and
1 B (ﬂ)n_k+1
Uz

o) (1

Then we have

(-

251 n—
— S2|u’{”1|.

k-n-1 _ knl_ k-n—-1
) |” Uy _|”1 |

23]

251

1 n

k k-n-1 _ -1
—)—M ) il —E T T P
U

X |1 =1

IN

1 k
_ [t1]" xx_1 for all n.
1] X, |u1|” kZ; v
So, the statement in (6) holds if and only if [u|™ x;' Y1, lur[f e = O(1) (n —> ), that is, x € El/ul We
conclude S = C1 Juy- By similar arguments as those used above we can show that 0 < |u| < |u;| implies
S= Cl/u2 So we have shown S = Cmax (/L1 /102) -
Now show & = max(u ful)1/uy))- From Proposition 5.2 we have x € S if and only if x € Sand (7) holds.

But as we have just seen we have S= Cmax(|1/u1| [1/11,])s SO X € Cmax(ll/ull 11/uy) implies (xn |u]| ) e forj=1,

2. Now since by Lemma 3.1, we have C1 C G, there are C > 0 and y > 1 such that x, |u]| > Cy" for all n
and for j = 1, 2. Then we have

hm xlulxk 1u =(0forallkandforj=1,2.
"y

li 1

m —

n—oo Xy, yhk+1 Mh-1
]

So we have shown (7) holds and Sy =S= 6max(|l Jual1/t])-
The case A = 0 follows from Proposition 5.2. This concludes the proof of (i).

(ii) Case A> 0. Sincel C 61, the condition E,me; < min (Jus], |uz|) successively implies mn_mx; < |uil,
(xnu;?) L € I'for j=1,2,.,and x € S. This completes the proof. The case A =0 can be shown similarly. [
nz

When r = 0 the previous results was extended in [11] in the following way.
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Remark 5.6. Let r = 0 and s # 0. Then B(0,s, t) is a triangle and by ([11], Proposition 5.8, p. 47) we have
(X)) © Xr &= x € Capa,
where x is any of the symbols s°, or s and w is the root of the equation s + tu = 0.
When yx = s we obtain the next result.
Remark 5.7. We may deal with the inclusion (s(c)) sish © s where A =s2 — 4rt > 0. We have ( (C)) sish © s if
and only if (s ( (C)) o C s and
Dy [B(r,5,)] 7' Dy € (c,0). (13)

Then from the characterization of (c, c) it can easily be seen that the condition in (13) is equivalent to

n

1
li k n-1 k—-n—-1 L= l, 14
nl_Igo Xy Zk_1( 2 ! )xk 1 (14)
and
: 1 k—n-1 k—-n-1 _
r}glgo X, (uz u1 )xk_l - lk (15)

for some scalars | and Iy with k = 2, ... By similar arguments as those used in the proof of Theorem 5.5 (ii) we conclude
that by Lemma 3.1 the condition lim, _, x5, < min ([u1], |uz|) implies x € Dy, + C with i = 1,2, and the conditions in

(14) and (15) hold and ( (C)) f\’t) c 9. So, we have shown that if the condition lim, . X3, < min (luq], [u2]) holds,

then we have ( (C)) o C sx ) which means that the condition (rYn+1 + SYn + tyu-1) /%, — Ly implies y,/x, — Ly

(n — oo) for all y and for some scalars Ly and L.
When, s, t € C we obtain the next remark.

Remark 5.8. Assume A #0 and let r, s and t be nonzero complex numbers. Then, the roots uy and u of (4), can be
written in the form uj = p;e'%i for j = 1,2. In the case when |uy| # |ua), (that is, p1 # pa), by similar arguments

as those used in Theorem 5.5 we have S = S0 = Cmax(1 Ioslp)’ and the condition lim,_,.x;, < min (p1, p2) implies

X € S We obtain a similar result in the case A =0, that is, S SO Cl/lehere 1/p1 = [2t/s].
From Theorem 5.5 we also obtain the next result.
Corollary 5.9. Assume r/t > 1. Ifs = — (v + t), then we have S=80= C, moreover if limy,_,eoxt < 1 then x € S.

Proof. From the hypotheses, the solutions of the equation tu? — (r+t)u +r =0are u; = land up, = r/t > 1
and since max (|1/u1], |1/uz|) = 1, we have Cmax(u/u” [1/ual) = C . O

Since trivially we have x = (n*R"),»; €T C C; for any given real number « and R > 1, we immediately
deduce the following.

Example 5.10. For any given reals R and o with R > 1, we have 2y,+1 — 3Yn + Yn—1| < Kyn*R" implies |yn| <
Kon®R™ for all y, for all n and for some Ky and K > 0.

By Theorem 5.5 we obtain the next corollary.
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Corollary 5.11. Assume A> 0. Then S = 8 and we have
lu1] = |(—s - \/Z) /Zt’ > 1and |up| = |(—s + \/Z) /Zt’ >1 (16)

if and only if the next statement holds

"Yus1 + SYn + tyn—1 — Oifand only if y, — 0 (n — o0) forall y. (17)

Proof. The identity S = & follows from Theorem 5.5. The sufficiency in statement (17) is trivially true. So
it is enough to show that (16) holds if and only if e € C,, where v = max (|1/u1],|1/uz[). We have e € C,

if and only if (v™"),5; € C; and as we have seen (v"),.; € C; if and only if v < 1. We conclude from the
equivalence of v < 1 and the condition in (16). This completes the proof. [J

Example 5.12. Since u; = 2 and uy = —3 are the roots of the equation u®> +u—6 = 0, we have 6,11 — Yy — Yn-1 — 0
if and only if y, — 0 (n — oo) forall y.

5.2.2. Case A< Q.
Here we assume A< 0, then u; = peig and u, = u; are the roots of equation (4). Consider the next
conditions,

1 n
su lsin(n —k+1) 6] px_q | < o0 18
nppnxnsz ( )01 P (18)
and
limx} < p. (19)
n—oo

Proposition 5.13. Assume A< 0 and let uy = pe'® be a root of equation (4). We have:
(i) a) x € S if and only if condition (18) holds.
b) x € 8Y if and only if conditions (18) and (7) hold.
(ii)
CipcScS. (20)

(iii) The condition in (19) implies x € S0,

Proof. (i) follows from Lemma 4.3 and from the characterization of (¢, ¢y). (ii) The inclusion S0 c Sisan
immediate consequence of Proposition 5.2. Now, we let x € 61 /p- Then (18) holds since [sin (n —k +1) 0] < 1
for all n, k. Then we successively obtain (x,p"),.; € a, Xup" — 00 (1 — c0) and (xnp”)_1 — 0 (n > ), for
j=1,2,and (7) holds. We conclude x € a Jp implies (7), that is, x € §0. (iii) By Lemma 3.1 we have I' C 61

and Dyjpmy o rcG Jp- S0, the result follows from (ii) and from the equivalence of x € D, )t I' and

nz

(19). This completes the proof. [
As an immediate consequence of Proposition 5.13 we obtain the next corollary.

Corollary 5.14. Assume A< 0 and let uy = pe'® with p > 0 and O # mr for m € Z, be a root of equation (4).
(i) Let (x,p"),51 € C1. Then we have (pzynﬂ —2pcos Oy, + y,,_1) [xn — 0 implies y,/x, — 0 (n — oo) for all

Y.
(ii) For any p > 1, we have py,+1 — 2p cos Oy, + yu—1 — 0 implies y, — 0 (n — oo) for all y.
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Proof. (i) is a direct consequence of Proposition 5.13. (ii) The conditions x = ¢ and p > 1 together imply
x€CypandeeS'. O

Now we state the next elementary example.

Example 5.15. If ﬁx; < 1, then we have (Y41 + Yn + Yu-1) /Xy — 0 implies y,/x, — 0 (n — oo) for all y. This

result follows from the fact that (19) implies x € El/p and from Corollary 5.14, where uy = ™3 is a root of the
equation u> +u+1 = 0. It can easily be seen that for any given R > 1 and « real, we have Y41+ Yy + Yu-1 = 0 (R"/n%)
implies y, = 0 (R"/n%) (n — o) for all y.

6. Application to the (SSE) (x:) 557 = Xx for x € {s,s°}

Now, we consider the (SSE) (x.) B = X where y =s, or s?. For y = s° this means that the condition
limy e Yn /X, = 0 holds if and only if

lim (ryns1 + SYn + tYn-1) /%y = 0 (1 — 00)

for all y. We define by s~ the set of all x € U™ that satisfy the condition x,, < Cx,_; for some C > 0 and for
all n, that is,

1/x* € lw, (21)

and we let § = {x €U : (sx)y5my) = sx} and & = {x el (so) = so}. We immediately obtain the

YBsh
following theorem.

Theorem 6.1. (i) Assume A+ 0. Then we have:
a) x € S if and only if conditions (6) and (21) hold.
b)xes if and only if conditions (6), (21) and (7) hold.
(ii) Assume A= 0, and let uy be the double root of (4). Then we have $ =S = 6|1/u1| Ns~.

Proof. (i) a) We have x € Sif and onlyifs, C (sx)Bfr\;t) and (SX)B?th) C s,. We haves, C (sx)B@\;t) if and only if
Sy C (Sx-)p(rs,y and B (7,5, t) € (sx, sy-). Then, the last condition is equivalent to

(Irlxn + IsI xn-1 + [t Xp—2) /xn-1 = O (1) (n — o0),
and to K; < x5, < K; for all n and for some K; and K, > 0. Then, by Proposition 5.2 we have (sx)B@\;t) C s, if
and only if (6) holds and the condition in (6) implies |u2‘1 —up'|xp = O0(1) (n —> ) and x;, = O(1) (n — o).
We conclude that the equation (SX)B%) = s, is equivalent to the conditions in (6) and (21). So we have

shown (i) a). The statement in (i) b) can be shown in a similar way. Statement (ii) is a consequence of
Theorem 5.5 and of the equivalence of the inclusion s, C (sx) 5o and condition (21). O

More precisely from Theorem 5.5, Proposition 5.13 and Theorem 6.1, we obtain the following results.

Corollary 6.2. (i) Let uy and u, be the roots of (4) whenever A >0, and let uy = up, = —s/2t be the double root of (4)
for A = 0. Then we have

-0 { Crmax(1 | 1/us) N S™ if A> 0,

—

Cijuy NS~ ifA=0.
(ii) Assume A< 0 and denote by u = pe'® a root of equation (4). Then we have

Cypns cScS
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Using Corollary 5.9 we obtain the following corollary.

Corollary 6.3. Assumes = —(r +t)and r/t > 1. Then we have:
iS°=CNs".
(ii) For any x € U™* the condition

0<limx;, <1 (22)

n—-oo
implies x € §°.

Proof. (i) is a direct consequence of Corollary 5.9 and Part (i) of Corollary 6.2. Statement (ii). Let x € U*

such that condition (22) holds. Then lim,_,» x5, < 1 implies x € C1 since T € C1 On the other hand since
x;, > 0 for all n, the condition lim,,_,. x}, > 0 1mp11es there is K > 0 such that x;, > K for all n. We conclude

X € 61 Ns~ = 8. This concludes the proof of (ii). O
Now we state another application that can be considered as a corollary.

Corollary 6.4. For any given real number 6 # km, k € Z, and for any x € U*, the condition in (22) implies the
equivalence

(Yn+1 —2¢08 OV + Yu-1) /Xy — O if and only if y,/x, — 0 (n — co) forall y. (23)

Proof. Here, we have A < 0 and u; = pe’® with p = 1is a root of equation (4) withr =t = 1and s = -2 cos 0.
Now, assume x satisfies the condition in (22). As we have just seen, lim,_,. x;, < 1 implies x € C; and

lim, . x;, > 0 implies x € s™. We conclude x € C; N's™ and by Part (ii) of Corollary 6.2 the statement in (23)
holds. This concludes the proof. O

Example 6.5. From Corollary 6.4 with 6 = 21/3, we easily see that under (22) the condition (Yn+1 + Yn + Yn-1) /Xn —
0 holds if and only if y,/x, — 0 (n — oo) for all y.
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