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Cauchy Completion of Fuzzy Quasi-Uniform Spaces

Yongchao Wang?, Yueli Yue?

?School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China

Abstract. In this paper, we study the completion of fuzzy quasi-uniform spaces from a categorical point of
view. Firstly, we introduce the concept of prorelations and describe fuzzy quasi-uniform spaces as enriched
categories. Then we construct the Yoneda embedding in fuzzy quasi-uniform spaces through promodules,
and prove the validness of Yoneda Lemma for right adjoint promodules. Finally, we study the Cauchy
completion of fuzzy quasi-uniform spaces by the Yoneda embedding. We show that the inclusion functor
from the category of T, separated complete fuzzy quasi-uniform spaces to the category of fuzzy quasi-
uniform spaces has a left adjoint functor. The monad related to this adjunction is just the T, completion
monad of fuzzy quasi-uniform spaces.

1. Introduction

Since Lawvere presented generalized metric spaces as enriched categories in [29], enriched categories
have been proved to be a powerful tool for studying topological structures. For example, Zhang studied
many valued topologies through the approach of category in [45]. Hofmann and Reis treated probabilistic
(quasi-)metric spaces as enriched categories and studied these structures by enriched category in [16]. Chai
also gave a research on probabilistic quasi-metric spaces from the enriched categorical point of view in
[4]. Similar to the study of probabilistic quasi-metric spaces, He, Lai and Shen considered the categorical
interpretation of fuzzy partial metric spaces in [14]. Following Lawvere and Bar’s idea, Clementino,
Hofmann and Tholen developed the theory of monoidal topology, and showed that many topological
structures such as approach spaces, metric spaces, (quasi-)unform spaces and so on all can be viewed as lax
algebras with respect to certain monads (see [5-8, 15, 17, 23]).

Uniformity plays an important role in the research and application of topology. The study of both
classical (quasi-)uniform spaces and lattice-valued (quasi-)uniform spaces draws much attention in the
research of topological structures (see [3, 9, 11, 12, 18-21, 25, 27, 28, 30, 32-35, 37, 38, 41-44, 46]). Due to
the close relation between uniformities and metrics, this promotes the study of quasi-uniform structures
by means of enriched categories. The first description of quasi-uniform spaces as enriched categories is
attributed to Schmitt [36]. Then Clementino, Hofmann and Tholen used the theory of lax algebras and
put the quasi-uniform spaces in the framework of monoidal topology in [7]. Furthermore Clementino
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and Hofmann described quasi-uniform spaces as enriched categories, introduced Yoneda embedding in
quasi-uniform spaces and studied the completion monad in [8].

There are many kinds of lattice-valued quasi-uniformities, such as Lowen and Hohle’s quasi-uniformity
[18, 32], Hutton’s quasi-uniformity [21] and Shi’s pointwise quasi-uniformity [37]. A natural question
would be whether the lattice-valued quasi-uniform spaces could be viewed as enriched categories. In this
paper, this question positively for fuzzy quasi-uniform space in the sense of Lowen and Héhle, and other
kinds of fuzzy quasi-uniform spaces are left for future study.

Following the idea of Clementino and Hofmann in [8], we describe fuzzy quasi-uniform spaces as
enriched categories by means of the concept of prorelation. Then we construct the Yoneda embedding in
fuzzy quasi-uniform spaces from enriched category theory. And Yoneda Lemma is shown right on the
condition that the closure operator, which is generated by its fuzzy quasi-uniformity.

As an application of Yoneda embedding, we focus on Cauchy completeness and completion of fuzzy
quasi-uniform spaces. In [42], Yue and Fang have studied a kind of completeness of fuzzy quasi-uniform
spaces based on pair T-filters. We will continue the research of this kind of completeness in this paper, and
show that it can be also easily generalized to saturated prefilter setting. Using right adjoint promodules, we
can establish a pair of adjoint functors between the category of fuzzy quasi-uniform spaces with uniformly
continuous maps and the category of fuzzy quasi-uniform spaces with right adjoint promodules. The
monad related to this adjunction is just the Ty completion monad of fuzzy quasi-uniform spaces. We also
give a direct proof of the result which the category of T, separated complete fuzzy quasi-uniform spaces is
a reflective full subcategory of the category of fuzzy quasi-uniform spaces.

2. Preliminaries

A commutative quantale is a pair (Q, &), where Q is a complete lattice with the top element T(= A0)
and the bottom element L (= V@), and & is a commutative semigroup operation on Q such that

ate\/ ) = \/ ot

jel jel

foralla € Qand {B;]j € J} € Q. For a given commutative quantale (Q, &), there exists a binary operation
—: Q% Q — Q defined by

aﬁﬁ:\/{ytea&ySﬁ},

called the implication (operation).
Let f: X = Yand g: Y — X be a pair of maps between ordered sets. We say that f is left adjoint to g
(or g is right adjoint to f) and write f 4 g if

f) <y ex<gy)

for all x € X and y € Y. The pair (f, g) is said to be an adjunction. For example, if f : X — Y is an order
isomorphism, then it is both left and right adjoint to its inverse f!.

A commutative quantale (Q, &) is said to be unital if there exists an element k € Q such that k&a =
a&k = a for all @ € Q (k is usually called the unit of Q). When the unit of Q is the top element T, (Q, &) is
called integral.

A complete lattice Q is said to be meet continuous if for all @ € Q, @ A (\/ﬁel“ B) = \/Ber(a A B) for all
directed subsetI' C Q. In this paper, we always assume that (Q, &) is an integral and commutative quantale,
and Q is meet continuous.

An Q-subset on a set X is a map from X to Q, and the family of all Q-subsets on X will be denoted by
Q% called the Q-power set of X. By Lx and Tx, we denote the constant Q-subsets on X taking the value L
and T, respectively. Function « : X — Q where a(x) = a for all x € X. ie.,, We don’t distinguish between
constant Q-set a and its value. For U C X, xy denotes the characteristic function of U, i.e., xy(x) = T when
x € Uand yy(x) = L whenx ¢ U. xy is usually written by Ty;.
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All algebraic operations on Q can be extended to Q¥ pointwise. For example, (A V B)(x) = A(x) V B(x),
(A A B)(x) = A(x) A B(x) for A,B € Q% and x € X. For a map f : X — Y, we can define 7 : Q¥ - Q" and
fe Q' - Q¥ by f7(A)Y) = V p=y Alx) and f~(B)(x) = B(f(x)), respectively. Then f™ is the left adjoint
of f. From the definition of f~, we know f7(Tu) = T fu)-

A Q-relation 7 : X - Y from X to Yis map r : X X Y — Q. The composition s o 7 : X -» Z of Q-relations
r:X-»Yands:Y -» Zis defined by

sor(x,z) = \/ r(x, 1¥)&s(y, z).

yeYy

The identity on X for this composition is the Q-relation 1x : X -+ X which sends (x, y) to T when x = y and
to L otherwise. The category of sets and Q-relations is denoted by Q-Rel and the set of all Q-relations from
X to Y is denoted by Q-Rel(X, Y). The theory of category can be found in [1]. For Q-relationr : X - Y,
there is an opposite Q-relation 7° : Y -+ X given by °(y,x) = r(x,y) for all x € X and y € Y. In fact, a map
f:X — Y can be seen as a Q-relation f : X » Y:

ﬂxw={I;V:ﬂ”

others.

and its dual Q-relation f° : Y -» X induced by f : X — Y'is as follows:

me:{I:y=ﬂm

others.

Now we recall some basic concepts about Q-ordered sets. The theory of Q-ordered sets can be found in
many places, for instance [17, 39, 45].

A Q-order on XisaQ-relationr : X + Xsuchthat(1) T < r(x,x)forallx € Xand (2) 7(y, z)&r(x, y) < r(x, z)
forall x,y,z € X. A set X equipped with a Q-order relation is called a Q-ordered set. Usually we simply “X
is a Q-ordered set (X,r)” and write X(x, y) for r(x, y). When it is necessary to specify the Q-order we write
(X,7). Wesay amap f : X — Y preserves Q-order (or Q-order preserving) if X(x, y) < Y(f(x), f(y)) for all
x,y € X. Itis trivial to see that (Q, —) is a Q-ordered set.

Given a Q-ordered set X, define x < y © X(x, y) = T. Then < is a reflexive and transitive relation, hence
a preorder on X. This preorder is called the underlying order of X. X is antisymmetric if X(x, y)&X(y, x) =
T = x = y. A Q-ordered set X is said to be separated if the underlying order on X is antisymmetric.

For any Q-ordered set X and Y, let [X, Y] denote the set of all Q-order-preserving maps from X to Y. For
all f,g € [X,Y], let

(X YI(f,9) = /\ Y(f(), 9(x)).
xeX
Then [X, Y] becomes a Q-ordered set. Specially, for Q-subsets A, B : X — Q, let Sx(4, B) = A,ex A(x) = B(x).
Then (Q%, Sy) is a separated Q-ordered set. Sx(A, B) can be interpreted as the degree to which A is a subset
of B. It is sometimes called the fuzzy inclusion order in [2]. For convenience, Sx is simplified by S in
this paper. For Q-relations, in this paper, we often use the following result: S(r1,72) < S(s o r1,s o 12) and
S(r,12) <S(rpot,rpot)forry,rm: X-+»Y,s:Y»Zandt: W -» X.

Besides Q-order preserving maps, there is another important morphisms between Q-ordered sets,
namely Q-distributors. A Q-distributor ¢ : X+—=Y is a Q-relation ¢ : X - Y such that ¢ o X < ¢ and
Y o ¢ < ¢. Each Q-order preserving map f : X — Y can give rise a Q-distributor f. : X+—Y defined by
folx,y) = Y(f(x),y) forallx € X and y € Y. f. has a right adjoint f* : Y+—=X defined by f.(y,x) = Y(y, f(x))
for x € X and y € Y, here the adjunction f, 4 f* means f. o f* <Y and f* o f. > X. An important connection
between Q-distributor and Q-order preserving maps is given by the fact that ¢ : X -+ Y is a Q-distributor
precisely when ¢ : X X Y — Qs a Q-order preserving map between X¥? ® Y — Q.

Given a Q-ordered set X, the Yoneda embeddingis the map y, : X — [X?, Q] given by y(x)(y) = X(y, x).
The Yoneda Lemma is as follows: [X%,Q](yy(x), ¢) = ¢(x) for all x € X and ¢ € [X7,Q]. From [16], we
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know that another way to read the Yoneda Lemma goes as it follows: for any module ¢ : X -+ 1, seen also
as an element of [X,Q], one has ¢* o (yy). = ¢. In this paper, for fuzzy quasi-uniform spaces, we will
establish the Yoneda Lemma in the later form.

As filter plays a pivotal role in defining the notion of classical quasi-uniformity, in lattice-valued setting
prefilter, T-filter and Q-filter are the three most important lattice-valued filters and the relationships among
them can be found in [9, 10, 22, 24]. Now we briefly describe the concepts of saturated prefilter and fuzzy
quasi-uniformity.

Definition 2.1. (Lowen [31, 32]) Let X be a nonempty set. A nonempty subset ¥ C Q* is called a prefilter
on X if it satisfies the following properties:

(Fl) Tx €TF;

(F2) f Ae F and A < B,then B€ F;

(F3) AABe ¥ forall A,Be F.

Definition 2.2. (Hohle [18]) Let F be a prefilter on X. Then
(1) F is called saturated if it satisfies the following (S):
(S) If B e Q¥ such that \/ ;o S(A,B) = T, then B € 7.
(2) F is called a T-filter if  is a saturated prefilter and fulfills \/ .y A(x) = T forall A € ¥.

Foreach x € X, [x]+ = {A € QF | A(x) = T} is both a saturated prefilter and a T-filter.

Remark 2.3. In fact, the saturation of a prefilter originally introduced by Lowen [33]. Hohle [18] introduced
so called k-condition [18]. Later, it is J. Gutiérrez Garcia [9, 13] who proved that the x-condition and
saturation of prefilters are equavalent. So in the above definition of saturated prefilter, we use the -
condition introduced by Hohle directly.

Definition 2.4. (Hohle [18]) A nonempty subset 8 C Q¥ is called a base of one saturated prefilter on X if it
satisfies the following condition:
(B) VpegS(B,CAD)=TforallC,D e 8.

Every base 8 can generate a saturated prefilter ¥ given by

Fs=1AecQ¥| \/ S(B,A) = T}.

BeB

From the definition of base of saturated prefilter, we know that if there exists C € 8 such that C< AAB
for all A, B € B, then 8 must be a base of one saturated prefilter. Especially, if B is closed for finite meet,
then B is a base.

Definition 2.5. (Lowen [32, 34]for Q = [0, 1] and Hohle [18]) A nonempty subset U C Q¥ is called a fuzzy
quasi-uniformity on X if U is a saturated prefilter on X X X and satisfies the following conditions:

(U0) U € U implies U(x,x) = T forall x € X;

(UC) U € U implies \/yeqy S(Vo V,U) =T.
The pair (X, U) is called a fuzzy quasi-uniform space.

Amap f : (X, U) = (Y,V) is called uniformly continuous if (f X f)~(V) € U for all V € V, where
(f X A)(V)(x1, x2) = V(f(x1), f(x2)) for all x1,x, € X.Note that f° o Vo f(x1,x2) = V(f(x1), f(x2)), so the
equality (f X ) (V) = f°o Vo fishold. Let Q-FQunif denote the category of fuzzy quasi-uniform spaces
and uniformly continuous maps.

In [8], Clementino and Hofmann introduced the concept of “prorelation” based on classical filter, and
they viewed the quasi-uniform spaces as lax proalgebras. In [42], Yue and Fang generalized the concept of
prorelation to T-filter setting. By adopting their ideas, we can give the corresponding concepts according
to saturated prefilter similarly.
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Definition 2.6. Let ® CQ-Rel(X, Y). If @ is a saturated prefilter on X X Y, then @ is called a prorelation from
X toY, denoted by @ : X-e- Y.

Remark 2.7. (1) Any Q-relation r: X -+ Y can be seen as a saturated prefilter by its upperset T r = {s : X -+
Y |s > r}. We usually simply T rby r: X-e> Y.
(2) Let ¥ and @ be two saturated prefilters. Define the composition @ o W as follows:

oW :=(W[\/\/S(@oy W) =T

Ped PeV

ie,{¢po|¢ped,1pe W}isthebase of P o W. If B, is a base of ® and B, is a base of W, then we know

DoW = (W] \/ \/5(¢o¢,W):T}.

q’)EBl IPEBZ

It is routine to check that Wo (Po W)= (Wod)oWforWV: X-e> Y, D : Y- Zand W : Z-» W. For the
identity Q-relation 1x : X - X, 1x : X-e- X is the identity of the composition of prorelations. Hence sets
and prorelations form a category, denote it by PQ-Rel.

Let PQ-Rel(X, Y) denote all the prorelations from X to Y. The Q-order Y on PQ-Rel(X, Y) by letting:

VO, W € PQ-Rel(X, Y), Y(®,V) = A \/ S(¢, ).

eV ped
It is obvious that the underlying order of Y is as follows:
YO,V € PQ-Rel(X,Y), P<V¥ < ¥ C ].

Hence, if B, is a base of ® and B, is a base of W, then ® < W when B, C B;. Note that the above definition
make sense whenever @ and W are sets of Q-relations.

According to the above discussion, a fuzzy quasi-uniformity U on X can be seen as a prorelation
U : X-> X satisfies the following condition:

Ix<U, UoU<U.
Similarly, a uniformly continuous map f : (X, U) — (Y, V) can be seen as amap f : X — Y such that
UL fPoVof orequivalently foUU <Vo f.

Now we have described fuzzy quasi-uniform space into the form of enriched category. Hence, we can
use the categorical method to study fuzzy quasi-uniform spaces.

Definition 2.8. A prorelation @ : (X, U)-e— (Y, V) is said to be a promodule if it satisfies
DPoULD, Vod<D.

For each fuzzy quasi-uniform space (X, U), U : (X, U)-e~ (X, U) itself is a promodule. For promudule
D (X, U)== (Y,V), since d < GoU is always true, then Do U = ® holds. Similarly, Vod = ®. Itis easy to
see that the composition of promodules is still a promodule and U acts as the identity of the composition.
Let PQ-Mod denote the category of fuzzy quasi-uniform spaces and promodules.

Definition 2.9. For two promodules @ : (X, U)-- (Y, V),V : (Y, V) (X, U),if Vo ® > Uand PoW <V
hold, then @ is called the left adjoint of W or W is called the right adjoint of ®, denoted by ® 4 W.
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Each given uniformly continuous map f : (X, U) — (¥,V) can determine a pair of promodules f. :
(X, Uy~ (Y,V)and f*: (Y, V) (X, U) as follows:

xbydy f=vor

YyS4yLx pefpov

Remark 2.10. In fact, the above V o f should be V o (1 f). The readers can easily check that {V o f |V € V}
and {Vog|V €V, g> f} generate the same prorelation. Hence we use the form V o f. Similarly, we use
f° o Vinstead of (T f°) o V.

For 1x : (X, U) — (X, U), clearly, (1x).=(1x)*=U. Given two uniformly continuous maps f : (X, U) —
Y, V),g:(Y,V)—> (ZW),ithas(go f). = g.o f.and (go f)* = f* o g*. These operations define two functors:

(-). : Q-FQunif — PQ-Mod

and
(-)* : Q-FQunif — PQ-Mod”.

Proposition 2.11. Let f : (X, U) — (Y, V) be a uniformly continuous map. Then f. 4 f*.
Proof. It is straightforward to check U < f*o f,and f.o f*<V. O

In particular, let (X, U) be a fuzzy quasi-uniform space and # : * -+ * be the unique fuzzy quasi-uniform
structure on the singleton {#} (in fact, # = {W € Q™ | W(x,#) = T}), denoted by 1 = ({*}, P). The uniformly
continuous map x : 1 = X(+ — x, x € X), defines two adjoint promodules x, 4 x* : X-e= 1, where x, = U o x
and x* =x° o U.

Definition 2.12. ([8]) Let f : (X, U) — (Y, V) be a uniformly continuous map. Then:
(1) f is said to be fully faithful if f* o f. = U;
(2) f is said to be fully dense if f, o f* = V.

Proposition 2.13. Let f : (X, U) — (Y, V) be a uniformly continuous map. Then:

(1) f is fully faithful if and only if f° o Vo f <U.

(2) fis fully dense if and only if V < Vo fo f°oV.
Proof. (1) f is fully faithful if and only if ¢ = f* o f. = f° oV o f. Since f is a uniformly continuous map, it
always has U < f° oV o f. So (1) is obvious.

(2) fis fully dense if and only if V = f. o f* =V o fo f° o V. Since f. 4 f*, it always has f. o f* <V, so
(2) is obvious. [

3. Yoneda embedding in fuzzy quasi-uniform spaces

When studying the completion of fuzzy uniform spaces, one can construct the completion (X, ) of
(X, U) in the following way (see [34, 42]):

X = {F | F is a minimal Cauchy T-filter}
and {U | U € U} is the base of U, where

U:XxX— Qis given by U(F,G) = \/ \/ S(Fx G, U).
FeF GeG



Y. Wang, Y. Yue / Filomat 35:12 (2021), 3983—4004 3989

From Lemma 4.2 of [42], we know that there is a close relation between Cauchy pair T-filters and adjoint
promodules. Hence, when using promodules as the basic tool to define the completion, we may consider
the following construction for the right adjoint promudules:

aewy, wo) = \/ \/ S0y, ),

q52 E\y; l,’)1€\y1

where W} is the left adjoint of W,. The value of U(W1,¥,) measures the degree to which W} o W is smaller
than U. Since \I’; oW; < Uis equivalent to W < W, 0 U, we can generalize U from right adjoint promodules
to promodules as follows (¥, ¥,) = /\llJze‘I’z \/llne@l S(¢1, 1, o U) by using W < W, o UL

From the above motivation, now we can describe a Yoneda embedding in fuzzy quasi-uniform spaces.
For a given fuzzy quasi-uniform space X = (X, U), we consider the following set:

PX ={¥: X-e> 1|V isapromodule}
For a Q-relation U : X -» X, it is natural to lift U to a Q-relation on PX:
U(®, W) =Y (D, W o U).
where W o U = {¢p o U | p € ¥} and then we equip PX with U

U=(H|\/ s@H=T),

Ueld

Here we first need to check that U is a fuzzy quasi-uniformity on PX.
Lemma 3.1. (PX,U)isa fuzzy quasi-uniform space.

Proof. Stepl: we want to prove that {U | U € U} is a saturated prefilter base.
Itiseasy tocheck U<V = U < Vforall UV € U. Now we can assert S(U, V) < S(U, V). In fact,

S, V) = A U(®, W) — V(d, W)
O, WePX
= A Y(D, W o U) » Y(®,Wo V)
O,WePX
> \ YWl woV)
WePX
> S(U, V).

(B): For C, D € U, since U is a fuzzy quasi-uniformity;, it follows that

\/ $(B,CAD)>\/S(B,CAD) > \/ S(B,CAD)=T.
BeU BeU BeU

Step 2: we check that U fulfills (U0) and (UC).
(U0): It is easy to check ﬁ(\y, W) = T for all U € U. Hence, for each H € U, we have

T= v SU,H) < \/ U(W, W) - H(V, W) = H(V, V).
Ueld Uel
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(UC): We first prove Vol <Vol. For v, ¥, € PX,

Voll(w,Ws) = \/ U, ©)&V(@,72)
DePX

= \/ YW, ® 0 L)&Y(®, W0 V)
dePX

< \/ YW, @0 L&Y (@0 U, W0 Vo L)
dePX

< T(\I’l,\yz oVo U)
= Vo l(¥;,¥,).

Then for each ‘H € ’ZI, we have

T=\/SUH)

Ueld

= \/(\/ S(V o V,U)&s(U, H)

UeU Vel

< \/ \/ s(VoV, l&sd, H)
UeU VelU

< \/ \/ S(VoV,H)

Uel Vel

< \/ S(VoV,H)
Vel

< \/ S(A o A,H).

AU

In conclusion, U is a fuzzy quasi-uniformity on PX. O

Lemma 3.2. Let (X, U) be a fuzzy quasi-uniform space, @,V € PX and B, D be the bases of D, \V respectively. Then
forevery U € U,

a@,w)= A\ \/s@poy= A\ \/s@you.

YeV ped YeD ¢peB

Proof. Firstly, we check V gcq S(¢, Yol) =V yep S(, Pol). Itisobviousthat V yeq S(, Pol) =V gep S(, Yo
U), and V yeqp S(p, 1P o U) < Ve S(¢, 1P o U) is obtained by

\/ @ potn=\/(\/ SBe)&S@,pol) < \/SB you.

Ped Ped BeB BeB

Secondly' we prove /\we\y \/¢EB S((P/ IP °© U) = /\lpeD \/qheB S((P, Hb °© U). On one hand, /\lpe\y \/qbeB S((P' lab °
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U) < /\lpeﬂ \/(Peg 5(¢p, 1 o U) is obvious. On the other hand, we have

AV S@youy= N\IT—\/S@,pow)

YeW peB Ye¥ PeB

= ALV sw,y) = \/ $@,p 0w

e q/ D PpeB

= N\ AW, 9= \/S@,yowl

Y eD pe¥ PeB

> N\ N\ VISW,9) > S,y o ]

t// eD VeV peB

> \ A\ VIs@ ool > s@,pow)

V' eD YeV peB

> N\ \/s@vow,

w’ eD peB
as desired. [

In the following part, we construct the Yoneda embedding in fuzzy quasi-uniform spaces with the help
of PX.

Proposition 3.3. (Yoneda embedding) Let (X, U) be a fuzzy quasi-uniform space. For each x € X, the assignment
x > x* defines a map vx : X — PX. Then

(Dyx: (X, U) - (PX, y) is uniformly continuous;
(2) yx : (X, U) = (PX, U) is fully faithful.

Proof. (1) We want to show U < p5 o Uo D, it suffices to check {p§ o Uo pyx |Ue U} CU. ForeachU € U,
by Lemma 3.2, we have

Vr,ye X, UK,y = A \/ S(x°oD,y° 0 Col) > \/ S(x° o D, y° o U).

CeU DeU DeU
Then
\/ 8(V, 5 0 Uony)
Vel
=\/ A\ Ve - uey)
Vel x,yeX
>\/ A\ vy - \/ s oD,y ou
Vel x,yeX DeU
> \/ N\ Vixy) > S o V,y° o)
Vel x,yeX
= \/ /\ Vix, n&V(z,x) = U(z,y)
Vel x,y,zeX
=\ A\ Veviey - U@y
Vel y,zeX
= \/ S(VoV,U)
Vel

=T.
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So we obtain \/yeq; S(V, v © Uo yx) = T for all U € U, this implies v§, o Uo nx € U by the condition (S).
(2) According to Proposition 2.13, we need to prove n3 o U o yy < U, which is equivalent to

Ue U = UEl);OaOUX:{W| \/S(n;o;onX,W)ZT}.
Vel
For V € U and x, y € X, we have

V(' y) = /\ \/S(xooD,yOOWoV)

Weld DeU

<\/ S oD,y oVoV)
DelU

= \/ /\D(z,x) - VoV(zy)

DelU zeX

< \/ Dlx) = Vo Viy)
DeU

=VoV(x,y).

So we obtain p3, o Vo Px < VoV, then

\/ SO0 Vonx, )= \/ SVovt)=T.
Vel Vel
[

From [18], for each fuzzy quasi-uniform space (X, U), we can define (=) : Q¥ — Q%, A — A by
VyreX, A(x)= /\ \/A(y)&l,[(x, »&U(y, x).

UelU yeX

Remark 3.4. In classical quasi-uniform space, the above operator will be a topological closure operator.
But in general lattice-valued setting, (-) : @ — Q¥ is not necessary a topological closure operator.Q is also

joint continuous, i.e., V is distributive over directed meets, we can assert that E : Q¥ 5> Q¥ mustbe a
topological closure operator.

Theorem 3.5. (Yoneda Lemma) Let (X, U) be a fuzzy quasi-unform space. For each ¥ € PX, then
(1) W =" o (9x).;

(2) if p (Tx)(W) = T, then W < W o (px)..

Proof. (1) Since W* o (yx). = W° o UoUo px = Wo Uo Yx, we need to check W C W° o Uo Yx. Thatis to

say Vyey S(W° o Uopx,P) = T for all ip € W. Since W is a promodule, it follows that W o ¢ < W. Hence,
VeV, \/(Pg\y VueuS(@o U ¢)=T. Foreach¢p e ¥, x € X,

U(x', W) = A \/ S(x° oV, o U)

Yew Vel

< \/S(x°0\/,¢OU)

Vel

= \/ /\V(Z,x) — ¢ olU(z)

Vel zeX

< \/ V(x,x) = ¢ o U(x)

Vel

= qb o U(x)
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Therefore,

=\/ \/ S@otp) < \/ S olony,y).

UeU peV Uetd

(2) Since ny (Tx)(W) = T, it follows that

T = (Tx)(V)

=\ ox (Mo&U(w, H&U(i, v)
UeU AePX

- /\ V \/ Tx(0)&U(Y, )&U(A, W)

UeU AePX yx(x)=A

= A\ \/ U, ox(@)&Uvx (), W)

UeU xeX

= A\ v (W, x)&U (", ).
UelU xeX
That is to say V ,ex U(\I/ X )&U(x W) =Tforall U € U. NowletU € U, then Vyeqy S(Vo V,U) = T.

Since yy is uniformly continuous, we have p§ o Vovx € U for V € U. Then Ve S(U1, 0% 0 Vopx)=T.
Moreover, \/1,eq; S(Uz o U, Uy) = T. So we have

T=\/1V (\/ 8o Uy, Un)&S(Us, b5 0 V 0 9x)1&S(V o V, L)
Vel el UeU

=\ VS o Uy, t)&sS(Ui, v 0 V o 0x)8&S(V o V, L)
Vel U eU UeU

<\ S0t v5 0 Ve n)&S(Vo v, L)

Vel U,eld
< \/ \/ S(Uao Uy, v 0 Voyy&s(VoV,U)
Vel Uzew

< \/ \/ S0 s, 50V onx)&S(VoV,U)

Vel UzEW
< \/ \/ S(Ua2 A VYo (U A V), b5 0 V o ny)&S(Ux A V) o V, )
Vel U,eUd
< \/ \/ S(Uoo Un, v} 0 Vo 0x&S(Uo o V, 1)
Vel UyeU
=\/ VI ool y) - Vi, &l /\ Uyo Vi, ) - U@, W)]
Vel UpeU x,yeX O,V ePX

<\ VAN oo Uty - Ve, y &l o V@, W) - U@, W)

Vel UpeU x,yeX O, ¥’ ePX

<\ Aot y) — Vi, y)l&lly o Vix', W) - U, )]

Vel UpelU x,yeX

Vo N oo o y) = Vi, y)I&dVE, y)&lo(y', 0) — U, P)
Vel UpelU x,yeX

Voo o ity w) - e, )
UpeU x,yeX

= \/ AV oo Un(x, y&ello(y', W) - U(x", W)).

UpeU xeX yeX

IA

IN
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According to the above formula, then we have

\/ Sy, ¥° o Uo Dx)
eV

=T \/ 5@ W o lony)

Ppew

= \/ A\ Uo o Uox, n)&lo(y’, W) — UG, W) - \/ S, W o U o)
UpeU xeX yeX pew

= A\ LAV Uo o Ut y)&lo(y', ¥) - U, ¥) - \/ S, ¥° 0 Uony)]
UpeU xeX yeX pew

> A\ VA oo U y)&lo(y', ) — U, @)1 - [/\ v(x) - U, W)l
UpeU YeV¥ xeX yeX xeX

>

AV ALV Uo o Uo(x, p&Uo(y', %) - U, W) = [9(x) = UK, ¥)]

UpeU yeV xeX yeX

\%

AV Alp@ - \/ Uo o U, i@y, 9)]

UpeU yeV xeX yeX

AV AV v - W o Uotx, oty w)

UpeU ¢eV xeX yeX

A VAV @ = Uy o U, )&loty, W)

UpeU eV xeX yeX

AV V A@ - U o Ugtx, )&lo(y', W).

UpeU yeX PpeW xeX

v

v

v

Furthermore, we have

T= A VW, y)&ly, ¥)

UpeU yeX

A VIA V sw.y o Vo toty, )]

UpeU yeX Vel eV

A VIV 8@, y° o Uy o Up&lo(y', W)]

UpeU yeX yeWVW

AV VO e = Uo o U, y)&lo(y', W)

UpeU yeX peW¥ xeX

AV Vv = U o Ugtx, y)&lo(y', ¥).

UpeU yeX peW xeX

IN

IA

So we obtain \/1#6‘1’ Sy, ¥° o Uo vx) = T for each U € U, which implies {W¥° o Uo yx | U e U CW.
Therefore, W < W° o (Z{ opx. [

Proposition 3.6. Let (X, U) be a fuzzy quasi-unform space and \V € PX. Then WV is a right adjoint if and only if
0y (Tx)(W) = T.

Proof. Sufficiency: If ' (Tx)(W) = T, then W = W* o (yx). by Theorem 3.5. Let ® = (yx)* o W.. We can assert
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(®:1-e> X)4 (¥ : X->1). In fact, on one hand

QoW =(yx) oW.oW o(yx).

< (nx)" © (vx)-
= U (since vy is fully faithful).

On the other hand, note that

Wod =W o(yx)o(nx) oW,
:Wooaoaonxo(nx)ooﬂoaow
:\I’OO’Z[OI)XOI);(O(Z(O‘I’.

Forany W,V e U, let U = W A V. Then we have U € U and

W oWo Dx 0Dy © VoW = \/ V(\P,x*)&W(x*,W)
xeX

> \/ U, )&l v)

xeX

=T (by px(Tx)(W) = T).

Then W o ® > 1, as desired.

3995

Necessity: Suppose W is a right adjoint and @ is the left adjoint to W. We want to show that for each

UeU,ithas

\/ U(W, x)&U(x', W) = T.
xeX

Firstly, on account of ® 4 W, we have @ o W < U and W o ® > 1. Then \/456‘1’ \/lpe\y S(poy,U) =Tby

DoV <UY,ie,
=\ )\ ¢t@&p() - Uz x)

Pped eV x,zeX

=\/ /60~ wea) - e )
Ped eV x,zeX

=\/ VA o@ - [\ @@ - Ui
GeD PeW xeX zeX

=\/\/ s, A\ @@ - U -)
Ped peW zeX

<\/ 8@, \/ \w@ - ue-)).

Ped YeW zeX
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Hence ¢)b € @, where qbb = Vyew Nzex(P(z) = U(z, —)). And then we have

U(w,x) = A \/ S(ih1,x° 0 Vo l)

Vel eV

=N\ V Avi@-veuey

Vel eV zeX

= /\ \/ /\[1/’1(2) - \/ U(z, )&V (y, x)]

Vel eV zeX yeX
> \/ A\ - UG x)
1€V zeX
= ¢'(v).

Since U is a fuzzy quasi-uniformity, ithas \/yeq, S(VoV, U) = T. Furthermore, by Ve \V yew S(¢ 09, V) =
T, we have

T=\/(\/ \/ S ov,v)&syov,u

Vel ¢'ed ' €W

- \/ \/ \/ S(¢ oy, V)&S(V o V, L)

Vel ¢/ ed ' eW

< \/ \/ \/ S(¢ o) 0V, Vo V)&S(V o V,U)

Vel ¢ ed ' €W

<\ V Vs@ovovu

Vel ¢’ ed ¢’ eW

= \/ \/ \/ /\ ¢ ot o V(y,z) — U(y,z)

Vel ¢ ed ' €W y,2€X

=\ VAV Vo0& 0&d @) - Uy,2)

Vel ¢’ ed ' €W y,2€X xeX

= \/ \/ v A P (x) > (V(y, )& (z) > U(y,2))

Vel ¢’ ed )’ €W x,y,2z€X

=\ V Alv®- A VEn& @) - Uy,2)]

VeU ¢ e® ' eW x€X yizeX

<\/ Avw-\ "\ A\ V&' @) - Uy,2)]

Y €W xeX Vel ¢’ ed y,zeX

- \/ s, \/ \/ /\ (V(y, )& (z) = U(y, 2))).

Y eV Vel ¢’ ed y,zeX
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We can obtain lp*’ € W, where 1//" = Vveu Voeo Nyzex VY, )&’ (z) — U(y, z). Moreover,

fl(x*, W) > l~l(‘I’ o®ox*, W) (since Wodox">x')

=N\ S@ugzow

€W preWoPox+

= /\ \/ \/ \/S(¢’O¢/OXOOV¢ZOU))

P2e¥ ) eW ¢’ ed VEU

> A\ S@aeg oxoVyaol

P2V ¢’ ed VeU

> v VS@’oxOoV,U)

¢'ed Vel

= \/ \/ /\ V(y, )& (z) — U(y, z)

¢ ed Vel y,zeX

=P’ (x).

Finally, we know ¢ o ¢" > 1 from W o @ > 1. This is to say V,cx ¢"(x)&y"(x) = T. And with the above
calculation, it follows that

\ Uw, &l(x, w) > \/ ¢" &y’ (x) = T.

xeX xeX

From the arbitrariness of U € U, we know v (Tx)(W)=T. O

For a fuzzy quasi-uniform space (X, U), let RX denote the subset of PX consisting of the right adjoint
promodules ¥ : X-— 1. Then RX is also a fuzzy quasi-uniform space (with fuzzy quasi-uniformity
inherited from PX) and the Yoneda embedding nx : X — PX factors through RX. For convenience, for
every fuzzy quasi-uniform space (X, U), write

ry: X = RX

for the map obtained by restricting the codomain of yx : X — PX.
Corollary 3.7. For each WV € RX, then ¥ = W" o (1x)..

In general, the Yoneda embedding vy is not fully dense, but rx : X — RX fulfills.

Lemma 3.8. Amap f: (X, U) — (Y,V) is fully dense if and only if f=(Tx)(y) =T forally €Y.

Proof. Necessity: Let f : (X, U) — (Y,V) be fully dense. By Proposition 2.13, we have V < Vo fo f°o V.
Since 1y <V, thenwehavely < Vo fo f°oVforall V€ V. Thenforeachy €Y,

T=1v(y, < )\ VofofoViym= N\ \/ Vi, FO)&V(f(x), ) =F(Tx)().

Vev VeV xeX

Sufficiency: Suppose f~(Tx)(y) = T forally € Y. Weneed to show V < Vo fofoVor{VofofooV|
VeVICV. LetVeV. ThenT = Ve S(Wr o Wy, V) and T = Vyy,eqp S(W2, V). By T = f=(Tx)(y) for
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ally € Y, weknow 1y < Wo fo f°oWforall We V. Since V is a fuzzy quasi-uniformity, we have

T= \/ S(W1 (e} Wl,V)
WheV

\/ S(W1 0 Wy, V)&T
WheV
\/ S oWy, V)& \/ S(Wa, V)
Wle(V WzE(V
\/ S(W1 0 Wy, V)&S(Wo, V)

Wle(V WzE(V

\/ S(W o W, V)&S(W, V) (V is closed for finite meets)
WeV
< \/ SWoWofof oW, Vofof oW)&S(Vofof oW, Vof of*oV)
WeV

IN

< \/ S(WoWofof oW, VofofoV)
WeV

< \/ S(W,Vofof°oV).

WeV

Therefore, Vo fof°oV € V as desired. [
Theorem 3.9. The map vx : X — RX is fully dense.

Proof. 1t is obvious by Proposition 3.6 and Lemma 3.8. [

4. Completeness and completion of fuzzy quasi-uniform spaces

In this section, we study the applications of Yoneda embedding and we focus on the completion of
fuzzy quasi-uniform spaces. In [42], Yue and Fang used pair T-filters to study Cauchy completeness of
fuzzy quasi-uniform spaces following the idea of Lindgren and Fletcher in [30]. For two T-filters IF and G,
(F,G) is called a pair T-filter in [42] if \/,.x F(x)&G(x) = T for all F € F, G € G. Similarly, for two saturated
prefilter (¥,G), we can also define pair saturated prefilter as follows: (¥,G) is called a pair saturated
prefilter if \/ .x F(x)&G(x) = T forall F € ¥ and G € G. In this way, ¥ and G must be T-filters since
T = Vieex F0)&G(X) £ Viyex F(x) and T = V,ex F(0)&G(x) < V,ex G(x) for F € ¥ and G € G. Hence the
results about completeness in [42] based on T-filters are also valid for saturated prefilters. For convenience,
we list the concepts and results as follows (Definition 4.1-Theorem 4.5).

Definition 4.1. Let (X, U) be a fuzzy quasi-uniform space.

(1) A pair saturated prefilter (¥, G) on (X, U) is called a Cauchy pair saturated prefilter if \/ re¢ \ geg S(FX
G, U)=TforUe U, where F X G: X xX — Qis defined by F x G(x, y) = F(x)&G(y) for all x, y € X.

(2) A pair saturated prefilter (¥, G) on (X, U) converges to xg € X if (L, Ry,) € (F,G), where L, and
Ry, are the saturated prefilters generated by the bases L., = {U(—, x¢) | U € U} and Ry, = {U(xp,—) | U € U]},
respectively.

Lemma 4.2. Let (X, U) be a fuzzy quasi-uniform space. ® 4 V¥ : X-e— 1 is a pair adjoint promodule if and
only if (Fw, Go) is a minimal Cauchy saturated prefilter on (X, U), where Fy and Go are the saturated prefilters

(=) |y € W}and {P(+,-) | p € D}.

In fact, the condition W o ® > 1 guarantees that (Fy, Go) is a pair saturated prefilter on (X, U), oW < U
ensures that it is a Cauchy saturated prefilter, while the condition of @, W are promodules assures that it is
minimal.
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Definition 4.3. A fuzzy quasi-uniform space (X, U) is called Cauchy complete if each Cauchy pair saturated
prefilter on (X, U) converges.

Since we have described fuzzy quasi-unform spaces as enriched categories. Therefore, we can study
the completeness of fuzzy quasi-unform spaces by using pair adjoint promodules.

Definition 4.4. A fuzzy quasi-unform space (X, U) is said to be Lawvere complete if for each adjoint
promodule @ 4 W : X-e- 1, there exists x € X such that ® = x,, W = x".

It is easy to see (X, U) is Lawvere complete if and only if rx(X) = RX.
Theorem 4.5. (X, U) is Cauchy complete if and only if (X, U) is Lawvere complete.

Now we begin to study the completion of fuzzy quasi-uniform spaces. First, we recall the definition of
Ty separability of fuzzy quasi-uniform space ( [40] Theorem 5.1). (X, U) is said to be Ty separated if there
is some U € U such that U(x,y) < T or U(y,x) < T forall x # y.

Proposition 4.6. For a fuzzy quasi-uniform space (X, U), the following statements are equivalent:
(1) (X, U) is Ty separated;
(2) x : X = PX is injective;
(3) For any uniformly continuous maps f,g:Y — X, if f* =g, then f = g;
(4) For any uniformly continuous maps f,g:Y — X, if f. = g., then f = g.

Proof. Firstly, we show (1) & (2).
(1) = (2) It suffices to show that x # ¥ = px(x) # vx(y). Since

Dx(x) # 9x(y) @ X" # '
Sx’ocU+Yy o U
exolUlUeU)gy oUor{y’o UlUeUILx o U
oUeUx*ocU¢y’oUory’o Ugx"oU

Let x # y. Since (X, U) is Ty separated, there exists U € U such that U(x, y) < T or U(y, x) < T. Without
loss of generality, assume that U(y, x) < T. Then we have x° o U ¢ y° o U. In fact, if x° o U € y° o U, then

T=\/Swovxo)=\/ /\Viz - U< \/ VY, y)— Uy, 0=Ul,».

Vel VellzeX Vel

This contradicts to the hypothesis. So we obtain x* # v, as desired.
(2) = (1) Let x # y. We assume that there exists Uy € U such that x° o Uy ¢ y° o U. Then we have

\/ S oV,xoly) <,
Veu

ie.,

\/ /\ Viz,y) = Up(z,x) < T.

Vel zeX

Next we can assert that there exists some Vy € U such that Vy(y,x) < T. If V(y,x) = T for all V € U, then
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we have

T= \/ S(V o V,Up)
Vel

< \/ /\ Vo V(z,x) = Up(z,x)

Vell zeX

= \/ A\ Ve a&Via,x) - Uz, )
Vel zeX aeX
<\ A\VG»&V(y,x) = Uo(z )

Vell zeX

= \/ /\ V(z,y) — Up(z,x)(since V(y,x) = T).

Vel zeX

This contradicts to the hypothesis. Therefore, there exists Vo € U such that Vy(y,x) < T.

Secondly, we prove (2) < (3).

(2) = (3) Suppose that f,g : Y — X are uniformly continuous maps and satisfy f* = g*. We need to
check that Yy € Y, f(y) = g(y). Since f* = g*, then y* o f* = y* o g*, i.e. f(y)' = g(y)*. Then f(y) = g(y) on
account of the injectivity of px.

(3) = (2) Since for any x € X, x : 1 — X is a special uniformly continuous map, this proof is obvious.

Finally, since a promodule has at most one left (right, resp.) adjoint, then f* = g* © f. = g.. S0 (3) & (4)
is obvious. [

Let (X, U) be a fuzzy quasi-uniform space. If A € Q* satisfies A = Tx or A(x) = T forall x € X, then A is
called dense in (X, U). In particular, Z C X is dense in (X, U) if Tz(x) = T forall x € X.

A Ty separated and Cauchy complete fuzzy quasi-uniform space (X, U°) is called the Ty completion of
(X, U) if there exists a uniformly continuous map cx : (X, U) — (X7, U) satisfies the following properties:

(I) ¢ (Tx) or Teyx)isdensein Y, i.e., ¢/ (Tx) = Ty;
(II) whenever (Y, V) is Ty separated and Cauchy complete, and f : (X, U) — (Y,V) is a uniformly
continuous mapping, then there is a unique uniformly continuous map f* : (X, U%) — (Y, V) such that

frrex=f.

Remark 4.7. By Lemma 3.8 and above definition of dense, we can see that a map f : (X, U) — (Y, V) is
fully dense if and only if f,”(Tx) is densein Y.

Now we consider the subspace RX of PX, where its fuzzy quasi-uniformity is the restriction of U. For

convenience, we still use U instead of Uu [RX. In the following, we will show that (RX, (l/[) is just the Ty
completion of (X, U).

Lemma 4.8. (RX, (Z{) is Ty separated.

Proof. Let W1, W, € RX with W # W,. From Corollary 3.7, we know Wy = W] o (1), and W, = W} o (rx)..
Then W] # W), by W # W,. Therefore, (RX, U) is Ty separated from Proposition 4.6. []

Lemma 4.9. (RX,U) is Cauchy complete.

Proof. 1t suffices to check that for each adjoint promodule @ 4 W : RX-e— 1, there exists ¢ € RX such that
VY =19¢"and ® = .. Let

Y=Wo(rx).: X85 RX o> 1 and ¢ = (1x)' oD : 1 o> RX 63 X.
It is easy to see ¢ - 1, then 1 € RX. Next we prove W = ¢*. Since i € RX, it follows that i) = 1" o (rx). from
Corollary 3.7. Hence W o (rx). = 1" o (rx).. Since rx is fully dense, we have W = ¢*. Then by ® 4 ¢*, ¢, 4 ¢*
and the uniqueness of left adjoint, which implies ® = 1.. O
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If (X, U) is a Ty separated and Cauchy complete fuzzy quasi-uniform space, then (X, U) = (RX, U). In
fact, since rx(X) = RX, it follows that ry is surjective. We already know that ry is uniformly continuous and

injective. To show (X, U) = (RX, ‘L{) We still need to show 13" : (RX, U - ) = (X, U) is uniformly continuous.
On account of (13')° o U o 13! (x*, y*) = U(x, y) and U(x*, y*) < U o U(x, y) for U € U and x, y € X, we have

\/S(V (tx) o Uory) > \/s(VoV,u):

Vel Veld

Hence (13)° o U o 13! € U. Therefore, 13! is uniformly continuous. Especially, if (X, U) is a Ty separated
and Cauchy complete fuzzy quas1—un1form space, (X, U) itself is just the T completion of (X, U).

For a right adjoint promodule @ : (X, U)-e- (Y, V), its left adjoint is denoted by ®. Then Do ® > V
and Do ® < U. We equip RX with the structure U ={A| Vueu S(U,A) = T}, where U(¥q,W¥,) =
\/lpze\yz \/4)15‘1’1 l]bz o ¢1, U) for all v, ¥, € RX.

Lemma 4.10. (Zl =qU.

Proof. We first check U < U for all U € U. Tt suffices to prove U(\Pl,‘lfg) < U(\Ifl,\]é’z) for all W, ¥, € RX.
For each 1{12 € \1/2 and i, € W,, then we have ¢, o 1/;2 >1byW,o0 ‘112 > 1. Then

\/ S@Waey, )< \/ SWsoprops, sl

11[)16\111 ¢1€\y1
< \/ S 20U,
1/;16\1’1
We have

(v, ¥,) = \/ \/ S(thy 0y, U) < /\ \/ S(1, 2 0 U) = U(Wy, Vo).

U,eW, Y1€¥1 V€W, Y€V
Therefore, {U | U € U} C U. This is to say U < U. Now, we prove the opposite direction. We first check
that U < U o U. Since W, o W, < U, it follows that V@e@ \/wze\pz S(i2 o Y, U) = T. Then we have

Uo U, Wo) = \/ \/ S@2ows, U) > Uo U, W)
UheW, Y2tz

=\ Srepath— \/ \/ S@aoys, ol

UreW, Y2t Pre®, P1€V
> A\ (\/ S@aopa,t) > \/ S@opn,Uow)
;b;e\/y\z 11[126\1’2 l})le\yl

= A /\ VS(@°¢21U)—>S(@owl,uoU)

@qu\z l,UzE\IIZ 1P1€\I/1

> A A\ S@aovrolUol) > SEnoy, Uoll

@qu\z 11[)2€\I/2 1#1 E\Ill

= /\ /\ \/S(@Ol#l,@oli'zou)

@E(y\z 1102€\p2 Ebl E‘I’l

>\ Swuyaot

I/Jz E\Ijz 1/)16\111
= U(W, ¥2).
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And it is obvious that S(U, V) < S(U, V), then

T= \/ S(VoV,U) < \/ SV, < v S(V, 1.
Vel Vel Veu
Therefore, (U | U € U} C U SoU<U O
Proposition 4.11. For each right adjoint © : (X, U)-e— (Y, V), the map

RO: (RY,V) > RX,U), Vo TVod
is uniformly continuous.

Proof. From Lemma 4.10, we need to check that G < R®°o@{oRD. It suffices to prove the base {RD° o UIoR® |
UeU)CV. Since®o® < U and V o ® < D, we have

T=\/ VO VSV od, en&s@e s, U

Fed PE® VEV ¢’ e

=\/ \V Vs(ed, p)&s@oo,u

D P, €@ VEV

<\ \/ V/8@oved,dop&siod U

$ed ¢, €0 VEV

<\/ 'V Vs@eovee,u.

$ed ¢’ @ VEV
Furthermore,

\/ S(V, R®° o U o RD)
VeV

V(W,Wy) — U(W; 0 D, W, 0 D)
VeV W,,WV,eRY

VALYV s@aop, )=\ \/ s@opw

VeV ¥, ¥, @Eq’\z 1€V EE\IEO\(D peW 0d

=\ ALV V s@opn=\/ \/ \/ \/s@opropiod,u)

VeV W, ¥, J,;E\ffz Ure¥ :ﬁea ,T[,;e\ffz P1e¥ ¢’ ed

2\/ /\ /\ /\[S({b\zogbl,V)e\/\/S(ao{b\zolplogb,,ll)]

VeV WV, ¥, I/}\ZE\/I'TZ lpl e¥, aea (‘/)’ ed

>\ A ANV SWop,V)55@odopiod, )

VeV W, ¥, Q)\E\E €W 565 ¢’ ed

>\ A A ANV S@edzopod goved)=sGogaopioq,

VeV Wi, W2y, L/JZE\PZ Pr1eWs 5 ()ECD P ed

>\/\/ \/s@oveq,u

VeV hed ¢’ €@

=T.

By the above formula, we have R®° o UoRDeVforallUeU. O
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Let Q-CSepFQuinf denote the category of Tj separated and complete fuzzy quasi-uniform spaces. From
Lemma 4.8, Lemma 4.9 and Proposition 4.11, we can define the functor F : Q-FQunif — Q-CSepFQuinf as
follows: —

e For (X, U) € Q-FQunif, F(X,U) = (RX,U); _ _

e For uniformly continuous map f : (X, U) = (Y,V), E(f) : (RX,U) — (RY, V) is given by F(f) =
R(f)= ()
Theorem 4.12. F : Q-FQunif — Q-CSepFQuinf defined above is the left adjoint of the inclusion functor i :
Q-CSepFQuinf — Q-FQunif.
Proof. It is easy to see that family {rx : X — i o F(X) = RX}x is a natural transformation since

E(f) orx(x) = F(f)(x") = x" o f* = f(x)" = ry(f(x))
for each uniformly continuous map f : X — Y and x € X. To show F 4 i, it suffices to show there exists
a unique  : (RX, iv{) — (Y,V) such that f = h o rx for each (Y,V) € Q-CSepFQuinf and each uniformly
continuous map f : (X, U) = (Y, V).
Step1 Existence: Since (Y, V) is Ty separated and Cauchy complete, we have (Y, V) = (RY, (T/) and ry is
the isomorphic morphism. Let i = 17! o F(f). Then I is the desired map.

Step2 Uniqueness: Suppose k : (RX,U) — (Y,V) is another uniformly continuous map such that
f =korx. Weneed to show I = k. If h # k, then there exists Wy € RX such that h(\Wy) # k(\Wp). Since (Y, V)
is Ty separated, we suppose there exists V € V such that V(h(Wy), k(Wo)) < T ( the case V(k(Wo), h(Wo)) < T
is similar ). By Ve S(W o W, V) = T, we know there exists Wy € V such that Wy o Wy(h(Wy), k(W) < T.

Since h and k are both uniformly continuous, it follows that 1° o Wy o h € U and k° o Wy o k € U. Hence
Vipew S(Uy, h° o Wy o h) = T and V j,cq; S(Uz, k° © Wy 0 k) = T. Therefore,

\/ \/ S(U;, h° 0 Wy 0 h)&S(Ua, k° 0 Wy o k) = T.
ule'LI uZE(L(
And then _ _
\/ (U1 0 Wy 0 )&S(U, K" o Wy o k) = T.
Ueu

By Wy € RX, we also know that \/,.x fI(‘I’o, x*)&a(x*, W) =T. So

T= v S(U, 1° 0 Wy 0 1)&S(U, k° 0 Wy o k)

Ueld

= v T&SU, h° o Wy o h)&S(U, k° o Wy o k)
Ueu

= v (\/ U(Wo, x)&U(x", W0))&S(U, h* 0 Wo © h)&S(U, k° 0 Wy © k)
Uel xeX

= v \/ U(Yo, x)&U(x", Wo)&S(U, h° o Wy o h)&S(U, k° o Wy o k)
UeU xeX

< \/ 1 0 Wo o h(Wo, x')&k o Wy o k(x', Wo)
xeX

= \/ Wo(R(Wo), f(x))&Wo(k(x"), k(¥0))

xeX

- \/ Wo(h(Wo), f(x))&Wo(f(x), k(¥))

xeX

< \/ Wo((Wo), y)&Wo(y, k(Wo))
yey

= Wo o Wo(h(Wo), k(Wp)).
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This contradict to Wy o Wo(h(Wy), k(W) < T. Therefore, k =h. O

Remark 4.13. From the proof of Theorem 4.12, we know (RX, Uu ) is exactly the Ty completion of (X, U). The
adjunction F 4 i induces a monad C = (C, r, u) on Q-FQunif according to the following information:

e The functor C : Q-FQunif — Q-FQunif sends a fuzzy quasi-uniform space (X, U) to (RX, U.
e The unit rx : (X, U) — C(X, U) = (RX, U) is the Yoneda embedding.
e The multiplication px : C(C(X, U)) — C(X, U) is the the inverse map of rrx.

The readers can easily show that the algebra with respect to C = (C, 1, ) is exactly the Ty separated and
Cauchy complete fuzzy quasi-uniform space.

5. Conclusions

In this paper, we describe fuzzy quasi-uniform spaces in the sense of Lowen and Hohle as enriched
categories. We construct the Yoneda embedding in fuzzy quasi-uniform spaces through promodules.
As an application of Yoneda embedding, we study the completeness and completion of fuzzy quasi-
uniform spaces. When Q = [0,1] and & is a continuous t-norm, from Corollary 4.5 in [44], we know
“Nyeyy S(VoV,U) =1forall Ue U” can be replaced by “U € U = IV € U,s.t. Vo V < U”. In this case,
the proofs of this paper can be simplified.

Since there are many kinds of lattice-valued quasi-uniform spaces, we want to know whether other
lattice-valued quasi-uniform spaces can be viewed as enriched categories. The relationship on completeness
between fuzzy quasi-uniform spaces and fuzzy quasi-metric spaces from a categorical point of view may
be also an interesting question, we leave them for the future study.
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