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Abstract. Let A be a singular diagonalizable complex matrix with three distinct eigenvalues. We derive
all explicit solutions X of the Yang-Baxter-like matrix equation AXA = XAX, by taking advantage of the
Jordan form structure of A. The result generates the formula obtained in Chen et al. (2019) and M. Saeed
Ibrahim Adam et al. (2019). We give examples to illustrate the validity of the results obtained in this paper.

1. Introduction

Let A be an n×n singular diagonalizable complex matrix with three distinct eigenvalues. The quadratic
matrix equation

AXA = XAX, (1)

is often called the Yang-Baxter-like matrix equation (also called the star-triangle-like equation in statistical
mechanics; see, e.g., in Part III of [1]) because of its connections with the classical Yang-Baxter equation
arising in statistical mechanics [2–4].

No systematical study of (1) has appeared in the literature as a purely linear algebra problem although
some solutions have been found for Yang-Baxter equation in quantum group theory [5]. One possible reason
is that Yang-Baxter-like matrix equation (1) is equivalent to solving a polynomial system of n2 quadratic
equations with n2 unknowns, which solving this system is a very challenging topic. Almost all the works
so far have been toward constructing commuting solutions (AX = XA) of the equation; see, e.g., [5–16] and
the references therein. Finding all non-commuting solutions of Yang-Baxter-like matrix equation (1) is still
a challenging task when A is arbitrary. Up to now, there are only isolated results toward this goal for special
classes of the given matrix A, e.g., [17–28]. All solutions have been constructed for rank-1 matrices A in
[23], rank-2 matrices A in [24, 25], non-diagonalizable elementary matrices A in [26], idempotent matrices
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A (A2 = A) in [19], A2 = I in [18, 20], A3 = A in [21], A4 = A in [27], and diagonalizable matrices A with two
different eigenvalues in [22].

In this paper, we try to solve the Yang-Baxter-like matrix equation (1) to derive all explicit solutions X
when the given singular diagonalizable matrix A has three distinct eigenvalues 0, λ, and µ, extending the
research for which A is diagonalizable matrix with spectrum contained in the set {1, α, 0} [17] and A has the
minimal polynomial 1(x) = x3

−x [21], respectively. This is an important step to solve more general matrices.
Problem of diagonalizing or block-diagonalizing matrices (or operator matrices) is closely related to solving
Sylvester equations. The sufficient conditions for the solvability of the Sylvester equation AX − XB = −C
are derived in [29], under the premise that σ(A) ∩ σ(B) , ∅. The singular diagonalizable complex matrices
are the perfect candidates for the results obtained in [29]. Our results rely on Jordan forms of the given
matrices, which agrees perfectly with the expression in [29].

We first provide some preliminary results. Then we study all solutions for Yang-Baxter-like matrix
equation (1) under the conditions that λ2

− λµ + µ2 = 0 and λ2
− λµ + µ2 , 0, respectively. The application

to the case that the minimal polynomial of A is 1(x) = x3
− x will be demonstrated in Section 5. Finally, we

give some numerical experiments to illustrate the validity of the results obtained in Section 6. We conclude
with Section 7.

2. Preliminary results

In this section we give some results and denotations for our further discussion. At first, we give an
assumption as follows.

Assumption 2.1. Let A be an n × n complex diagonalizable matrix with three distinct eigenvalues 0, λ, and µ.
Suppose the rank of A is m and the multiplicity of eigenvalue λ is k. Then there exists a nonsingular S ∈ Cn×n such
that A = SJS−1 in which

J = dia1 (Λ, 0n−m) , (2)

and Λ = dia1
(
λIk, µIm−k

)
.

Let Y = S−1XS, then the matrix equation AXA = XAX is equivalent to JYJ = YJY. According to the
structure of J in (2), we partition Y as

Y =

(
K C
D W

)
, K ∈ Cm×m, W ∈ C(n−m)×(n−m). (3)

Then we give the following results.

Lemma 2.1. Suppose that A satisfies Assumption 2.1. Then AXA = XAX holds if and only if the matrices K, C, D,
W in (3) satisfy the following equations

KΛK = ΛKΛ,
KΛC = 0,
DΛK = 0,
DΛC = 0.

(4)

Then from the equivalent system (4), we see immediately that W is arbitrary for all of its solutions, so
in the remainder of the paper it can be any (n − m) × (n − m) matrix. The first equation in (4) is also a
Yang-Baxter-like matrix equation.

Based on Theorems 4.4 and 4.6 in [22], we need to discuss all solutions of AXA = XAX in two different
cases as λ2

− λµ + µ2 = 0 and λ2
− λµ + µ2 , 0. So we give our results in the following two sections.
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3. All solutions for AXA = XAX in the case λ2 − λµ + µ2 = 0

If λµ , 0 and λ2
− λµ + µ2 = 0, by Theorem 4.4 in [22], all solutions K of the first equation KΛK = ΛKΛ

of (4) are

K =

[
P 0
0 Q

] 
λIt1 0 F 0

0 0k−t1 0 0
G 0 µIt2 0
0 0 0 0m−k−t2


[

P−1 0
0 Q−1

]
,

in which, P ∈ Ck×k, Q ∈ C(m−k)×(m−k) are any invertible matrices, 0 ≤ t1 ≤ k, 0 ≤ t2 ≤ m − k, F is an arbitrary
t1 × t2 matrix, and G = (I − F†F)M(I − FF†), M is an arbitrary t2 × t1 matrix. Let

C̃ =

[
P−1 0
0 Q−1

]
C =


C1
C2
C3
C4

 ,
where C1 ∈ Ct1×(n−m), C2 ∈ C(k−t1)×(n−m), C3 ∈ Ct2×(n−m), and C4 ∈ C(m−k−t2)×(n−m). According to the second
equation KΛC = 0 of (4), we have

[
P 0
0 Q

] 
λIt1 0 F 0

0 0k−t1 0 0
G 0 µIt2 0
0 0 0 0m−k−t2


[

P−1 0
0 Q−1

] [
λIk 0
0 µIm−k

]
C = 0. (5)

since [
P−1 0
0 Q−1

] [
λIk 0
0 µIm−k

]
=

[
λIk 0
0 µIm−k

] [
P−1 0
0 Q−1

]
,

the equation (5) is equivalent to
λ2It1 0 µF 0

0 0k−t1 0 0
λG 0 µ2It2 0
0 0 0 0m−k−t2




C1
C2
C3
C4

 = 0.

Thus {
λ2C1 + µFC3 = 0,
λGC1 + µ2C3 = 0. (6)

Notice that G = (I − F†F)M(I − FF†), we get GF = 0 and FG = 0. Because λµ , 0, from (6), we have C1 = 0
and C3 = 0. Thus

C =

[
P 0
0 Q

] 
0

C2

0
C4

 . (7)

Let

D̃ = D
[

P 0
0 Q

]
=

[
D1 D2 D3 D4

]
,
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where D1 ∈ C(n−m)×t1 , D2 ∈ C(n−m)×(k−t1), D3 ∈ C(n−m)×t2 , and D4 ∈ C(n−m)×(m−k−t2). According to the third
equation DΛK = 0 of (4), we have

D
[
λIk 0
0 µIm−k

] [
P 0
0 Q

] 
λIt1 0 F 0

0 0k−t1 0 0
G 0 µIt2 0
0 0 0 0m−k−t2


[

P−1 0
0 Q−1

]
= 0. (8)

since [
P 0
0 Q

] [
λIk 0
0 µIm−k

]
=

[
λIk 0
0 µIm−k

] [
P 0
0 Q

]
,

the equation (8) is equivalent to

[
D1 D2 D3 D4

] 
λ2It1 0 λF 0

0 0k−t1 0 0
µG 0 µ2It2 0
0 0 0 0m−k−t2

 = 0.

Thus {
λ2D1 + µD3G = 0,
λD1F + µ2D3 = 0. (9)

Since λµ , 0, GF = 0, and FG = 0, from (9), we have D1 = 0 and D3 = 0. Therefore

D =
[

0 D2 0 D4

] [ P−1 0
0 Q−1

]
. (10)

Combining (7) and (10) with the fourth equation DΛC = 0 of (4) yields

DΛC = D̃
[

P−1 0
0 Q−1

] [
λIk 0
0 µIm−k

] [
P 0
0 Q

]
C̃

=
[

0 D2 0 D4

] 
λIt1 0 0 0

0 λIk−t1 0 0
0 0 µIt2 0
0 0 0 µIm−k−t2




0
C2
0

C4


= λD2C2 + µD4C4

= 0.

In summary, we have proved the following theorem.

Theorem 3.1. Suppose that A satisfies Assumption 2.1 with λµ , 0 and λ2
− λµ + µ2 = 0. Then all solutions of

the Yang-Baxter-like matrix equation AXA = XAX have the form

X = S

 P 0 0
0 Q 0
0 0 In−m



λIt1 0 F 0 0

0 0k−t1 0 0 C2

G 0 µIt2 0 0
0 0 0 0m−k−t2 C4

0 D2 0 D4 W


 P−1 0 0

0 Q−1 0
0 0 In−m

 S−1,

in which, P ∈ Ck×k, Q ∈ C(m−k)×(m−k) are any invertible matrices, 0 ≤ t1 ≤ k, 0 ≤ t2 ≤ m − k, F is an arbitrary
t1 × t2 matrix, G = (I − F†F)M(I − FF†), M is an arbitrary t2 × t1 matrix, C2 ∈ C(k−t1)×(n−m), C4 ∈ C(m−k−t2)×(n−m),
D2 ∈ C(n−m)×(k−t1), D4 ∈ C(n−m)×(m−k−t2), λD2C2 = −µD4C4, and W is an arbitrary (n −m) × (n −m) matrix.
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Corollary 3.2. Under the assumption of Theorem 3.1, if t1 = k, t2 = m− k, then all solutions of the Yang-Baxter-like
matrix equation AXA = XAX have the form

X = S

 λIk PFQ−1 0
QGP−1 µIm−k 0

0 0 W

 S−1,

in which, P ∈ Ck×k, Q ∈ C(m−k)×(m−k) are any invertible matrices, F is an arbitrary k × (m − k) matrix, G =
(I − F†F)M(I − FF†), M is an arbitrary (m − k) × k matrix, and W is an arbitrary (n −m) × (n −m) matrix.

4. All solutions for AXA = XAX in the case λ2 − λµ + µ2 , 0

If λµ , 0 and λ2
− λµ + µ2 , 0, by Theorem 4.6 in [22], all solutions K of the first equation KΛK = ΛKΛ

of (4) are

K =

[
P 0
0 Q

]


λ̂Ir 0 0 F 0 0
0 λIυ 0 0 0 0
0 0 0k−r−υ 0 0 0
G 0 0 µ̂Ir 0 0
0 0 0 0 µIτ 0
0 0 0 0 0 0m−k−r−τ


[

P−1 0
0 Q−1

]
,

in which, P ∈ Ck×k, Q ∈ C(m−k)×(m−k) are any invertible matrices, 0 ≤ r ≤ min{k,m − k}, 0 ≤ υ ≤ k − r,

0 ≤ τ ≤ m − k − r, λ̂ =
µ2

µ−λ , µ̂ = λ2

λ−µ , F is an arbitrary r × r invertible matrix, and G =
−λµ(λ2

−λµ+µ2)
(λ−µ)2 F−1. Let

Ĉ =

[
P−1 0
0 Q−1

]
C =



C1
C2
C3
C4
C5
C6


,

where C1 ∈ Cr×(n−m), C2 ∈ Cυ×(n−m), C3 ∈ C(k−r−υ)×(n−m), C4 ∈ Cr×(n−m), C5 ∈ Cτ×(n−m) and C6 ∈ C(m−k−r−τ)×(n−m).
According to the second equation KΛC = 0 of (4) and[

P−1 0
0 Q−1

] [
λIk 0
0 µIm−k

]
=

[
λIk 0
0 µIm−k

] [
P−1 0
0 Q−1

]
,

we have

λλ̂Ir 0 0 µF 0 0
0 λ2Iυ 0 0 0 0
0 0 0k−r−υ 0 0 0
λG 0 0 µµ̂Ir 0 0
0 0 0 0 µ2Iτ 0
0 0 0 0 0 0m−k−r−τ





C1
C2
C3
C4
C5
C6


= 0.

Thus 
λλ̂C1 + µFC4 = 0,
λGC1 + µµ̂C4 = 0,

λ2C2 = 0,
µ2C5 = 0.

(11)
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Since λµ , 0, from the last two equations of (11), we get C2 = 0 and C5 = 0. Because λµ , 0, λ2
−λµ+µ2 , 0,

and G =
−λµ(λ2

−λµ+µ2)
(λ−µ)2 F−1, from the first two equations of (11), we have C1 = 0 and C4 = 0. Thus

C =

[
P 0
0 Q

]


0
0

C3

0
0

C6


. (12)

Let

D̂ = D
[

P 0
0 Q

]
=

[
D1 D2 D3 D4 D5 D6

]
,

where D1 ∈ C(n−m)×r, D2 ∈ C(n−m)×υ, D3 ∈ C(n−m)×(k−r−υ), D4 ∈ C(n−m)×r, D5 ∈ C(n−m)×τ, and D6 ∈ C(n−m)×(m−k−r−τ).
According to the third equation DΛK = 0 of (4) and[

P 0
0 Q

] [
λIk 0
0 µIm−k

]
=

[
λIk 0
0 µIm−k

] [
P 0
0 Q

]
,

we have

[
D1 D2 D3 D4 D5 D6

]


λλ̂Ir 0 0 λF 0 0
0 λ2Iυ 0 0 0 0
0 0 0k−r−υ 0 0 0
µG 0 0 µµ̂Ir 0 0
0 0 0 0 µ2Iτ 0
0 0 0 0 0 0m−k−r−τ


= 0.

Thus 
λλ̂D1 + µD4G = 0,
λD1F + µµ̂D4 = 0

λ2D2 = 0,
µ2D5 = 0.

(13)

Since λµ , 0, from the last two equations of (13), we get D2 = 0 and D5 = 0. Because λµ , 0, λ2
−λµ+µ2 , 0,

and G =
−λµ(λ2

−λµ+µ2)
(λ−µ)2 F−1, from the first two equations of (13), we have D1 = 0 and D4 = 0. Therefore

D =
[

0 0 D3 0 0 D6

] [ P−1 0
0 Q−1

]
. (14)

Combining (12) and (14) with the fourth equation DΛC = 0 of (4) yields

DΛC = D̂
[

P−1 0
0 Q−1

] [
λIk 0
0 µIm−k

] [
P 0
0 Q

]
Ĉ

=
[

0 0 D3 0 0 D6

]


λIr 0 0 0 0 0
0 λIυ 0 0 0 0
0 0 λIk−r−υ 0 0 0
0 0 0 µIr 0 0
0 0 0 0 µIτ 0
0 0 0 0 0 µIm−k−r−τ





0
0

C3
0
0

C6


= λD3C3 + µD6C6

= 0.

In summary, we have proved the following theorem.
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Theorem 4.1. Suppose that A satisfies Assumption 2.1 with λµ , 0 and λ2
− λµ + µ2 , 0. Then all solutions of

the Yang-Baxter-like matrix equation AXA = XAX have the form

X = S

 P 0 0
0 Q 0
0 0 In−m





λ̂Ir 0 0 F 0 0 0
0 λIυ 0 0 0 0 0
0 0 0k−r−υ 0 0 0 C3

G 0 0 µ̂Ir 0 0 0
0 0 0 0 µIτ 0 0
0 0 0 0 0 0m−k−r−τ C6

0 0 D3 0 0 D6 W



 P−1 0 0
0 Q−1 0
0 0 In−m

 S−1,

in which, P ∈ Ck×k, Q ∈ C(m−k)×(m−k) are any invertible matrices, 0 ≤ r ≤ min{k,m − k}, 0 ≤ υ ≤ k − r,
0 ≤ τ ≤ m−k−r, λ̂ =

µ2

µ−λ , µ̂ = λ2

λ−µ , F is an arbitrary r×r invertible matrix, G =
−λµ(λ2

−λµ+µ2)
(λ−µ)2 F−1, C3 ∈ C(k−r−υ)×(n−m),

C6 ∈ C(m−k−r−τ)×(n−m), D3 ∈ C(n−m)×(k−r−υ), D6 ∈ C(n−m)×(m−k−r−τ), λD3C3 = −µD6C6, and W is an arbitrary
(n −m) × (n −m) matrix.

Corollary 4.2. Under the assumption of Theorem 4.1, if r + υ = k, r + τ = m − k, then all solutions of the
Yang-Baxter-like matrix equation AXA = XAX have the form

X = S

 P 0 0
0 Q 0
0 0 In−m



λ̂Ir 0 F 0 0
0 λIυ 0 0 0
G 0 µ̂Ir 0 0
0 0 0 µIτ 0
0 0 0 0 W


 P−1 0 0

0 Q−1 0
0 0 In−m

 S−1,

in which, P ∈ Ck×k, Q ∈ C(m−k)×(m−k) are any invertible matrices, 0 ≤ r ≤ min{k,m − k}, 0 ≤ υ ≤ k − r,
0 ≤ τ ≤ m − k − r, λ̂ =

µ2

µ−λ , µ̂ = λ2

λ−µ , F is an arbitrary r × r invertible matrix, G =
−λµ(λ2

−λµ+µ2)
(λ−µ)2 F−1, and W is an

arbitrary (n −m) × (n −m) matrix.

5. Application

In this section we apply Theorem 4.1 to the case that the minimal polynomial of A is 1(x) = x3
− x. In

this case, A3 = A. M. Saeed Ibrahim Adam et al. have considered this case in [21]. It is well-known that
the zeros of the minimal polynomial of any square matrix give all the eigenvalues of the matrix and an
eigenvalue λ is semisimple, that is the algebraic multiplicity of λ equals its geometric multiplicity, if and
only if the multiplicity of λ, as a zero of the minimal polynomial, is 1. Since 1(x) = x3

− x = x(x + 1)(x − 1),
A has three distinct eigenvalues −1, 0, and 1. Furthermore, each eigenvalue of A is semisimple, so A is
diagonalizable. In other words, there is a nonsingular matrix S such that AS = SJ, where J is a diagonal
matrix. Assume that the rank of A is m and the multiplicity of eigenvalue 1 is k. Then we can write the
Jordan form of A as J = dia1{Ik,−Im−k, 0n−m}. Since 12

− 1 × (−1) + (−1)2 = 3 , 0, applying Theorem 4.1, we
have the following theorem.

Theorem 5.1. If A3 = A. Assume that the rank of A is m and the multiplicity of eigenvalue 1 is k. Then all solutions
of the Yang-Baxter-like matrix equation AXA = XAX have the form

X = S

 P 0 0
0 Q 0
0 0 In−m





−
1
2 Ir 0 0 F 0 0 0
0 Iυ 0 0 0 0 0
0 0 0k−r−υ 0 0 0 C3

3
4 F−1 0 0 1

2 Ir 0 0 0
0 0 0 0 −Iτ 0 0
0 0 0 0 0 0m−k−r−τ C6

0 0 D3 0 0 D6 W



 P−1 0 0
0 Q−1 0
0 0 In−m

 S−1,
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in which, P ∈ Ck×k, Q ∈ C(m−k)×(m−k) are any invertible matrices, 0 ≤ r ≤ min{k,m − k}, 0 ≤ υ ≤ k − r, 0 ≤ τ ≤
m − k − r, F is an arbitrary r × r invertible matrix, C3 ∈ C(k−r−υ)×(n−m), C6 ∈ C(m−k−r−τ)×(n−m), D3 ∈ C(n−m)×(k−r−υ),
D6 ∈ C(n−m)×(m−k−r−τ), D3C3 = D6C6, and W is an arbitrary (n −m) × (n −m) matrix.

The formula X in Theorem 5.1 are more general than the formula in Theorem 3.5 by M. Saeed Ibrahim
Adam et al. [21].

6. Numerical examples

We present two numerical examples to illustrate our results.

Example 6.1. Let

A =


0 −2 3 −1
−1 −1 3 −1
−1 −2 4 −1
−1 −4 7 −2

 .
Then A3 = A. This is the example in [21]. There exists a nonsingular matrix

S =


1 1 1 1
2 1 1 1
3 2 1 1
4 3 2 1

 ,
such that A = SJS−1, J = dia1{1, 1,−1, 0}. all solutions of (1) are X = SYS−1. From Theorem 5.1, there are totally
eight cases to be considered in finding the general solution Y.

Case I: r = 1, υ = 1, τ = 0.

Y =


−0.5p1p4−p2p3

p1p4−p2p3

1.5p1p2

p1p4−p2p3

p1 f
q 0

−1.5p3p4

p1p4−p2p3

p1p4+0.5p2p3

p1p4−p2p3

p3 f
q 0

3qp4

4 f (p1p4−p2p3) −
3qp2

4 f (p1p4−p2p3) 0.5 0
0 0 0 w


for all p1, p2, p3, p4, f , q, w ∈ C, p1p4 − p2p3 , 0, f , 0, and q , 0.

Case II: r = 1, υ = 0, τ = 0.

Y =


−0.5p1p4

p1p4−p2p3

0.5p1p2

p1p4−p2p3

p1 f
q 0

−0.5p3p4

p1p4−p2p3

0.5p2p3

p1p4−p2p3

p3 f
q 0

3qp4

4 f (p1p4−p2p3) −
3qp2

4 f (p1p4−p2p3) 0.5 0
−d3p3 d3p1 0 w

 ,


−0.5p1p4

p1p4−p2p3

0.5p1p2

p1p4−p2p3

p1 f
q p2c3

−0.5p3p4

p1p4−p2p3

0.5p2p3

p1p4−p2p3

p3 f
q p4c3

3qp4

4 f (p1p4−p2p3) −
3qp2

4 f (p1p4−p2p3) 0.5 0
0 0 0 w


for all p1, p2, p3, p4, f , q, w, c3, d3 ∈ C, p1p4 − p2p3 , 0, f , 0, and q , 0.

Case III: r = 0, υ = 2, τ = 1.

Y =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 w


for all w ∈ C.
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Case IV: r = 0, υ = 2, τ = 0.

Y =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 d6 w

 ,


1 0 0 0
0 1 0 0
0 0 0 c6
0 0 0 w


for all c6, d6, w ∈ C.

Case V: r = 0, υ = 1, τ = 1.

Y =


p1p4

p1p4−p2p3

−p1p2

p1p4−p2p3
0 0

p3p4

p1p4−p2p3

−p2p3

p1p4−p2p3
0 0

0 0 −1 0
−d3p3 d3p1 0 w

 ,


p1p4

p1p4−p2p3

−p1p2

p1p4−p2p3
0 p2c3

p3p4

p1p4−p2p3

−p2p3

p1p4−p2p3
0 p4c3

0 0 −1 0
0 0 0 w


for all p1, p2, p3, p4, w, c3, d3 ∈ C, and p1p4 − p2p3 , 0.

Case VI: r = 0, υ = 1, τ = 0.

Y =


p1p4

p1p4−p2p3

−p1p2

p1p4−p2p3
0 p2c3

p3p4

p1p4−p2p3

−p2p3

p1p4−p2p3
0 p4c3

0 0 0 c6
−d3p3

p1p4−p2p3

d3p1

p1p4−p2p3
d6 w


for all p1, p2, p3, p4, w, c3, d3, c6, d6 ∈ C, p1p4 − p2p3 , 0, and d3c3 = d6c6.

Case VII: r = 0, υ = 0, τ = 1.

Y =


0 0 0 c31
0 0 0 c32
0 0 −1 0

d31 d32 0 w


for all c31, c32, d31, d32, w ∈ C, and d31c31 = −d32c32.

Case VIII: r = 0, υ = 0, τ = 0.

Y =


0 0 0 c31
0 0 0 c32
0 0 0 c6

d31 d32 d6 w


for all c31, c32, d31, d32, c6, d6, w ∈ C, and d31c31 + d32c32 = d6c6.

We find the explicit expressions of the solution X. Our results are more general than those obtained recently by
M. Saeed Ibrahim Adam et al. [21].

Example 6.2. Let A = J = dia1(1 + i
√

3, 1 + i
√

3, 2, 0). So the nonzero eigenvalues satisfy (1 + i
√

3)2
− (1 + i

√
3)×

2 + 22 = 0. Then by Theorem 3.1, there are totally six cases to be considered in finding the general solution X.
Case I: t1 = 2, t2 = 1.

X =


1 + i

√
3 0 f1 0

0 1 + i
√

3 f2 0
0 0 2 0
0 0 0 w

 ,


1 + i
√

3 0 0 0
0 1 + i

√
3 0 0

11 12 2 0
0 0 0 w


for all f1, f2, 11, 12, w ∈ C.
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Case II: t1 = 2, t2 = 0.

X =


1 + i

√
3 0 0 0

0 1 + i
√

3 0 0
0 0 0 c4
0 0 0 w

 ,


1 + i
√

3 0 0 0
0 1 + i

√
3 0 0

0 0 0 0
0 0 d4 w


for all c4, d4, w ∈ C.

Case III: t1 = 1, t2 = 1.

X =


(1+i
√

3)p1p4

p1p4−p2p3

−(1+i
√

3)p1p2

p1p4−p2p3
p1 f p2c2

(1+i
√

3)p3p4

p1p4−p2p3

−(1+i
√

3)p2p3

p1p4−p2p3
p3 f p4c2

0 0 2 0
0 0 0 w

 ,


(1+i
√

3)p1p4

p1p4−p2p3

−(1+i
√

3)p1p2

p1p4−p2p3
p1 f 0

(1+i
√

3)p3p4

p1p4−p2p3

−(1+i
√

3)p2p3

p1p4−p2p3
p3 f 0

0 0 2 0
−d2p3

p1p4−p2p3

d2p1

p1p4−p2p3
0 w

 ,
(1+i
√

3)p1p4

p1p4−p2p3

−(1+i
√

3)p1p2

p1p4−p2p3
0 p2c2

(1+i
√

3)p3p4

p1p4−p2p3

−(1+i
√

3)p2p3

p1p4−p2p3
0 p4c2

1p4

p1p4−p2p3

−1p2

p1p4−p2p3
2 0

0 0 0 w

 ,


(1+i
√

3)p1p4

p1p4−p2p3

−(1+i
√

3)p1p2

p1p4−p2p3
0 0

(1+i
√

3)p3p4

p1p4−p2p3

−(1+i
√

3)p2p3

p1p4−p2p3
0 0

1p4

p1p4−p2p3

−1p2

p1p4−p2p3
2 0

−d2p3

p1p4−p2p3

d2p1

p1p4−p2p3
0 w


for all p1, p2, p3, p4, w, c2, d2, f , 1 ∈ C, and p1p4 − p2p3 , 0.

Case IV: t1 = 1, t2 = 0.

X =


(1+i
√

3)p1p4

p1p4−p2p3

−(1+i
√

3)p1p2

p1p4−p2p3
0 p2c2

(1+i
√

3)p3p4

p1p4−p2p3

−(1+i
√

3)p2p3

p1p4−p2p3
0 p4c2

0 0 0 c4
−d2p3

p1p4−p2p3

d2p1

p1p4−p2p3
d4 w


for all p1, p2, p3, p4, w, c2, d2, c4, d4 ∈ C, and p1p4 − p2p3 , 0, and (1 + i

√
3)d2c2 = −2d4c4.

Case V: t1 = 0, t2 = 1.

X =


0 0 0 c21
0 0 0 c22
0 0 2 0

d21 d22 0 w


for all c21, c22, d21, d22, w ∈ C, and d21c21 = −d22c22.

Case VI: t1 = 0, t2 = 0.

X =


0 0 0 c21
0 0 0 c22
0 0 0 c4

d21 d22 d4 w


for all c21, c22, d21, d22, c4, d4, w ∈ C, and (1 + i

√
3)(d21c21 + d22c22) = −2d4c4.

7. Conclusions

When the given matrix A is diagonalizable matrix with three distinct eigenvalues 0, λ, and µ, we have
derived all explicit expression for the solutions X of the Yang-Baxter-like matrix equation (1) under the



D. Zhou et al. / Filomat 35:12 (2021), 3971–3982 3981

conditions that λ2
− λµ + µ2 = 0 and λ2

− λµ + µ2 , 0, respectively. Our approach here is to use the Jordan
decomposition of A to obtain a simplified Yang-Baxter-like matrix equation with A replaced by a simple
block diagonal matrix, and then we solve a system of several matrix equations for the smaller sized solution
blocks. The idea behind the technique can be generalized to consider more general cases. We demonstrate
the application to the case that the minimal polynomial of A is 1(x) = x3

− x. Our results have extended
the previous results of [17, 21]. Finding all the solutions of the Yang-Baxter-like matrix equation (1) for a
general matrix A is a hard task, which is continuing research work in the future.
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