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Available at: http://www.pmf.ni.ac.rs/filomat

Cauchy Completion of Fuzzy Quasi-Uniform Spaces

Yongchao Wanga, Yueli Yuea

aSchool of Mathematical Sciences, Ocean University of China, Qingdao 266100, China

Abstract. In this paper, we study the completion of fuzzy quasi-uniform spaces from a categorical point of
view. Firstly, we introduce the concept of prorelations and describe fuzzy quasi-uniform spaces as enriched
categories. Then we construct the Yoneda embedding in fuzzy quasi-uniform spaces through promodules,
and prove the validness of Yoneda Lemma for right adjoint promodules. Finally, we study the Cauchy
completion of fuzzy quasi-uniform spaces by the Yoneda embedding. We show that the inclusion functor
from the category of T0 separated complete fuzzy quasi-uniform spaces to the category of fuzzy quasi-
uniform spaces has a left adjoint functor. The monad related to this adjunction is just the T0 completion
monad of fuzzy quasi-uniform spaces.

1. Introduction

Since Lawvere presented generalized metric spaces as enriched categories in [29], enriched categories
have been proved to be a powerful tool for studying topological structures. For example, Zhang studied
many valued topologies through the approach of category in [45]. Hofmann and Reis treated probabilistic
(quasi-)metric spaces as enriched categories and studied these structures by enriched category in [16]. Chai
also gave a research on probabilistic quasi-metric spaces from the enriched categorical point of view in
[4]. Similar to the study of probabilistic quasi-metric spaces, He, Lai and Shen considered the categorical
interpretation of fuzzy partial metric spaces in [14]. Following Lawvere and Bar’s idea, Clementino,
Hofmann and Tholen developed the theory of monoidal topology, and showed that many topological
structures such as approach spaces, metric spaces, (quasi-)unform spaces and so on all can be viewed as lax
algebras with respect to certain monads (see [5–8, 15, 17, 23]).

Uniformity plays an important role in the research and application of topology. The study of both
classical (quasi-)uniform spaces and lattice-valued (quasi-)uniform spaces draws much attention in the
research of topological structures (see [3, 9, 11, 12, 18–21, 25, 27, 28, 30, 32–35, 37, 38, 41–44, 46]). Due to
the close relation between uniformities and metrics, this promotes the study of quasi-uniform structures
by means of enriched categories. The first description of quasi-uniform spaces as enriched categories is
attributed to Schmitt [36]. Then Clementino, Hofmann and Tholen used the theory of lax algebras and
put the quasi-uniform spaces in the framework of monoidal topology in [7]. Furthermore Clementino
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and Hofmann described quasi-uniform spaces as enriched categories, introduced Yoneda embedding in
quasi-uniform spaces and studied the completion monad in [8].

There are many kinds of lattice-valued quasi-uniformities, such as Lowen and Höhle’s quasi-uniformity
[18, 32], Hutton’s quasi-uniformity [21] and Shi’s pointwise quasi-uniformity [37]. A natural question
would be whether the lattice-valued quasi-uniform spaces could be viewed as enriched categories. In this
paper, this question positively for fuzzy quasi-uniform space in the sense of Lowen and Höhle, and other
kinds of fuzzy quasi-uniform spaces are left for future study.

Following the idea of Clementino and Hofmann in [8], we describe fuzzy quasi-uniform spaces as
enriched categories by means of the concept of prorelation. Then we construct the Yoneda embedding in
fuzzy quasi-uniform spaces from enriched category theory. And Yoneda Lemma is shown right on the
condition that the closure operator, which is generated by its fuzzy quasi-uniformity.

As an application of Yoneda embedding, we focus on Cauchy completeness and completion of fuzzy
quasi-uniform spaces. In [42], Yue and Fang have studied a kind of completeness of fuzzy quasi-uniform
spaces based on pair >-filters. We will continue the research of this kind of completeness in this paper, and
show that it can be also easily generalized to saturated prefilter setting. Using right adjoint promodules, we
can establish a pair of adjoint functors between the category of fuzzy quasi-uniform spaces with uniformly
continuous maps and the category of fuzzy quasi-uniform spaces with right adjoint promodules. The
monad related to this adjunction is just the T0 completion monad of fuzzy quasi-uniform spaces. We also
give a direct proof of the result which the category of T0 separated complete fuzzy quasi-uniform spaces is
a reflective full subcategory of the category of fuzzy quasi-uniform spaces.

2. Preliminaries

A commutative quantale is a pair (Q,&), where Q is a complete lattice with the top element >(= ∧∅)
and the bottom element ⊥(= ∨∅), and & is a commutative semigroup operation on Q such that

α&
(∨

j∈J

β j

)
=

∨
j∈J

α&β j,

for all α ∈ Q and {β j | j ∈ J} ⊆ Q. For a given commutative quantale (Q,&), there exists a binary operation
→: Q ×Q→ Q defined by

α→ β =
∨
{γ ∈ Q | α&γ ≤ β},

called the implication (operation).
Let f : X → Y and 1 : Y → X be a pair of maps between ordered sets. We say that f is left adjoint to 1

(or 1 is right adjoint to f ) and write f a 1 if

f (x) ≤ y⇔ x ≤ 1(y)

for all x ∈ X and y ∈ Y. The pair ( f , 1) is said to be an adjunction. For example, if f : X → Y is an order
isomorphism, then it is both left and right adjoint to its inverse f−1.

A commutative quantale (Q,&) is said to be unital if there exists an element k ∈ Q such that k&α =
α&k = α for all α ∈ Q (k is usually called the unit of Q). When the unit of Q is the top element >, (Q,&) is
called integral.

A complete lattice Q is said to be meet continuous if for all α ∈ Q, α ∧ (
∨
β∈Γ β) =

∨
β∈Γ(α ∧ β) for all

directed subset Γ ⊆ Q. In this paper, we always assume that (Q,&) is an integral and commutative quantale,
and Q is meet continuous.

An Q-subset on a set X is a map from X to Q, and the family of all Q-subsets on X will be denoted by
QX, called the Q-power set of X. By ⊥X and >X, we denote the constant Q-subsets on X taking the value ⊥
and >, respectively. Function α : X → Q where α(x) = α for all x ∈ X. i,e., We don’t distinguish between
constant Q-set α and its value. For U ⊆ X, χU denotes the characteristic function of U, i.e., χU(x) = >when
x ∈ U and χU(x) = ⊥when x < U. χU is usually written by >U.
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All algebraic operations on Q can be extended to QX pointwise. For example, (A ∨ B)(x) = A(x) ∨ B(x),
(A ∧ B)(x) = A(x) ∧ B(x) for A,B ∈ QX and x ∈ X. For a map f : X → Y, we can define f→ : QX

→ QY and
f← : QY

→ QX by f→(A)(y) =
∨

f (x)=y A(x) and f←(B)(x) = B( f (x)), respectively. Then f→ is the left adjoint
of f←. From the definition of f→, we know f→(>U) = > f (U).

A Q-relation r : X9 Y from X to Y is map r : X × Y→ Q. The composition s ◦ r : X9 Z of Q-relations
r : X9 Y and s : Y9 Z is defined by

s ◦ r(x, z) =
∨
y∈Y

r(x, y)&s(y, z).

The identity on X for this composition is the Q-relation 1X : X9 X which sends (x, y) to >when x = y and
to ⊥ otherwise. The category of sets and Q-relations is denoted by Q-Rel and the set of all Q-relations from
X to Y is denoted by Q-Rel(X,Y). The theory of category can be found in [1]. For Q-relation r : X 9 Y,
there is an opposite Q-relation r◦ : Y 9 X given by r◦(y, x) = r(x, y) for all x ∈ X and y ∈ Y. In fact, a map
f : X→ Y can be seen as a Q-relation f : X9 Y:

f (x, y) =

{
>, y = f (x),
⊥, others.

and its dual Q-relation f ◦ : Y9 X induced by f : X→ Y is as follows:

f ◦(y, x) =

{
>, y = f (x),
⊥, others.

Now we recall some basic concepts about Q-ordered sets. The theory of Q-ordered sets can be found in
many places, for instance [17, 39, 45].

A Q-order on X is a Q-relation r : X9 X such that (1)> ≤ r(x, x) for all x ∈ X and (2) r(y, z)&r(x, y) ≤ r(x, z)
for all x, y, z ∈ X. A set X equipped with a Q-order relation is called a Q-ordered set. Usually we simply “X
is a Q-ordered set (X, r)” and write X(x, y) for r(x, y). When it is necessary to specify the Q-order we write
(X, r). We say a map f : X → Y preserves Q-order (or Q-order preserving) if X(x, y) ≤ Y( f (x), f (y)) for all
x, y ∈ X. It is trivial to see that (Q,→) is a Q-ordered set.

Given a Q-ordered set X, define x ≤ y⇔ X(x, y) = >. Then ≤ is a reflexive and transitive relation, hence
a preorder on X. This preorder is called the underlying order of X. X is antisymmetric if X(x, y)&X(y, x) =
> ⇒ x = y. A Q-ordered set X is said to be separated if the underlying order on X is antisymmetric.

For any Q-ordered set X and Y, let [X,Y] denote the set of all Q-order-preserving maps from X to Y. For
all f , 1 ∈ [X,Y], let

[X,Y]( f , 1) =
∧
x∈X

Y( f (x), 1(x)).

Then [X,Y] becomes a Q-ordered set. Specially, for Q-subsets A,B : X→ Q, let SX(A,B) =
∧

x∈X A(x)→ B(x).
Then (QX,SX) is a separated Q-ordered set. SX(A,B) can be interpreted as the degree to which A is a subset
of B. It is sometimes called the fuzzy inclusion order in [2]. For convenience, SX is simplified by S in
this paper. For Q-relations, in this paper, we often use the following result: S(r1, r2) ≤ S(s ◦ r1, s ◦ r2) and
S(r1, r2) ≤ S(r1 ◦ t, r2 ◦ t) for r1, r2 : X9 Y, s : Y9 Z and t : W 9 X.

Besides Q-order preserving maps, there is another important morphisms between Q-ordered sets,
namely Q-distributors. A Q-distributor φ : X−→p Y is a Q-relation φ : X 9 Y such that φ ◦ X ≤ φ and
Y ◦ φ ≤ φ. Each Q-order preserving map f : X → Y can give rise a Q-distributor f∗ : X−→p Y defined by
f∗(x, y) = Y( f (x), y) for all x ∈ X and y ∈ Y. f∗ has a right adjoint f ∗ : Y−→p X defined by f∗(y, x) = Y(y, f (x))
for x ∈ X and y ∈ Y, here the adjunction f∗ a f ∗ means f∗ ◦ f ∗ ≤ Y and f ∗ ◦ f∗ ≥ X. An important connection
between Q-distributor and Q-order preserving maps is given by the fact that φ : X 9 Y is a Q-distributor
precisely when φ : X × Y→ Q is a Q-order preserving map between Xop

⊗ Y→ Q.
Given a Q-ordered set X, the Yoneda embedding is the map yX : X→ [Xop,Q] given by yX(x)(y) = X(y, x).

The Yoneda Lemma is as follows: [Xop,Q](yX(x), φ) = φ(x) for all x ∈ X and φ ∈ [Xop,Q]. From [16], we
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know that another way to read the Yoneda Lemma goes as it follows: for any module φ : X9 1, seen also
as an element of [Xop,Q], one has φ∗ ◦ (yX)∗ = φ. In this paper, for fuzzy quasi-uniform spaces, we will
establish the Yoneda Lemma in the later form.

As filter plays a pivotal role in defining the notion of classical quasi-uniformity, in lattice-valued setting
prefilter,>-filter and Q-filter are the three most important lattice-valued filters and the relationships among
them can be found in [9, 10, 22, 24]. Now we briefly describe the concepts of saturated prefilter and fuzzy
quasi-uniformity.

Definition 2.1. (Lowen [31, 32]) Let X be a nonempty set. A nonempty subset F ⊆ QX is called a prefilter
on X if it satisfies the following properties:

(F1) >X ∈ F ;
(F2) If A ∈ F and A ≤ B, then B ∈ F ;
(F3) A ∧ B ∈ F for all A,B ∈ F .

Definition 2.2. (Höhle [18]) Let F be a prefilter on X. Then
(1) F is called saturated if it satisfies the following (S):

(S) If B ∈ QX such that
∨

A∈F S(A,B) = >, then B ∈ F .
(2) F is called a >-filter if F is a saturated prefilter and fulfills

∨
x∈X A(x) = > for all A ∈ F .

For each x ∈ X, [x]> = {A ∈ QX
| A(x) = >} is both a saturated prefilter and a >-filter.

Remark 2.3. In fact, the saturation of a prefilter originally introduced by Lowen [33]. Höhle [18] introduced
so called κ-condition [18]. Later, it is J. Gutiérrez Garcı́a [9, 13] who proved that the κ-condition and
saturation of prefilters are equavalent. So in the above definition of saturated prefilter, we use the κ-
condition introduced by Höhle directly.

Definition 2.4. (Höhle [18]) A nonempty subset B ⊆ QX is called a base of one saturated prefilter on X if it
satisfies the following condition:

(B)
∨

B∈B S(B,C ∧D) = > for all C,D ∈ B.

Every base B can generate a saturated prefilter FB given by

FB = {A ∈ QX
|

∨
B∈B

S(B,A) = >}.

From the definition of base of saturated prefilter, we know that if there exists C ∈ B such that C ≤ A∧ B
for all A,B ∈ B, then B must be a base of one saturated prefilter. Especially, if B is closed for finite meet,
then B is a base.

Definition 2.5. (Lowen [32, 34]for Q = [0, 1] and Höhle [18]) A nonempty subsetU ⊆ QX×X is called a fuzzy
quasi-uniformity on X ifU is a saturated prefilter on X × X and satisfies the following conditions:

(U0) U ∈ U implies U(x, x) = > for all x ∈ X;
(UC) U ∈ U implies

∨
V∈U S(V ◦ V,U) = >.

The pair (X,U) is called a fuzzy quasi-uniform space.

A map f : (X,U) → (Y,V) is called uniformly continuous if ( f × f )←(V) ∈ U for all V ∈ V, where
( f × f )←(V)(x1, x2) = V( f (x1), f (x2)) for all x1, x2 ∈ X.Note that f ◦ ◦ V ◦ f (x1, x2) = V( f (x1), f (x2)), so the
equality ( f × f )←(V) = f ◦ ◦V ◦ f is hold. Let Q-FQunif denote the category of fuzzy quasi-uniform spaces
and uniformly continuous maps.

In [8], Clementino and Hofmann introduced the concept of “prorelation” based on classical filter, and
they viewed the quasi-uniform spaces as lax proalgebras. In [42], Yue and Fang generalized the concept of
prorelation to >-filter setting. By adopting their ideas, we can give the corresponding concepts according
to saturated prefilter similarly.
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Definition 2.6. Let Φ ⊆Q-Rel(X,Y). If Φ is a saturated prefilter on X×Y, then Φ is called a prorelation from
X to Y, denoted by Φ : X−→◦ Y.

Remark 2.7. (1) Any Q-relation r : X9 Y can be seen as a saturated prefilter by its upper set ↑ r = {s : X9
Y | s ≥ r}. We usually simply ↑ r by r : X−→◦ Y.

(2) Let Ψ and Φ be two saturated prefilters. Define the composition Φ ◦Ψ as follows:

Φ ◦Ψ := {W |
∨
φ∈Φ

∨
ψ∈Ψ

S(φ ◦ ψ,W) = >}.

i.e., {φ ◦ ψ | φ ∈ Φ, ψ ∈ Ψ} is the base of Φ ◦Ψ. If B1 is a base of Φ and B2 is a base of Ψ, then we know

Φ ◦Ψ = {W |
∨
φ∈B1

∨
ψ∈B2

S(φ ◦ ψ,W) = >}.

It is routine to check thatW◦ (Φ ◦Ψ) = (W◦ Φ) ◦Ψ for Ψ : X−→◦ Y, Φ : Y−→◦ Z andW : Z−→◦ W. For the
identity Q-relation 1X : X 9 X, 1X : X−→◦ X is the identity of the composition of prorelations. Hence sets
and prorelations form a category, denote it by PQ-Rel.

Let PQ-Rel(X,Y) denote all the prorelations from X to Y. The Q-order Υ on PQ-Rel(X,Y) by letting:

∀Φ,Ψ ∈ PQ-Rel(X,Y), Υ(Φ,Ψ) =
∧
ψ∈Ψ

∨
φ∈Φ

S(φ,ψ).

It is obvious that the underlying order of Υ is as follows:

∀Φ,Ψ ∈ PQ-Rel(X,Y), Φ ≤ Ψ⇐⇒ Ψ ⊆ Φ.

Hence, if B1 is a base of Φ and B2 is a base of Ψ, then Φ ≤ Ψ when B2 ⊆ B1. Note that the above definition
make sense whenever Φ and Ψ are sets of Q-relations.

According to the above discussion, a fuzzy quasi-uniformity U on X can be seen as a prorelation
U : X−→◦ X satisfies the following condition:

1X ≤ U, U ◦U ≤ U.

Similarly, a uniformly continuous map f : (X,U)→ (Y,V) can be seen as a map f : X→ Y such that

U ≤ f ◦ ◦ V ◦ f or equivalently f ◦ U ≤ V ◦ f .

Now we have described fuzzy quasi-uniform space into the form of enriched category. Hence, we can
use the categorical method to study fuzzy quasi-uniform spaces.

Definition 2.8. A prorelation Φ : (X,U)−→◦ (Y,V) is said to be a promodule if it satisfies

Φ ◦ U ≤ Φ, V ◦Φ ≤ Φ.

For each fuzzy quasi-uniform space (X,U),U : (X,U)−→◦ (X,U) itself is a promodule. For promudule
Φ : (X,U)−→◦ (Y,V), since Φ ≤ Φ◦U is always true, then Φ◦U = Φ holds. Similarly,V◦Φ = Φ. It is easy to
see that the composition of promodules is still a promodule andU acts as the identity of the composition.
Let PQ-Mod denote the category of fuzzy quasi-uniform spaces and promodules.

Definition 2.9. For two promodules Φ : (X,U)−→◦ (Y,V), Ψ : (Y,V)−→◦ (X,U), if Ψ ◦Φ ≥ U and Φ ◦Ψ ≤ V
hold, then Φ is called the left adjoint of Ψ or Ψ is called the right adjoint of Φ, denoted by Φ a Ψ.
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Each given uniformly continuous map f : (X,U) → (Y,V) can determine a pair of promodules f∗ :
(X,U)−→◦ (Y,V) and f ∗ : (Y,V)−→◦ (X,U) as follows:

X
f
−→◦ Y

V

−→◦ Y f∗ =V ◦ f

Y
V

−→◦ Y
f ◦
−→◦ X f ∗ = f ◦ ◦ V

Remark 2.10. In fact, the aboveV◦ f should beV◦ (↑ f ). The readers can easily check that {V ◦ f | V ∈ V}
and {V ◦ 1 | V ∈ V, 1 ≥ f } generate the same prorelation. Hence we use the formV ◦ f . Similarly, we use
f ◦ ◦ V instead of (↑ f ◦) ◦ V.

For 1X : (X,U)→ (X,U), clearly, (1X)∗= (1X)∗=U. Given two uniformly continuous maps f : (X,U)→
(Y,V), 1 : (Y,V)→ (Z,W), it has (1◦ f )∗ = 1∗ ◦ f∗ and (1◦ f )∗ = f ∗ ◦1∗. These operations define two functors:

(−)∗ : Q-FQunif→ PQ-Mod

and
(−)∗ : Q-FQunif→ PQ-Modop.

Proposition 2.11. Let f : (X,U)→ (Y,V) be a uniformly continuous map. Then f∗ a f ∗.

Proof. It is straightforward to checkU ≤ f ∗ ◦ f∗ and f∗ ◦ f ∗ ≤ V.

In particular, let (X,U) be a fuzzy quasi-uniform space andP : ∗9 ∗ be the unique fuzzy quasi-uniform
structure on the singleton {∗} (in fact, P = {W ∈ Q∗×∗ |W(∗, ∗) = >}), denoted by 1 = ({∗},P). The uniformly
continuous map x : 1→ X(∗ 7→ x, x ∈ X), defines two adjoint promodules x∗ a x∗ : X−→◦ 1, where x∗ =U ◦ x
and x∗ = x◦ ◦ U.

Definition 2.12. ([8]) Let f : (X,U)→ (Y,V) be a uniformly continuous map. Then:
(1) f is said to be fully faithful if f ∗ ◦ f∗ =U;
(2) f is said to be fully dense if f∗ ◦ f ∗ =V.

Proposition 2.13. Let f : (X,U)→ (Y,V) be a uniformly continuous map. Then:
(1) f is fully faithful if and only if f ◦ ◦ V ◦ f ≤ U.
(2) f is fully dense if and only ifV ≤ V ◦ f ◦ f ◦ ◦ V.

Proof. (1) f is fully faithful if and only ifU = f ∗ ◦ f∗ = f ◦ ◦V ◦ f . Since f is a uniformly continuous map, it
always hasU ≤ f ◦ ◦ V ◦ f . So (1) is obvious.

(2) f is fully dense if and only ifV = f∗ ◦ f ∗ =V ◦ f ◦ f ◦ ◦ V. Since f∗ a f ∗, it always has f∗ ◦ f ∗ ≤ V, so
(2) is obvious.

3. Yoneda embedding in fuzzy quasi-uniform spaces

When studying the completion of fuzzy uniform spaces, one can construct the completion (X̌, Ǔ) of
(X,U) in the following way (see [34, 42]):

X̌ = {F | F is a minimal Cauchy >-filter}

and {Ǔ | U ∈ U} is the base of Ǔ, where

Ǔ : X̌ × X̌→ Q is given by Ǔ(F ,G) =
∨
F∈F

∨
G∈G

S(F × G,U).
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From Lemma 4.2 of [42], we know that there is a close relation between Cauchy pair >-filters and adjoint
promodules. Hence, when using promodules as the basic tool to define the completion, we may consider
the following construction for the right adjoint promudules:

Ǔ(Ψ1,Ψ2) =
∨
φ2∈Ψ`2

∨
ψ1∈Ψ1

S(φ2 ◦ ψ1,U),

where Ψ`2 is the left adjoint of Ψ2. The value of Ǔ(Ψ1,Ψ2) measures the degree to which Ψ`2 ◦Ψ1 is smaller
than U. Since Ψ`2 ◦Ψ1 ≤ U is equivalent to Ψ1 ≤ Ψ2 ◦U, we can generalize Ǔ from right adjoint promodules
to promodules as follows Ǔ(Ψ1,Ψ2) =

∧
ψ2∈Ψ2

∨
ψ1∈Φ1

S(ψ1, ψ2 ◦U) by using Ψ1 ≤ Ψ2 ◦U.
From the above motivation, now we can describe a Yoneda embedding in fuzzy quasi-uniform spaces.

For a given fuzzy quasi-uniform space X = (X,U), we consider the following set:

PX = {Ψ : X−→◦ 1 | Ψ is a promodule}

For a Q-relation U : X9 X, it is natural to lift U to a Q-relation on PX:

Ũ(Φ,Ψ) = Υ (Φ,Ψ ◦U).

where Ψ ◦U = {ψ ◦U | ψ ∈ Ψ} and then we equip PX with Ũ:

Ũ = {H |
∨
U∈U

S(Ũ,H) = >},

Here we first need to check that Ũ is a fuzzy quasi-uniformity on PX.

Lemma 3.1. (PX, Ũ) is a fuzzy quasi-uniform space.

Proof. Step1: we want to prove that {Ũ | U ∈ U} is a saturated prefilter base.
It is easy to check U ≤ V ⇒ Ũ ≤ Ṽ for all U,V ∈ U. Now we can assert S(U,V) ≤ S(Ũ, Ṽ). In fact,

S(Ũ, Ṽ) =
∧

Φ,Ψ∈PX

Ũ(Φ,Ψ)→ Ṽ(Φ,Ψ)

=
∧

Φ,Ψ∈PX

Υ(Φ,Ψ ◦U)→ Υ(Φ,Ψ ◦ V)

≥

∧
Ψ∈PX

Υ(Ψ ◦U,Ψ ◦ V)

≥ S(U,V).

(B): For C,D ∈ U, sinceU is a fuzzy quasi-uniformity, it follows that∨
B∈U

S(B̃, C̃ ∧ D̃) ≥
∨
B∈U

S(B̃, C̃ ∧D) ≥
∨
B∈U

S(B,C ∧D) = >.

Step 2: we check that Ũ fulfills (U0) and (UC).
(U0): It is easy to check Ũ(Ψ,Ψ) = > for all U ∈ U. Hence, for eachH ∈ Ũ, we have

> =
∨
U∈U

S(Ũ,H) ≤
∨
U∈U

Ũ(Ψ,Ψ)→H(Ψ,Ψ) = H(Ψ,Ψ).
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(UC): We first prove Ṽ ◦ Ũ ≤ Ṽ ◦U. For Ψ1,Ψ2 ∈ PX,

Ṽ ◦ Ũ(Ψ1,Ψ2) =
∨

Φ∈PX

Ũ(Ψ1,Φ)&Ṽ(Φ,Ψ2)

=
∨

Φ∈PX

Υ(Ψ1,Φ ◦U)&Υ(Φ,Ψ2 ◦ V)

≤

∨
Φ∈PX

Υ(Ψ1,Φ ◦U)&Υ(Φ ◦U,Ψ2 ◦ V ◦U)

≤ Υ(Ψ1,Ψ2 ◦ V ◦U)

= Ṽ ◦U(Ψ1,Ψ2).

Then for eachH ∈ Ũ, we have

> =
∨
U∈U

S(Ũ,H)

=
∨
U∈U

(
∨
V∈U

S(V ◦ V,U))&S(Ũ,H)

≤

∨
U∈U

∨
V∈U

S(Ṽ ◦ V, Ũ)&S(Ũ,H)

≤

∨
U∈U

∨
V∈U

S(Ṽ ◦ V,H)

≤

∨
V∈U

S(Ṽ ◦ Ṽ,H)

≤

∨
A∈Ũ

S(A ◦A,H).

In conclusion, Ũ is a fuzzy quasi-uniformity on PX.

Lemma 3.2. Let (X,U) be a fuzzy quasi-uniform space, Φ,Ψ ∈ PX andB,D be the bases of Φ,Ψ respectively. Then
for every U ∈ U,

Ũ(Φ,Ψ) =
∧
ψ∈Ψ

∨
φ∈Φ

S(φ,ψ ◦U) =
∧
ψ∈D

∨
φ∈B

S(φ,ψ ◦U).

Proof. Firstly, we check
∨
φ∈Φ S(φ,ψ◦U) =

∨
φ∈B S(φ,ψ◦U). It is obvious that

∨
φ∈Φ S(φ,ψ◦U) ≥

∨
φ∈B S(φ,ψ◦

U), and
∨
φ∈Φ S(φ,ψ ◦U) ≤

∨
φ∈B S(φ,ψ ◦U) is obtained by

∨
φ∈Φ

S(φ,ψ ◦U) =
∨
φ∈Φ

(
∨
B∈B

S(B, φ))&S(φ,ψ ◦U) ≤
∨
B∈B

S(B, ψ ◦U).

Secondly, we prove
∧
ψ∈Ψ

∨
φ∈B S(φ,ψ ◦U) =

∧
ψ∈D

∨
φ∈B S(φ,ψ ◦U). On one hand,

∧
ψ∈Ψ

∨
φ∈B S(φ,ψ ◦



Y. Wang, Y. Yue / Filomat 35:12 (2021), 3983–4004 3991

U) ≤
∧
ψ∈D

∨
φ∈B S(φ,ψ ◦U) is obvious. On the other hand, we have∧

ψ∈Ψ

∨
φ∈B

S(φ,ψ ◦U) =
∧
ψ∈Ψ

[> →
∨
φ∈B

S(φ,ψ ◦U)]

=
∧
ψ∈Ψ

[
∨
ψ′∈D

S(ψ
′

, ψ)→
∨
φ∈B

S(φ,ψ ◦U)]

=
∧
ψ′∈D

∧
ψ∈Ψ

[S(ψ
′

, ψ)→
∨
φ∈B

S(φ,ψ ◦U)]

≥

∧
ψ′∈D

∧
ψ∈Ψ

∨
φ∈B

[S(ψ
′

, ψ)→ S(φ,ψ ◦U)]

≥

∧
ψ′∈D

∧
ψ∈Ψ

∨
φ∈B

[S(ψ
′

◦U, ψ ◦U)→ S(φ,ψ ◦U)]

≥

∧
ψ′∈D

∨
φ∈B

S(φ,ψ
′

◦U),

as desired.

In the following part, we construct the Yoneda embedding in fuzzy quasi-uniform spaces with the help
of PX.

Proposition 3.3. (Yoneda embedding) Let (X,U) be a fuzzy quasi-uniform space. For each x ∈ X, the assignment
x 7→ x∗ defines a map yX : X→ PX. Then

(1) yX : (X,U)→ (PX, Ũ) is uniformly continuous;
(2) yX : (X,U)→ (PX, Ũ) is fully faithful.

Proof. (1) We want to showU ≤ y◦X ◦ Ũ ◦ yX, it suffices to check {y◦X ◦ Ũ ◦ yX | U ∈ U} ⊆ U. For each U ∈ U,
by Lemma 3.2, we have

∀x, y ∈ X, Ũ(x∗, y∗) =
∧
C∈U

∨
D∈U

S(x◦ ◦D, y◦ ◦ C ◦U) ≥
∨
D∈U

S(x◦ ◦D, y◦ ◦U).

Then ∨
V∈U

S(V, y◦X ◦ Ũ ◦ yX)

=
∨
V∈U

∧
x,y∈X

V(x, y)→ Ũ(x∗, y∗)

≥

∨
V∈U

∧
x,y∈X

V(x, y)→
∨
D∈U

S(x◦ ◦D, y◦ ◦U)

≥

∨
V∈U

∧
x,y∈X

V(x, y)→ S(x◦ ◦ V, y◦ ◦U)

=
∨
V∈U

∧
x,y,z∈X

V(x, y)&V(z, x)→ U(z, y)

=
∨
V∈U

∧
y,z∈X

V ◦ V(z, y)→ U(z, y)

=
∨
V∈U

S(V ◦ V,U)

= >.
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So we obtain
∨

V∈U S(V, y◦X ◦ Ũ ◦ yX) = > for all U ∈ U, this implies y◦X ◦ Ũ ◦ yX ∈ U by the condition (S).
(2) According to Proposition 2.13, we need to prove y◦X ◦ Ũ ◦ yX ≤ U, which is equivalent to

U ∈ U =⇒ U ∈ y◦X ◦ Ũ ◦ yX = {W |
∨
V∈U

S(y◦X ◦ Ṽ ◦ yX,W) = >}.

For V ∈ U and x, y ∈ X, we have

Ṽ(x∗, y∗) =
∧

W∈U

∨
D∈U

S(x◦ ◦D, y◦ ◦W ◦ V)

≤

∨
D∈U

S(x◦ ◦D, y◦ ◦ V ◦ V)

=
∨
D∈U

∧
z∈X

D(z, x)→ V ◦ V(z, y)

≤

∨
D∈U

D(x, x)→ V ◦ V(x, y)

= V ◦ V(x, y).

So we obtain y◦X ◦ Ṽ ◦ yX ≤ V ◦ V, then∨
V∈U

S(y◦X ◦ Ṽ ◦ yX,U) ≥
∨
V∈U

S(V ◦ V,U) = >.

From [18], for each fuzzy quasi-uniform space (X,U), we can define (−) : QX
→ QX, A 7→ A by

∀x ∈ X, A(x) =
∧
U∈U

∨
y∈X

A(y)&U(x, y)&U(y, x).

Remark 3.4. In classical quasi-uniform space, the above operator will be a topological closure operator.
But in general lattice-valued setting, (−) : QX

→ QX is not necessary a topological closure operator.Q is also
joint continuous, i.e., ∨ is distributive over directed meets, we can assert that (−) : QX

→ QX must be a
topological closure operator.

Theorem 3.5. (Yoneda Lemma) Let (X,U) be a fuzzy quasi-unform space. For each Ψ ∈ PX, then
(1) Ψ ≥ Ψ∗ ◦ (yX)∗;
(2) if y→X (>X)(Ψ) = >, then Ψ ≤ Ψ∗ ◦ (yX)∗.

Proof. (1) Since Ψ∗ ◦ (yX)∗ = Ψ◦ ◦ Ũ ◦ Ũ ◦ yX = Ψ◦ ◦ Ũ ◦ yX, we need to check Ψ ⊆ Ψ◦ ◦ Ũ ◦ yX. That is to
say

∨
U∈U S(Ψ◦ ◦ Ũ ◦ yX, ψ) = > for all ψ ∈ Ψ. Since Ψ is a promodule, it follows that Ψ ◦ U ≤ Ψ. Hence,

∀ψ ∈ Ψ,
∨
φ∈Ψ

∨
U∈U S(φ ◦U, ψ) = >. For each φ ∈ Ψ, x ∈ X,

Ũ(x∗,Ψ) =
∧
ψ∈Ψ

∨
V∈U

S(x◦ ◦ V, ψ ◦U)

≤

∨
V∈U

S(x◦ ◦ V, φ ◦U)

=
∨
V∈U

∧
z∈X

V(z, x)→ φ ◦U(z)

≤

∨
V∈U

V(x, x)→ φ ◦U(x)

= φ ◦U(x).
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Therefore,
> =

∨
U∈U

∨
φ∈Ψ

S(φ ◦U, ψ) ≤
∨
U∈U

S(Ψ◦ ◦ Ũ ◦ yX, ψ).

(2) Since y→X (>X)(Ψ) = >, it follows that

> = y→X (>X)(Ψ)

=
∧
U∈U

∨
λ∈PX

y→X (>X)(λ)&Ũ(Ψ, λ)&Ũ(λ,Ψ)

=
∧
U∈U

∨
λ∈PX

∨
yX(x)=λ

>X(x)&Ũ(Ψ, λ)&Ũ(λ,Ψ)

=
∧
U∈U

∨
x∈X

Ũ(Ψ, yX(x))&Ũ(yX(x),Ψ)

=
∧
U∈U

∨
x∈X

Ũ(Ψ, x∗)&Ũ(x∗,Ψ).

That is to say
∨

x∈X Ũ(Ψ, x∗)&Ũ(x∗,Ψ) = > for all U ∈ U. Now let U ∈ U, then
∨

V∈U S(V ◦ V,U) = >.
Since yX is uniformly continuous, we have y◦X ◦ Ṽ ◦ yX ∈ U for V ∈ U. Then

∨
U1∈U

S(U1, y◦X ◦ Ṽ ◦ yX) = >.
Moreover,

∨
U2∈U

S(U2 ◦U2,U1) = >. So we have

> =
∨
V∈U

[
∨

U1∈U

(
∨

U2∈U

S(U2 ◦U2,U1))&S(U1, y
◦

X ◦ Ṽ ◦ yX)]&S(V ◦ V,U)

=
∨
V∈U

∨
U1∈U

∨
U2∈U

S(U2 ◦U2,U1)&S(U1, y
◦

X ◦ Ṽ ◦ yX)&S(V ◦ V,U)

≤

∨
V∈U

∨
U2∈U

S(U2 ◦U2, y
◦

X ◦ Ṽ ◦ yX)&S(V ◦ V,U)

≤

∨
V∈U

∨
U2∈U

S(U2 ◦U2, y
◦

X ◦ Ṽ ◦ yX)&S(Ṽ ◦ V, Ũ)

≤

∨
V∈U

∨
U2∈U

S(U2 ◦U2, y
◦

X ◦ Ṽ ◦ yX)&S(Ṽ ◦ Ṽ, Ũ)

≤

∨
V∈U

∨
U2∈U

S((U2 ∧ V) ◦ (U2 ∧ V), y◦X ◦ Ṽ ◦ yX)&S( ˜(U2 ∧ V) ◦ Ṽ, Ũ)

≤

∨
V∈U

∨
U0∈U

S(U0 ◦U0, y
◦

X ◦ Ṽ ◦ yX)&S(Ũ0 ◦ Ṽ, Ũ)

=
∨
V∈U

∨
U0∈U

[
∧

x,y∈X

U0 ◦U0(x, y)→ Ṽ(x∗, y∗)]&[
∧

Φ,Ψ′∈PX

Ũ0 ◦ Ṽ(Φ,Ψ′)→ Ũ(Φ,Ψ′)]

≤

∨
V∈U

∨
U0∈U

∧
x,y∈X

∧
Φ,Ψ′∈PX

[U0 ◦U0(x, y)→ Ṽ(x∗, y∗)]&[Ũ0 ◦ Ṽ(Φ,Ψ′)→ Ũ(Φ,Ψ′)]

≤

∨
V∈U

∨
U0∈U

∧
x,y∈X

[U0 ◦U0(x, y)→ Ṽ(x∗, y∗)]&[Ũ0 ◦ Ṽ(x∗,Ψ)→ Ũ(x∗,Ψ)]

≤

∨
V∈U

∨
U0∈U

∧
x,y∈X

[U0 ◦U0(x, y)→ Ṽ(x∗, y∗)]&[Ṽ(x∗, y∗)&Ũ0(y∗,Ψ)→ Ũ(x∗,Ψ)]

≤

∨
U0∈U

∧
x,y∈X

U0 ◦U0(x, y)&Ũ0(y∗,Ψ)→ Ũ(x∗,Ψ)

=
∨

U0∈U

∧
x∈X

(
∨
y∈X

U0 ◦U0(x, y)&Ũ0(y∗,Ψ)→ Ũ(x∗,Ψ)).
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According to the above formula, then we have∨
ψ∈Ψ

S(ψ,Ψ◦ ◦ Ũ ◦ yX)

= > →
∨
ψ∈Ψ

S(ψ,Ψ◦ ◦ Ũ ◦ yX)

=
∨

U0∈U

∧
x∈X

(
∨
y∈X

U0 ◦U0(x, y)&Ũ0(y∗,Ψ)→ Ũ(x∗,Ψ))→
∨
ψ∈Ψ

S(ψ,Ψ◦ ◦ Ũ ◦ yX)

=
∧

U0∈U

[
∧
x∈X

(
∨
y∈X

U0 ◦U0(x, y)&Ũ0(y∗,Ψ)→ Ũ(x∗,Ψ))→
∨
ψ∈Ψ

S(ψ,Ψ◦ ◦ Ũ ◦ yX)]

≥

∧
U0∈U

∨
ψ∈Ψ

[
∧
x∈X

(
∨
y∈X

U0 ◦U0(x, y)&Ũ0(y∗,Ψ)→ Ũ(x∗,Ψ))]→ [
∧
x∈X

ψ(x)→ Ũ(x∗,Ψ)]

≥

∧
U0∈U

∨
ψ∈Ψ

∧
x∈X

[
∨
y∈X

U0 ◦U0(x, y)&Ũ0(y∗,Ψ)→ Ũ(x∗,Ψ)]→ [ψ(x)→ Ũ(x∗,Ψ)]

≥

∧
U0∈U

∨
ψ∈Ψ

∧
x∈X

[ψ(x)→
∨
y∈X

U0 ◦U0(x, y)&Ũ0(y∗,Ψ)]

≥

∧
U0∈U

∨
ψ∈Ψ

∧
x∈X

∨
y∈X

ψ(x)→ (U0 ◦U0(x, y)&Ũ0(y∗,Ψ))

≥

∧
U0∈U

∨
ψ∈Ψ

∧
x∈X

∨
y∈X

(ψ(x)→ U0 ◦U0(x, y))&Ũ0(y∗,Ψ)

≥

∧
U0∈U

∨
y∈X

∨
ψ∈Ψ

∧
x∈X

(ψ(x)→ U0 ◦U0(x, y))&Ũ0(y∗,Ψ).

Furthermore, we have

> =
∧

U0∈U

∨
y∈X

Ũ0(Ψ, y∗)&Ũ0(y∗,Ψ)

=
∧

U0∈U

∨
y∈X

[
∧
V∈U

∨
ψ∈Ψ

S(ψ, y◦ ◦ V ◦U0)&Ũ0(y∗,Ψ)]

≤

∧
U0∈U

∨
y∈X

[
∨
ψ∈Ψ

S(ψ, y◦ ◦U0 ◦U0)&Ũ0(y∗,Ψ)]

=
∧

U0∈U

∨
y∈X

∨
ψ∈Ψ

(
∧
x∈X

ψ(x)→ U0 ◦U0(x, y))&Ũ0(y∗,Ψ)

≤

∧
U0∈U

∨
y∈X

∨
ψ∈Ψ

∧
x∈X

ψ(x)→ U0 ◦U0(x, y)&Ũ0(y∗,Ψ).

So we obtain
∨
ψ∈Ψ S(ψ,Ψ◦ ◦ Ũ ◦ yX) = > for each U ∈ U, which implies {Ψ◦ ◦ Ũ ◦ yX | U ∈ U} ⊆ Ψ.

Therefore, Ψ ≤ Ψ◦ ◦ Ũ ◦ yX.

Proposition 3.6. Let (X,U) be a fuzzy quasi-unform space and Ψ ∈ PX. Then Ψ is a right adjoint if and only if
y→X (>X)(Ψ) = >.

Proof. Sufficiency: If y→X (>X)(Ψ) = >, then Ψ = Ψ∗ ◦ (yX)∗ by Theorem 3.5. Let Φ = (yX)∗ ◦Ψ∗. We can assert
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(Φ : 1−→◦ X) a (Ψ : X−→◦ 1). In fact, on one hand

Φ ◦Ψ = (yX)∗ ◦Ψ∗ ◦Ψ∗ ◦ (yX)∗
≤ (yX)∗ ◦ (yX)∗
=U (since yX is fully faithful).

On the other hand, note that

Ψ ◦Φ = Ψ∗ ◦ (yX)∗ ◦ (yX)∗ ◦Ψ∗

= Ψ◦ ◦ Ũ ◦ Ũ ◦ yX ◦ (yX)◦ ◦ Ũ ◦ Ũ ◦Ψ

= Ψ◦ ◦ Ũ ◦ yX ◦ y
◦

X ◦ Ũ ◦Ψ.

For any W,V ∈ U, let U = W ∧ V. Then we have U ∈ U and

Ψ◦ ◦ W̃ ◦ yX ◦ y
◦

X ◦ Ṽ ◦Ψ =
∨
x∈X

Ṽ(Ψ, x∗)&W̃(x∗,Ψ)

≥

∨
x∈X

Ũ(Ψ, x∗)&Ũ(x∗,Ψ)

= > (by yX(>X)(Ψ) = >).

Then Ψ ◦Φ ≥ 1, as desired.

Necessity: Suppose Ψ is a right adjoint and Φ is the left adjoint to Ψ. We want to show that for each
U ∈ U, it has

∨
x∈X

Ũ(Ψ, x∗)&Ũ(x∗,Ψ) = >.

Firstly, on account of Φ a Ψ, we have Φ ◦Ψ ≤ U and Ψ ◦ Φ ≥ 1. Then
∨
φ∈Φ

∨
ψ∈Ψ S(φ ◦ ψ,U) = > by

Φ ◦Ψ ≤ U, i.e.,

> =
∨
φ∈Φ

∨
ψ∈Ψ

∧
x,z∈X

ψ(z)&φ(x)→ U(z, x)

=
∨
φ∈Φ

∨
ψ∈Ψ

∧
x,z∈X

φ(x)→ (ψ(z)→ U(z, x))

=
∨
φ∈Φ

∨
ψ∈Ψ

∧
x∈X

φ(x)→ [
∧
z∈X

(ψ(z)→ U(z, x))]

=
∨
φ∈Φ

∨
ψ∈Ψ

S(φ,
∧
z∈X

(ψ(z)→ U(z,−)))

≤

∨
φ∈Φ

S(φ,
∨
ψ∈Ψ

∧
z∈X

(ψ(z)→ U(z,−))).
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Hence φ[ ∈ Φ, where φ[ =
∨
ψ∈Ψ

∧
z∈X(ψ(z)→ U(z,−)). And then we have

Ũ(Ψ, x∗) =
∧
V∈U

∨
ψ1∈Ψ

S(ψ1, x◦ ◦ V ◦U)

=
∧
V∈U

∨
ψ1∈Ψ

∧
z∈X

ψ1(z)→ V ◦U(z, x)

=
∧
V∈U

∨
ψ1∈Ψ

∧
z∈X

[ψ1(z)→
∨
y∈X

U(z, y)&V(y, x)]

≥

∨
ψ1∈Ψ

∧
z∈X

(ψ1(z)→ U(z, x))

= φ[(x).

SinceU is a fuzzy quasi-uniformity, it has
∨

V∈U S(V◦V,U) = >. Furthermore, by
∨
φ′∈Φ

∨
ψ′∈Ψ S(φ

′

◦ψ
′

,V) =
>, we have

> =
∨
V∈U

(
∨
φ′∈Φ

∨
ψ′∈Ψ

S(φ
′

◦ ψ
′

,V))&S(V ◦ V,U)

=
∨
V∈U

∨
φ′∈Φ

∨
ψ′∈Ψ

S(φ
′

◦ ψ
′

,V)&S(V ◦ V,U)

≤

∨
V∈U

∨
φ′∈Φ

∨
ψ′∈Ψ

S(φ
′

◦ ψ
′

◦ V,V ◦ V)&S(V ◦ V,U)

≤

∨
V∈U

∨
φ′∈Φ

∨
ψ′∈Ψ

S(φ
′

◦ ψ
′

◦ V,U)

=
∨
V∈U

∨
φ′∈Φ

∨
ψ′∈Ψ

∧
y,z∈X

φ
′

◦ ψ
′

◦ V(y, z)→ U(y, z)

=
∨
V∈U

∨
φ′∈Φ

∨
ψ′∈Ψ

∧
y,z∈X

(
∨
x∈X

V(y, x)&ψ
′

(x)&φ
′

(z))→ U(y, z)

=
∨
V∈U

∨
φ′∈Φ

∨
ψ′∈Ψ

∧
x,y,z∈X

ψ
′

(x)→ (V(y, x)&φ
′

(z)→ U(y, z))

=
∨
V∈U

∨
φ′∈Φ

∨
ψ′∈Ψ

∧
x∈X

[ψ
′

(x)→
∧

y,z∈X

(V(y, x)&φ
′

(z)→ U(y, z))]

≤

∨
ψ′∈Ψ

∧
x∈X

[ψ
′

(x)→
∨
V∈U

∨
φ′∈Φ

∧
y,z∈X

(V(y, x)&φ
′

(z)→ U(y, z))]

=
∨
ψ′∈Ψ

S(ψ
′

,
∨
V∈U

∨
φ′∈Φ

∧
y,z∈X

(V(y,−)&φ
′

(z)→ U(y, z))).
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We can obtain ψ[ ∈ Ψ, where ψ[ =
∨

V∈U
∨
φ′∈Φ

∧
y.z∈X V(y,−)&φ

′

(z)→ U(y, z). Moreover,

Ũ(x∗,Ψ) ≥ Ũ(Ψ ◦Φ ◦ x∗,Ψ) (since Ψ ◦Φ ◦ x∗ ≥ x∗)

=
∧
ψ2∈Ψ

∨
φ1∈Ψ◦Φ◦x∗

S(φ1, ψ2 ◦U)

=
∧
ψ2∈Ψ

∨
ψ′∈Ψ

∨
φ′∈Φ

∨
V∈U

S(ψ
′

◦ φ
′

◦ x◦ ◦ V, ψ2 ◦U))

≥

∧
ψ2∈Ψ

∨
φ′∈Φ

∨
V∈U

S(ψ2 ◦ φ
′

◦ x◦ ◦ V, ψ2 ◦U)

≥

∨
φ′∈Φ

∨
V∈U

S(φ
′

◦ x◦ ◦ V,U)

=
∨
φ′∈Φ

∨
V∈U

∧
y,z∈X

V(y, x)&φ
′

(z)→ U(y, z)

= ψ[(x).

Finally, we know ψ[ ◦ φ[ ≥ 1 from Ψ ◦ Φ ≥ 1. This is to say
∨

x∈X φ
[(x)&ψ[(x) = >. And with the above

calculation, it follows that ∨
x∈X

Ũ(Ψ, x∗)&Ũ(x∗,Ψ) ≥
∨
x∈X

φ[(x)&ψ[(x) = >.

From the arbitrariness of U ∈ U, we know y→X (>X)(Ψ) = >.

For a fuzzy quasi-uniform space (X,U), let RX denote the subset of PX consisting of the right adjoint
promodules Ψ : X−→◦ 1. Then RX is also a fuzzy quasi-uniform space (with fuzzy quasi-uniformity
inherited from PX) and the Yoneda embedding yX : X → PX factors through RX. For convenience, for
every fuzzy quasi-uniform space (X,U), write

rX : X→ RX

for the map obtained by restricting the codomain of yX : X→ PX.

Corollary 3.7. For each Ψ ∈ RX, then Ψ = Ψ∗ ◦ (rX)∗.

In general, the Yoneda embedding yX is not fully dense, but rX : X→ RX fulfills.

Lemma 3.8. A map f : (X,U)→ (Y,V) is fully dense if and only if f→(>X)(y) = > for all y ∈ Y.

Proof. Necessity: Let f : (X,U)→ (Y,V) be fully dense. By Proposition 2.13, we haveV ≤ V ◦ f ◦ f ◦ ◦ V.
Since 1Y ≤ V, then we have 1Y ≤ V ◦ f ◦ f ◦ ◦ V for all V ∈ V. Then for each y ∈ Y,

>=1Y(y, y)≤
∧
V∈V

V◦ f ◦ f ◦◦V(y, y)=
∧
V∈V

∨
x∈X

V(y, f (x))&V( f (x), y)= f→(>X)(y).

Sufficiency: Suppose f→(>X)(y) = > for all y ∈ Y. We need to showV ≤ V◦ f ◦ f ◦ ◦V or {V ◦ f ◦ f ◦ ◦V |
V ∈ V} ⊆ V. Let V ∈ V. Then > =

∨
W1∈V

S(W1 ◦W1,V) and > =
∨

W2∈V
S(W2,V). By > = f→(>X)(y) for
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all y ∈ Y, we know 1Y ≤W ◦ f ◦ f ◦ ◦W for all W ∈ V. SinceV is a fuzzy quasi-uniformity, we have

> =
∨

W1∈V

S(W1 ◦W1,V)

=
∨

W1∈V

S(W1 ◦W1,V)&>

=
∨

W1∈V

S(W1 ◦W1,V)&
∨

W2∈V

S(W2,V)

=
∨

W1∈V

∨
W2∈V

S(W1 ◦W2,V)&S(W2,V)

≤

∨
W∈V

S(W ◦W,V)&S(W,V) (V is closed for finite meets)

≤

∨
W∈V

S(W◦W◦ f ◦ f ◦◦W,V◦ f ◦ f ◦◦W)&S(V◦ f ◦ f ◦◦W,V◦ f ◦ f ◦◦V)

≤

∨
W∈V

S(W◦W◦ f ◦ f ◦◦W,V◦ f ◦ f ◦◦V)

≤

∨
W∈V

S(W,V◦ f ◦ f ◦◦V).

Therefore, V ◦ f ◦ f ◦◦V ∈ V as desired.

Theorem 3.9. The map rX : X→ RX is fully dense.

Proof. It is obvious by Proposition 3.6 and Lemma 3.8.

4. Completeness and completion of fuzzy quasi-uniform spaces

In this section, we study the applications of Yoneda embedding and we focus on the completion of
fuzzy quasi-uniform spaces. In [42], Yue and Fang used pair >-filters to study Cauchy completeness of
fuzzy quasi-uniform spaces following the idea of Lindgren and Fletcher in [30]. For two >-filters F and G,
(F,G) is called a pair >-filter in [42] if

∨
x∈X F(x)&G(x) = > for all F ∈ F,G ∈ G. Similarly, for two saturated

prefilter (F ,G), we can also define pair saturated prefilter as follows: (F ,G) is called a pair saturated
prefilter if

∨
x∈X F(x)&G(x) = > for all F ∈ F and G ∈ G. In this way, F and G must be >-filters since

> =
∨

x∈X F(x)&G(x) ≤
∨

x∈X F(x) and > =
∨

x∈X F(x)&G(x) ≤
∨

x∈X G(x) for F ∈ F and G ∈ G. Hence the
results about completeness in [42] based on>-filters are also valid for saturated prefilters. For convenience,
we list the concepts and results as follows (Definition 4.1–Theorem 4.5).

Definition 4.1. Let (X,U) be a fuzzy quasi-uniform space.
(1) A pair saturated prefilter (F ,G) on (X,U) is called a Cauchy pair saturated prefilter if

∨
F∈F

∨
G∈G S(F×

G,U) = > for U ∈ U, where F × G : X × X→ Q is defined by F × G(x, y) = F(x)&G(y) for all x, y ∈ X.
(2) A pair saturated prefilter (F ,G) on (X,U) converges to x0 ∈ X if (Lx0 ,Rx0 ) ⊆ (F ,G), where Lx0 and

Rx0 are the saturated prefilters generated by the bases Lx0 = {U(−, x0) | U ∈ U} and Rx0 = {U(x0,−) | U ∈ U},
respectively.

Lemma 4.2. Let (X,U) be a fuzzy quasi-uniform space. Φ a Ψ : X−→◦ 1 is a pair adjoint promodule if and
only if (FΨ,GΦ) is a minimal Cauchy saturated prefilter on (X,U), where FΨ and GΦ are the saturated prefilters
{ψ(−, ∗) | ψ ∈ Ψ} and {φ(∗,−) | φ ∈ Φ}.

In fact, the condition Ψ◦Φ ≥ 1 guarantees that (FΨ,GΦ) is a pair saturated prefilter on (X,U), Φ◦Ψ ≤ U
ensures that it is a Cauchy saturated prefilter, while the condition of Φ,Ψ are promodules assures that it is
minimal.
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Definition 4.3. A fuzzy quasi-uniform space (X,U) is called Cauchy complete if each Cauchy pair saturated
prefilter on (X,U) converges.

Since we have described fuzzy quasi-unform spaces as enriched categories. Therefore, we can study
the completeness of fuzzy quasi-unform spaces by using pair adjoint promodules.

Definition 4.4. A fuzzy quasi-unform space (X,U) is said to be Lawvere complete if for each adjoint
promodule Φ a Ψ : X−→◦ 1, there exists x ∈ X such that Φ = x∗,Ψ = x∗.

It is easy to see (X,U) is Lawvere complete if and only if rX(X) = RX.

Theorem 4.5. (X,U) is Cauchy complete if and only if (X,U) is Lawvere complete.

Now we begin to study the completion of fuzzy quasi-uniform spaces. First, we recall the definition of
T0 separability of fuzzy quasi-uniform space ( [40] Theorem 5.1). (X,U) is said to be T0 separated if there
is some U ∈ U such that U(x, y) < > or U(y, x) < > for all x , y.

Proposition 4.6. For a fuzzy quasi-uniform space (X,U), the following statements are equivalent:
(1) (X,U) is T0 separated;
(2) yX : X→ PX is injective;
(3) For any uniformly continuous maps f , 1 : Y→ X, if f ∗ = 1∗, then f = 1;
(4) For any uniformly continuous maps f , 1 : Y→ X, if f∗ = 1∗, then f = 1.

Proof. Firstly, we show (1)⇔ (2).
(1)⇒ (2) It suffices to show that x , y⇒ yX(x) , yX(y). Since

yX(x) , yX(y)⇔ x∗ , y∗

⇔ x◦ ◦ U , y◦ ◦ U
⇔ {x◦ ◦ U | U ∈ U} * y◦ ◦ U or {y◦ ◦ U | U ∈ U}* x◦ ◦ U
⇔ ∃U ∈ U, x◦ ◦ U < y◦ ◦ U or y◦ ◦ U < x◦ ◦ U

Let x , y. Since (X,U) is T0 separated, there exists U ∈ U such that U(x, y) < > or U(y, x) < >. Without
loss of generality, assume that U(y, x) < >. Then we have x◦ ◦U < y◦ ◦ U. In fact, if x◦ ◦U ∈ y◦ ◦ U, then

>=
∨
V∈U

S(y◦◦V, x◦◦U)=
∨
V∈U

∧
z∈X

V(z, y)→U(z, x)≤
∨
V∈U

V(y, y)→U(y, x)=U(y, x).

This contradicts to the hypothesis. So we obtain x∗ , y∗, as desired.
(2)⇒ (1) Let x , y. We assume that there exists U0 ∈ U such that x◦ ◦U0 < y◦ ◦ U. Then we have∨

V∈U

S(y◦ ◦ V, x◦ ◦U0) < >,

i.e., ∨
V∈U

∧
z∈X

V(z, y)→ U0(z, x) < >.

Next we can assert that there exists some V0 ∈ U such that V0(y, x) < >. If V(y, x) = > for all V ∈ U, then
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we have

> =
∨
V∈U

S(V ◦ V,U0)

≤

∨
V∈U

∧
z∈X

V ◦ V(z, x)→ U0(z, x)

=
∨
V∈U

∧
z∈X

(
∨
a∈X

V(z, a)&V(a, x)→ U0(z, x))

≤

∨
V∈U

∧
z∈X

(V(z, y)&V(y, x)→ U0(z, x))

=
∨
V∈U

∧
z∈X

V(z, y)→ U0(z, x)( since V(y, x) = >).

This contradicts to the hypothesis. Therefore, there exists V0 ∈ U such that V0(y, x) < >.
Secondly, we prove (2)⇔ (3).
(2) ⇒ (3) Suppose that f , 1 : Y → X are uniformly continuous maps and satisfy f ∗ = 1∗. We need to

check that ∀y ∈ Y, f (y) = 1(y). Since f ∗ = 1∗, then y∗ ◦ f ∗ = y∗ ◦ 1∗, i.e. f (y)∗ = 1(y)∗. Then f (y) = 1(y) on
account of the injectivity of yX.

(3)⇒ (2) Since for any x ∈ X, x : 1→ X is a special uniformly continuous map, this proof is obvious.
Finally, since a promodule has at most one left (right, resp.) adjoint, then f ∗ = 1∗ ⇔ f∗ = 1∗. So (3)⇔ (4)

is obvious.

Let (X,U) be a fuzzy quasi-uniform space. If A ∈ QX satisfies A = >X or A(x) = > for all x ∈ X, then A is
called dense in (X,U). In particular, Z ⊆ X is dense in (X,U) if >Z(x) = > for all x ∈ X.

A T0 separated and Cauchy complete fuzzy quasi-uniform space (X♥,U♥) is called the T0 completion of
(X,U) if there exists a uniformly continuous map cX : (X,U)→ (X♥,U♥) satisfies the following properties:

(I) c→X (>X) or >cX(X) is dense in Y, i.e., c→X (>X) = >Y;
(II) whenever (Y,V) is T0 separated and Cauchy complete, and f : (X,U) → (Y,V) is a uniformly

continuous mapping, then there is a unique uniformly continuous map f4 : (X♥,U♥) → (Y,V) such that
f4 · cX = f .

Remark 4.7. By Lemma 3.8 and above definition of dense, we can see that a map f : (X,U) → (Y,V) is
fully dense if and only if f→X (>X) is dense in Y.

Now we consider the subspace RX of PX, where its fuzzy quasi-uniformity is the restriction of Ũ. For
convenience, we still use Ũ instead of Ũ|RX. In the following, we will show that (RX, Ũ) is just the T0
completion of (X,U).

Lemma 4.8. (RX, Ũ) is T0 separated.

Proof. Let Ψ1,Ψ2 ∈ RX with Ψ1 , Ψ2. From Corollary 3.7, we know Ψ1 = Ψ∗1 ◦ (rX)∗ and Ψ2 = Ψ∗2 ◦ (rX)∗.
Then Ψ∗1 , Ψ∗2 by Ψ1 , Ψ2. Therefore, (RX, Ũ) is T0 separated from Proposition 4.6.

Lemma 4.9. (RX, Ũ) is Cauchy complete.

Proof. It suffices to check that for each adjoint promodule Φ a Ψ : RX−→◦ 1, there exists ψ ∈ RX such that
Ψ = ψ∗ and Φ = ψ∗. Let

ψ = Ψ ◦ (rX)∗ : X
(rX)∗
−→◦ RX

Ψ
−→◦ 1 and φ = (rX)∗ ◦Φ : 1

Φ
−→◦ RX

(rX)∗
−→◦ X.

It is easy to see φ a ψ, then ψ ∈ RX. Next we prove Ψ = ψ∗. Since ψ ∈ RX, it follows that ψ = ψ∗ ◦ (rX)∗ from
Corollary 3.7. Hence Ψ ◦ (rX)∗ = ψ∗ ◦ (rX)∗. Since rX is fully dense, we have Ψ = ψ∗. Then by Φ a ψ∗, ψ∗ a ψ∗

and the uniqueness of left adjoint, which implies Φ = ψ∗.
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If (X,U) is a T0 separated and Cauchy complete fuzzy quasi-uniform space, then (X,U) � (RX, Ũ). In
fact, since rX(X) = RX, it follows that rX is surjective. We already know that rX is uniformly continuous and
injective. To show (X,U) � (RX, Ũ), We still need to show r−1

X : (RX, Ũ)→ (X,U) is uniformly continuous.
On account of (r−1

X )◦ ◦U ◦ r−1
X (x∗, y∗) = U(x, y) and Ũ(x∗, y∗) ≤ U ◦U(x, y) for U ∈ U and x, y ∈ X, we have∨

V∈U

S(Ṽ, (r−1
X )◦ ◦U ◦ r−1

X ) ≥
∨
V∈U

S(V ◦ V,U) = >.

Hence (r−1
X )◦ ◦ U ◦ r−1

X ∈ Ũ. Therefore, r−1
X is uniformly continuous. Especially, if (X,U) is a T0 separated

and Cauchy complete fuzzy quasi-uniform space, (X,U) itself is just the T0 completion of (X,U).
For a right adjoint promodule Φ : (X,U)−→◦ (Y,V), its left adjoint is denoted by Φ̂. Then Φ ◦ Φ̂ ≥ V

and Φ̂ ◦ Φ ≤ U. We equip RX with the structure Ů = {A |
∨

U∈U S(Ů,A) = >}, where Ů(Ψ1,Ψ2) =∨
ψ̂2∈Ψ̂2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ1,U) for all Ψ1,Ψ2 ∈ RX.

Lemma 4.10. Ũ = Ů.

Proof. We first check Ů ≤ Ũ for all U ∈ U. It suffices to prove Ů(Ψ1,Ψ2) ≤ Ũ(Ψ1,Ψ2) for all Ψ1,Ψ2 ∈ RX.
For each ψ̂2 ∈ Ψ̂2 and ψ2 ∈ Ψ2, then we have ψ2 ◦ ψ̂2 ≥ 1 by Ψ2 ◦ Ψ̂2 ≥ 1. Then∨

ψ1∈Ψ1

S(ψ̂2 ◦ ψ1,U) ≤
∨
ψ1∈Ψ1

S(ψ2 ◦ ψ̂2 ◦ ψ1, ψ2 ◦U)

≤

∨
ψ1∈Ψ1

S(ψ1, ψ2 ◦U).

We have
Ů(Ψ1,Ψ2) =

∨
ψ̂2∈Ψ̂2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ1,U) ≤
∧
ψ2∈Ψ2

∨
ψ1∈Ψ1

S(ψ1, ψ2 ◦U) = Ũ(Ψ1,Ψ2).

Therefore, {Ũ | U ∈ U} ⊆ Ů. This is to say Ů ≤ Ũ. Now, we prove the opposite direction. We first check
that Ũ ≤ ˚U ◦U. Since Ψ̂2 ◦Ψ2 ≤ U, it follows that

∨
ψ̂2∈Ψ̂2

∨
ψ2∈Ψ2

S(ψ̂2 ◦ ψ2,U) = >. Then we have

˚U ◦U(Ψ1,Ψ2) =
∨
ψ̂2∈Ψ̂2

∨
ψ2∈Ψ2

S(ψ̂2 ◦ ψ2,U)→ ˚U ◦U(Ψ1,Ψ2)

=
∨
ψ̂2∈Ψ̂2

∨
ψ2∈Ψ2

S(ψ̂2 ◦ ψ2,U)→
∨
ψ̂2∈Ψ̂2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ1,U ◦U)

≥

∧
ψ̂2∈Ψ̂2

(
∨
ψ2∈Ψ2

S(ψ̂2 ◦ ψ2,U)→
∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ1,U ◦U))

≥

∧
ψ̂2∈Ψ̂2

∧
ψ2∈Ψ2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ2,U)→ S(ψ̂2 ◦ ψ1,U ◦U)

≥

∧
ψ̂2∈Ψ̂2

∧
ψ2∈Ψ2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ2 ◦U,U ◦U)→ S(ψ̂2 ◦ ψ1,U ◦U)

≥

∧
ψ̂2∈Ψ̂2

∧
ψ2∈Ψ2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ1, ψ̂2 ◦ ψ2 ◦U)

≥

∧
ψ2∈Ψ2

∨
ψ1∈Ψ1

S(ψ1, ψ2 ◦U)

= Ũ(Ψ1,Ψ2).
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And it is obvious that S(U,V) ≤ S(Ů, V̊), then

> =
∨
V∈U

S(V ◦ V,U) ≤
∨
V∈U

S( ˚V ◦ V, Ů) ≤
∨
V∈U

S(Ṽ, Ů).

Therefore, {Ů | U ∈ U} ⊆ Ũ. So Ũ ≤ Ů

Proposition 4.11. For each right adjoint Φ : (X,U)−→◦ (Y,V), the map

RΦ : (RY, Ṽ)→ (RX, Ũ), Ψ 7→ Ψ ◦Φ

is uniformly continuous.

Proof. From Lemma 4.10, we need to check that V̊ ≤ RΦ◦◦Ů◦RΦ. It suffices to prove the base {RΦ◦◦Ů◦RΦ |

U ∈ U} ⊆ V̊. Since Φ̂ ◦Φ ≤ U andV ◦Φ ≤ Φ, we have

> =
∨
φ̂∈Φ̂

∨
φ∈Φ

(
∨
V∈V

∨
φ′∈Φ

S(V ◦ φ
′

, φ))&S(φ̂ ◦ φ,U)

=
∨
φ̂∈Φ̂

∨
φ,φ′∈Φ

∨
V∈V

S(V ◦ φ
′

, φ)&S(φ̂ ◦ φ,U)

≤

∨
φ̂∈Φ̂

∨
φ,φ′∈Φ

∨
V∈V

S(φ̂ ◦ V ◦ φ
′

, φ̂ ◦ φ)&S(φ̂ ◦ φ,U)

≤

∨
φ̂∈Φ̂

∨
φ′∈Φ

∨
V∈V

S(φ̂ ◦ V ◦ φ
′

,U).

Furthermore,∨
V∈V

S(V̊,RΦ◦ ◦ Ů ◦ RΦ)

=
∨
V∈V

∧
Ψ1,Ψ2∈RY

V̊(Ψ1,Ψ2)→ Ů(Ψ1 ◦Φ,Ψ2 ◦Φ)

=
∨
V∈V

∧
Ψ1,Ψ2

[
∨
ψ̂2∈Ψ̂2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ1,V)→
∨

α̂∈Ψ̂2◦Φ

∨
β∈Ψ1◦Φ

S(α̂ ◦ β,U)]

=
∨
V∈V

∧
Ψ1,Ψ2

[
∨
ψ̂2∈Ψ̂2

∨
ψ1∈Ψ1

S(ψ̂2 ◦ ψ1,V)→
∨
φ̂∈Φ̂

∨
ψ̂2∈Ψ̂2

∨
ψ1∈Ψ1

∨
φ′∈Φ

S(φ̂ ◦ ψ̂2 ◦ ψ1 ◦ φ
′

,U)]

≥

∨
V∈V

∧
Ψ1,Ψ2

∧
ψ̂2∈Ψ̂2

∧
ψ1∈Ψ1

[S(ψ̂2 ◦ ψ1,V)→
∨
φ̂∈Φ̂

∨
φ′∈Φ

S(φ̂ ◦ ψ̂2 ◦ ψ1 ◦ φ
′

,U)]

≥

∨
V∈V

∧
Ψ1,Ψ2

∧
ψ̂2∈Ψ̂2

∧
ψ1∈Ψ1

∨
φ̂∈Φ̂

∨
φ′∈Φ

S(ψ̂2 ◦ ψ1,V)→S(φ̂ ◦ ψ̂2 ◦ ψ1 ◦ φ
′

,U)

≥

∨
V∈V

∧
Ψ1,Ψ2

∧
ψ̂2∈Ψ̂2

∧
ψ1∈Ψ1

∨
φ̂∈Φ̂

∨
φ′∈Φ

S(φ̂ ◦ ψ̂2 ◦ ψ1 ◦ φ
′

, φ̂ ◦ V ◦ φ
′

)→S(φ̂ ◦ ψ̂2 ◦ ψ1 ◦ φ
′

,U)

≥

∨
V∈V

∨
φ̂∈Φ̂

∨
φ′∈Φ

S(φ̂ ◦ V ◦ φ
′

,U)

= >.

By the above formula, we have RΦ◦ ◦ Ů ◦ RΦ ∈ V̊ for all U ∈ U.
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Let Q-CSepFQuinf denote the category of T0 separated and complete fuzzy quasi-uniform spaces. From
Lemma 4.8, Lemma 4.9 and Proposition 4.11, we can define the functor F : Q-FQunif→ Q-CSepFQuinf as
follows:

• For (X,U) ∈ Q-FQunif, F(X,U) = (RX, Ũ);
• For uniformly continuous map f : (X,U) → (Y,V), F( f ) : (RX, Ũ) → (RY, Ṽ) is given by F( f ) =

R( f ∗) = (−) ◦ f ∗.

Theorem 4.12. F : Q-FQunif → Q-CSepFQuinf defined above is the left adjoint of the inclusion functor i :
Q-CSepFQuinf→ Q-FQunif.

Proof. It is easy to see that family {rX : X→ i ◦ F(X) = RX}X is a natural transformation since

F( f ) ◦ rX(x) = F( f )(x∗) = x∗ ◦ f ∗ = f (x)∗ = rY( f (x))

for each uniformly continuous map f : X → Y and x ∈ X. To show F a i, it suffices to show there exists
a unique h : (RX, Ũ) → (Y,V) such that f = h ◦ rX for each (Y,V) ∈ Q-CSepFQuinf and each uniformly
continuous map f : (X,U)→ (Y,V).

Step1 Existence: Since (Y,V) is T0 separated and Cauchy complete, we have (Y,V) � (RY, Ṽ) and rY is
the isomorphic morphism. Let h = r−1

Y ◦ F( f ). Then h is the desired map.
Step2 Uniqueness: Suppose k : (RX, Ũ) → (Y,V) is another uniformly continuous map such that

f = k ◦ rX. We need to show h = k. If h , k, then there exists Ψ0 ∈ RX such that h(Ψ0) , k(Ψ0). Since (Y,V)
is T0 separated, we suppose there exists V ∈ V such that V(h(Ψ0), k(Ψ0)) < > ( the case V(k(Ψ0), h(Ψ0)) < >
is similar ). By

∨
W∈V S(W ◦W,V) = >, we know there exists W0 ∈ V such that W0 ◦W0(h(Ψ0), k(Ψ0)) < >.

Since h and k are both uniformly continuous, it follows that h◦ ◦W0 ◦ h ∈ Ũ and k◦ ◦W0 ◦ k ∈ Ũ. Hence∨
U1∈U

S(Ũ1, h◦ ◦W0 ◦ h) = > and
∨

U2∈U
S(Ũ2, k◦ ◦W0 ◦ k) = >. Therefore,∨

U1∈U

∨
U2∈U

S(Ũ1, h◦ ◦W0 ◦ h)&S(Ũ2, k◦ ◦W0 ◦ k) = >.

And then ∨
U∈U

S(Ũ, h◦ ◦W0 ◦ h)&S(Ũ, k◦ ◦W0 ◦ k) = >.

By Ψ0 ∈ RX, we also know that
∨

x∈X Ũ(Ψ0, x∗)&Ũ(x∗,Ψ0) = >. So

> =
∨
U∈U

S(Ũ, h◦ ◦W0 ◦ h)&S(Ũ, k◦ ◦W0 ◦ k)

=
∨
U∈U

>&S(Ũ, h◦ ◦W0 ◦ h)&S(Ũ, k◦ ◦W0 ◦ k)

=
∨
U∈U

(
∨
x∈X

Ũ(Ψ0, x∗)&Ũ(x∗,Ψ0))&S(Ũ, h◦ ◦W0 ◦ h)&S(Ũ, k◦ ◦W0 ◦ k)

=
∨
U∈U

∨
x∈X

Ũ(Ψ0, x∗)&Ũ(x∗,Ψ0)&S(Ũ, h◦ ◦W0 ◦ h)&S(Ũ, k◦ ◦W0 ◦ k)

≤

∨
x∈X

h◦ ◦W0 ◦ h(Ψ0, x∗)&k◦ ◦W0 ◦ k(x∗,Ψ0)

=
∨
x∈X

W0(h(Ψ0), f (x))&W0(k(x∗), k(Ψ0))

=
∨
x∈X

W0(h(Ψ0), f (x))&W0( f (x), k(Ψ0))

≤

∨
y∈Y

W0(h(Ψ0), y)&W0(y, k(Ψ0))

= W0 ◦W0(h(Ψ0), k(Ψ0)).
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This contradict to W0 ◦W0(h(Ψ0), k(Ψ0)) < >. Therefore, k = h.

Remark 4.13. From the proof of Theorem 4.12, we know (RX, Ũ) is exactly the T0 completion of (X,U). The
adjunction F a i induces a monad C = (C, r, µ) on Q-FQunif according to the following information:

• The functor C : Q-FQunif→ Q-FQunif sends a fuzzy quasi-uniform space (X,U) to (RX, Ũ).
• The unit rX : (X,U)→ C(X,U) = (RX, Ũ) is the Yoneda embedding.
• The multiplication µX : C(C(X,U))→ C(X,U) is the the inverse map of rRX.

The readers can easily show that the algebra with respect to C = (C, r, µ) is exactly the T0 separated and
Cauchy complete fuzzy quasi-uniform space.

5. Conclusions

In this paper, we describe fuzzy quasi-uniform spaces in the sense of Lowen and Höhle as enriched
categories. We construct the Yoneda embedding in fuzzy quasi-uniform spaces through promodules.
As an application of Yoneda embedding, we study the completeness and completion of fuzzy quasi-
uniform spaces. When Q = [0, 1] and & is a continuous t-norm, from Corollary 4.5 in [44], we know
“
∨

V∈U S(V ◦ V,U) = 1 for all U ∈ U” can be replaced by “U ∈ U ⇒ ∃V ∈ U, s.t. V ◦ V ≤ U”. In this case,
the proofs of this paper can be simplified.

Since there are many kinds of lattice-valued quasi-uniform spaces, we want to know whether other
lattice-valued quasi-uniform spaces can be viewed as enriched categories. The relationship on completeness
between fuzzy quasi-uniform spaces and fuzzy quasi-metric spaces from a categorical point of view may
be also an interesting question, we leave them for the future study.
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[1] J. Adámek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories, J. Wiley & Sons, New York, 1990.
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