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Abstract. We define a new class of Sylvester-Kac matrices and calculate their spectra explicitly. We use the
technique of the left eigenvectors to obtain the claim. We also provide some right eigenvectors which can
be useful in applied computations. The main results are rather general and contain many known particular

characterizations. Matrices belonging to this family represent a convenient test matrices for numerical
eigenvalue computations with known spectrum.

1. Introduction

In 1854, ].J. Sylvester conjectured in [15] that the eigenvalues of the tridiagonal matrix

were n — 2k, for k = 0,1,...,n. Since then, many extensions and proofs have been proposed. Perhaps the
most pertinent results can be found in [2—4, 7-14] and references therein. The matrix A,, which we call

Sylvester-Kac matrix, became also known as Clement matrix due to the independent study of P.A. Clement
in [6]. Throughout the text, all non-mentioned entries should be read as zero.
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Recently, R. Oste and J. Van der Jeugt [14] established a study of a new family of matrices. From this
study we can deduce that the eigenvalues of

0 1+a
2n 0 2
2n—1+a 0 3+a
Hy,(a) = 2n—-2
. 2n
1+a O
are
+2+k(k+a), fork=0,1,...,n,
and of
0 1+a
2n—1+a 0 2
2n—2 0 3+a
Hzn_l(ﬂ): 2n—-3+a
2n—1
1 0
are

+2k+a+1), fork=0,1,...,n—1.

It is interesting to notice that a possible extension of the first case can be

0 l-r+a
n-s 0 2.7
n—=1)-s+a 0 3-r+a
Ay(a) = m-2-s . ,
' . ner
l-s+a O

whose eigenvalues are

i\/Zk(ar+as+2krs), fork=0,1,...,¢.

However, for the second case, it seems not possible to advance a close formula.

When the eigenvalues, eigenvectors, determinant, and similar other notions involving spectral proper-
ties of a matrix are known, we refer to such a matrix as a test matrix. Test matrices are used to evaluate the
accuracy of matrix inversion programs since the exact inverses are known (cf. e.g. [1, 14] and references
therein). We believe that this family and the corresponding explicit eigenvalues will make a significant
contribution to these types of special matrices.

Recently, Coelho, Dimitrov, and Rakai in [5] suggested a method for a fast estimation of the largest
eigenvalue of an asymmetric tridiagonal matrix. The proposed procedure was based on the power method
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and the computation of the square of the original matrix. Then they provided numerical results with
simulations in C/C++ implementation in order to demonstrate the effectiveness of the proposed method.
They adopted the Sylvester-Kac test matrix [14] for comparing the power method and the proposed method
performance.

In this spirit, a new family of Sylvester-Kac type matrices is defined in [8] and the corresponding
spectrum is derived. Namely, the authors claim that the eigenvalues of

0 1+a
dn+2 0 2
n+1+a O 3+4+a
4n 0 4
Gan () = dn-1+a ¢
2n—1+a
2n+4 0 2n
2n+3+a O
are
12@\/11+2k, fork=0,1,...,n,
and the eigenvalues of
0 1+a
4n 0 2
dn—-1+a 0 3+a
Gonr (@) = an-2 ,
. 2n—2
2n+3+a 0 2n—1+a
2n + 2 0

are

£2V2k+1Va+2k+1, fork=0,1,...,n—1.

It is interesting to notice that G, (0) and the Sylvester-Kac matrix share exactly the same eigenvalues.
The authors used the left eigenvectors to prove the formulas for the eigenvalues. They also provide

explicitly right eigenvectors of Gy,_1 (a) corresponding eigenvalues 2 /(21 — 1) (a + 2n — 1) as well as right
eigenvectors of Gy, (1) corresponding to eigenvalues ¥2 4/2n (a + 2n).

In this manner, now going further, we generalize the matrix G, (2) by adding additional parameters
and then derive all eigenvalues of this general matrix explicitly by using left-eigenvector trick. As a
consequence, we evaluate its determinant. Finally we shall compute some right eigenvectors of the matrix.

For any real numbers t and m, we define the following generalization of the Sylvester-Kac ma-
trix Gy, (a,t,m) of order 2n + 1 as following

m 1+a
dn+2 t 2
dn+l1+a m 3+a
4n t 4
Gon (a, t,m) = n—1+a

2n—1+a

2n+4 t 2n
2n+3+a m




or in closed form

(GZn (ﬂ, t/ m))i,j =
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i+a
i

dn+4-i
n+4+a—-i

0

if i is odd,
if i is even,
ifj=i+1andiis odd,
ifj=i+1andiiseven,
ifi=j+1andiiseven,
ifi=j+1landiisodd
otherwise.

And the general Sylvester-Kac matrix Gy,-1 (4, t, m) of order 2n as following

m
4n
GZn—l (al tl m) =
or in closed form
(Gan-1(a,t,m)); ; =

1+a
t
n—-1+a

i+a
i

n+2-1i
n+2+a—i

0

2

m 3+a
dn -2

if i is odd,

if i is even,
if j=i+1andiisodd,

if j=i+1andiiseven,
ifi=j+1andiiseven,

2n+3+a

ifi=j+1andiisodd,
otherwise.

2n—2
m
2n+2

2n—1+a

4020

Since the main diagonal entries are consist of m and ¢, respectively, it is called a periodic generalization of

the Sylvester-Kac matrix.

Our main purpose is to determine explicitly the spectrum of G,(a, t, m), denoted by A(G,(a, t, m)) :

A(Gae (a,t,m)) = {% (m +t \/(m —1)* + 32ak + 64k2)}

and

A (Gor1 (a, t,m)) = {% (m +EF \/(m -2 +16(k-1)(a + 2k - 1))}

14

k=1

U {m}

t

k=1

When we take the periodicity parameters f and m as 0, then the matrix G, (a,t,m) is reduced to the

Sylvester matrix G, (a) .

We first determine the spectrum of G,(a,t, m) in the next section. In the third section, we provide the
right eigenvectors which can be of independent interest both in pure and numerical applications. We use

basically the left eigenvectors of the matrix and an inductive approach to reach our aims.

As we mentioned above, the Sylvester-Kac is part of a family of matrices known as test matrices, which
are used to compare performance of methods. We hope that this new family of Sylvester-Kac type matrices
defined here will contribute to the literature regarding special matrices with known eigenvalues as test

matrices.
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2. The spectrum of G,(a, t, m)

In this section we find the spectrum of G,(a,t, m), denoted by A(G,(a, t, m)). For this purpose we shall
focus on the matrix G,(a,t,0) and derive its spectrum A(G,(a,t,0)). Then using some transform trick, we
will derive the spectrum of the matrix G,(a, t, m). In the end, we derive the determinant. For easy writing,
we denote the matrix G,(a, t,0) by G, unless we do not need special values of 2 and t.

Theorem 2.1. Explicitly, the eigenvalues of G, are

A (Gar (a,£,0)) = {% (t+ VP + 320k + 64k2)}£ U {0}

k=1
and
¢

A(Gapr (a,1,0)) = {% (% VP +16(k—1)(a+2k- 1))}
k=1
We start by finding two eigenvalues of G, and then two left eigenvectors corresponding to each of
them.

Lemma 2.2. The matrix Gy, has the eigenvalues A* = HMBA60E gy )= = L NESSUSOBE 3ty Joft (21 + 1)-

eigenvectors u* and u~ defined by

+ At (n=1A* 21 A*

wi=(2m+1 % o2p-1 OPY 5 23 L)
and

- A (n=1)A- 20~ A

w=(2n+1 2 2p-1 DR 5 203 L),
respectively.

Proof. To prove our claim, it is sufficient to show that
u Gy, =Atut and u Gy, =A"u".
From the definitions of G,, and u*, we should show that
(U Gan)1 1 (ATu") g,

(u+G2H)1,2n+1 = (/\+u+)1,2n+1

and
W Gan)y = (ATu")y,, , forl<m<2n+1.

The first two claims are simple to check. For example, the first identity comes from

nAt

(U™ Gan) 1 =2n+1) x 0+ o

@An+2)=2n+1)A*
and
(/\+u+)1,1 = A+ (27[ + ].) .

We now focus on the case 2 < m < 2n. For even m, say m = 2k, we consider (u*Gau)y o = (ATu"); 5. The
product of u* by Gy, provides, for 1 <k <m,

_ +
W Gy = (2n+3—2k)(a+2k—1)+%+(2n+1—2k)(4n+3—2k+a)
_ +
- 4(a+2n)(n—k+1)+%

(n—k+1)[4(a+2n)+A—+t],
2n
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which, by the definition of A*, gives us

n+1-k
(U Gon)y ok = B —

On the other hand, we see that

(A%).

27’l+1—k
2n

as claimed. The other case, i.e., u"G,, = A"u~, can be handled in a similar fashion. [

(/\+u+)1,2k = (A7)

We shall now consider the matrix G,,. Define the matrix Y of order 2n + 1 as

A* (n=1A* 20 A*
2n+1 112_;/1 2n-1 T 5 o 3 b 1
_ A (n=1A~ 24° A
Y = 2n+1 712—71 2n -1 T 5 S 3 o 1
0@n-1)x2 ‘ Iy
Similarly to the previous case, we obtain
A A* _m-1 _m3 3 -1
Cnr)@A -t  @nt)@A =D 2n+1 n+1 2n+1 2+l
-1 _ 2 2 -1 ) -2 1
Y= oo phae 0 -5 0 -5 o 5+ 0 50
0@n-1)x2 ‘ Iy
Therefore, Gy, is similar to D = YG,,, Y~ where
At 0
D= 0 AT O2x(2n-1)
T 2(a+4n+1)  2(a+4n+l) ’
At At
On-2x2 | Q
where Q = (Q,-,j) is the matrix, of order 2n — 1, given by
t ifi = jis even,
i+a+2 ifj=i+1landi>1isodd,
0ii = i+2 if j=i+1andiiseven,
u dn+2—1i ifi=j+1andiiseven,
dn+2+a—i ifi=j+1andiisodd,
0 otherwise,
with the exceptional entries Q1 »j = —w forj>1land Qip=a+3- w.
Clearly it has the form
(n—1)(a+4n+1) —(n-2)(a+4n+1) 4n+1
0 a+3-—"F— 0 e 0 —atdnil 0
4n t 4
a+4n-1 0 a+>5
4n -2 t 6
Q= a+4n-3 0
2n—2
0 a+2n-1
2n+4 t 2n
a+2n+3 0
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Similarly to the previous case, we shall give two eigenvalues of G,—1 and then two corresponding left
eigenvectors associated to each of them.

Lemma 2.3. The matrix Gy,—1 has the eigenvalues

(t+ VE+16Q@n-1)(@+2n-1)) and y = (t—\/t2+16(2n—1)(a+2n—1))

N~
N =

o=

with left 2n-eigenvectors v* and v~ defined by

+ (2n-T)u* (2n-3)u* 3u* u*
v = ( 2n Gy -2 Soeh 4 w1 2 )
and
- _ (2n-Du~ (2n=3)u~ 3u” B
v = ( 2n Sy 2M-2 Soh 4 w1 2 )'
respectively.

Now our purpose is to find similar matrices to Gy, and Gy,-1, respectively. We start with the matrix
G2n—1-
Define a matrix T of order 21 as shown

(2n-1)u* (2n-3)u* 3u* ut
2 Sy (272 ey v 4 e 2 e
_ @n=1)u~ (2n=3)u~ 3u” b
T=|2n oy | M2 Smey 0 4 e 2 seem |
021—-1)x2 DLy

where 0y,-1)x2 is the 2(n — 1) X 2 zero matrix and I, is the identity matrix of order 2n — 2. Its inverse is

+

B _n-l _n=2 .o =2 =1
2n(2u=—t)  2n(2ut-t) n 0 n 0 w0 w0
-1 _ 2 2 2n-3 2n-5 -3 -1
T 2ut—t 2u—t 0 51 0 a1 0 =AY 2n—1
02(1-1)x2 Iy

We can check that G,,,_1 is similar to the matrix

w 0
0 i 02x(21-2)
E 2(a+4n—-1)  2(a+4n-1) ’
2ut—t 2u-—t
0n-3)x2 14

where W = (Wi,j) is the block of order 21 — 2 defined by

t ifi = jis even,
i+a+2 ifj=i+1landi>1isodd,
i+2 if j=i+1andiiseven,
4n—i ifi=j+1andiiseven,
d4n+a—1 ifi=j+1andiisodd,
0 otherwise,

W,',]‘ =
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_ (2n-2j-1)(@+4n-1)

with the exceptional entries W1 »; = T forj>1land Wip =a+3— %. Clearly it has
the form
0 a+3-EFEd o EERE) o S
4dn -2 t 4
dn—-3+a 0 5+a
4dn -4 t 6
W=
dn—-3+a !
t 2n—2
2n+3+a 0 2n—1+a
2n + 2 t

since E = TGy,—1T~!. Consequently, u* and p~ are eigenvalues of E.
To compute the remaining eigenvalues of G,,-1 and Gj,, we proceed providing some auxiliary results.
Define an upper triangular matrix Uy, of order 2n with

@n+1-li2)@+an+1-2(G-1)/2) .
Uii = +1)(a+2n+3) , forl<is<on

and

2n+1-2r—i)(a+4n+3 .
ui’i+2r:(n(n+1)r(a-l|-)$1+3n) ), forl<i<2n-2and 1<r<n-1,

and 0 otherwise, where | -] stands for the floor function.
For example, when n = 4, we have

9(a+17) 0 6(a+19) 0 4(a+19) 0 2(a+19) 0
5(a+11) 5(a+11) 5(a+11) 5(a+11)
0 8(a+17) 0 5(a+19) 0 3(a+19) 0 1(a+19)
5(a+11) 5(a+11) 5(a+11) 5(a+11)
0 0 8(a+15) 0 4(a+19) 0 2(a+19) 0
5(a+11) 5(a+11) 5(a+11)
0 0 0 7(a+15) 0 3(a+19) 0 1(a+19)
Ug = 5@+11) Sas13) 5(a+11) 2er19) 5@+11)
a+ a+
0 0 0 0 5(a+11) 6 013) 5(a+11) " 019)
a+ a+
0 0 0 0 0 s@m 0 e
0 0 0 0 0 0 g3 0
0 0 0 0 0 0 0

For odd orders, we define an upper triangular matrix Uy,+1 of order 2n + 1 with

_@n+2-li/2)@+4n+3-21G-1)/2))

U = <i<
” (n+2)(@a+2n+3) , forl<isZn+l

and

2n+2-2r—i)(a+4n+>5)
n+2)(@a+2n+3) !

Uiiror = for1<i<2n and 1<r<mn,

and 0 otherwise.
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For example, when n = 3, we get

8(a+15) 0 5(a+17) 0 3(a+17) 0 1(a+17)
5(a+9) 5(a+9) 5(a+9) 5(a+9)
0 7(a+15) 0 4(a+17) 0 2(a+17) 0
5(a+9) 5(a+9) 5(a+9)
0 0 7(a+13) 0 3(a+17) 0 1(a+17)
5(a+9) 6(a+13) 5(a+9) 2(a417) 5(a+9)
a+ a+
Uy = 0 0 0 5(+9) " 011) 5(a+9) y 017)
a+ a+
0 0 0 0 5(a+9) 0 5(@+9)
0 0 0 0 0o FF 0
0 0 0 0 0 0o 3

A routine calculation leads us to the inverse matrix l,lZ‘n1 = (Cij), with

a+2n+3 N n+1
a+4n+1-21(i-1)/2] 2n+1-1i/2]

Cii =

forl1<i<2n,

(@+2n+3)(a+4n+3) « nm+1)2n-1-1i)
T@+dn+1-20G-1/2)@+4n-1-21G-1)/2))  @n+1-1i/2]) 2n - Li/2]))

forl1 <i<2n-2,while, forl<r<n-1,

Ciis2 =

r—1 r
1
Ciivar = _(a+2n+3)(a+4n+3)g(a+2t+DXg(a+4n+1—2t—2L(i—1)/2J)
. Wi+1)/2)+r—1) T 1
1)(2 1-2r- - 1)!
X(n+1)@n+1-2r—i)x (r )( o Xg(2n+2—t—Li/2J)
and 0 otherwise.
On the other hand, U} | = (Sij) is
S = a+2n+3 y n+2
YT a+4n+3-21(G-1)/2) " 2n+2-1i/2]
forl<i<2n+1,
(@+2n+3)(a+4n+5) (n+2)(2n—1)

Siis2 STt mas2li-D2)@+dn+i-2li-1)/2) F@n+1-[/2)@n-1i2)

forl1<i<2n-1,and

Juny

r—

.
Siivor = —(a+2n+3)(a+4n+5)t (a+2t+1)xg(a+4n+3—2

1
t-21(-1)/2))

1l
—_

. lG+1)/2] +7r-1) T3 1
x(n+2)(2n+2—2r—z)><(r—l)!( o )XH(2n+3—t—|_i/2J)'

for 1 < r < n, and 0 otherwise.
Taking into account the definition of U, we clearly have

Gona = Upy-1 QU | and  Goyoq = Uy WU,

For the readers convenience, we give a sketch proof for the equality Gy,—1 = Uy W Uz‘r} as a showcase to
show how such similar equalities could be proven. But later we leave some similar equalities without
giving proofs.
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We want to prove the equality
Gan-1 = U, WU,
or equivalently
Gon—1Uyzy = Uz W.

Denote Gy,,—1 U, and U, Wby A, = (Al-,]-) and B, = (Bi, j) , respectively. Thus, we have to prove that A, = B,.
The matrix U, = (Ui,j) is an upper triangular matrix and its almost half of entries at the upper band

are zero. The matrix Gy,_1 = (Gi, ]-) is a tridiagonal matrix and the matrix W = (W,',j) is almost a tridiagonal
matrix as well as it has first row entries. Considering these facts and from a matrix multiplication, we write
the entries of the matrix A,, as

Aij =Gl for even j,

Aiicr = GiisUiziz for2<i<n,

Ajj  =Gii1Uiq,j+ Giip1Uiy,; for odd i and even j, or, vice versa,
A =t-Uj; for eveniand j,

Ay =0 for odd i and j,

Ay =0 fori>j+1.

And similarly we write the entries of the matrix B, as

Bl,j = ULH Wj—l,j + ul,]‘+1 Wj+1,j - U1,121/2 for even j,

Bii1 =U;iWiia for2<i<mn,

Bij =U;jj-aWj,j+ Ui js1Wis1j for odd i and even j, or, vice versa,
Bij =t-Uj for eveniand j,

Bi; =0 for odd i and j,

Bij =0 fori>j+1,

wherez; = —(2n-2j+1)(a+4n+3)/(2n +1).
In order to prove A, = B,,, we shall chose the first two of entries and leave the others to the reader to do
not bother. Now we show that
Al,j = Bl,j‘
By using the definitions of the matrices Gy,-1, Uz, and W, first consider
Al,Zj = Ji2Uz2j = (a+1) u2,2+2(]-_1),
which by taking i =2,r = j -1, gives

2n+1-2j-2)(a+4n+3)

A= @+ DX — G T3
Next, we consider
Bipj = Ui2j-1Waj-12j + Ui2j41Wajs1,2j — U ik;
2n—-2j+2)(a+4n+3)(a+2j+1) (2n-2j)(a+4n+3)(4n—-2j+3+a)
n+1)@+2n+3) (m+1)(@+2n+3)

@n+D@+4n+1) (@n-2j+1)(@@+4n+3)
T m+D@+2n+3) Qn+1) ’
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which, by summing the first two rational statements, gives

(a+4n+3)-22n-2j+1)@a+2n+1) (@+4n+1)2n-2j+1)(@a+4n+3)
(n+1)(a+2n+23) B (n+1)(a+2n+23)
@a+1)2n-2j+1)(@+4n+3)
(n+1)(a+2n+3) !

Bipj =

which equals A1 ; as claimed.

As a second showcase, we shall prove that A;;_1 = B;;_1 for only odd integers i. In that case, we have to
prove that A1 9 = Baiy1,2:. Now consider

Asiv1pi = Goiripilloii
Cn+1-i@+4n+1-23G-1))
nm+1)(@+2n+3)
@Cn+1-i)(@a+4n-2i+3)
(n+1)(@+2n+3)

An+a-2i+1)x

= Wn+a-2i+1)x

On the other hand, consider

Boiv1pi = U;iWiia
n+1-i)@+4n—-2i+1) .
dn—-2i+3),
T @ransa)  aran-2i+3)

which gives the claimed result, Ay;12; = Bois1,2i-
The remaining cases

Ajj =GjiqUi1j+GjinUip1,; foroddiand even j, or, vice versa,
Ajj =t U for eveniand j,

could be proven similarly.
If we define the matrix of order n

L | 02
M = ’
" 022 | U
then we get
ut 0 02x(21-2)
g 0 W
MZ”EMZn = (a+4n-3)(a+4n-1) 2(2n-1) (a+4n-3)(a+4n-1) 2(2n-1)
(a+2n+1)(2ur—t) 7 @+2n+1)(2u——t) 7
0@n-3)x2 Uz WU,
and
At 0 02x(2n-1)
4 0 A~
M2”+1DM2H+1 T | @tdn-D@+4n+l) 4n (a+4n-3)@+4n-1) 4n
(@+2n+1)2A*—t) n+1 (a+2n+1)2A-—t) n+1
002n-2)x2 U1 QU
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So far, we derived the identities
D = YGyY™,
E = TGuT7,
Gz = Uy QU
Gu-1 = Upa WU,

From the definition of G,, both MZHEM;n1 and M2n+1DM; L1 can be rewritten in the following lower
triangular block form

ut 0 AT 0
0 0
0 u and 0 A , 1)
* ‘ Gzn -1 * ‘ G2n -2
respectively.

From (1), we get the recurrences on n > 0,
det Gy, = ATA~ det Gyy—p, with detGy =1
and
det Goys1 = u*u~ detGyyq, with detGy = 1.

Finally, we obtain Theorem 2.1.
Let I, be the identity matrix of order n. For any real number m, if we consider the summation G, (a, F 0) +

ml,, then we get that G, (u, f, 0) +ml, =G, (a, F+m, m) and its spectrum as

A (Gzc (Ll, f, 0) + mlzg) A (Gz[ (a, F+ m, m))

t

1. 1 A2
{m + Et + 5 \/(t) + 32ak + 64k2} U {m}

k=1

and

A (GZ[—l (ﬂ, f, 0) + 7’}’[12[_1) A (sz—l (LZ, F+ m, Tl’l))

N2
= {m+ \/<t) +16(2k—1)(a+2k—1)}

After this, we denote f + m by a new parameter f and then we get the matrix G, (4, t,m), which is our
main matrix. We see the fact that the terms in square roots in the above expressions for the eigenvalues of

14

fx

N —
NI

k=1

the matrix G, (a, F+m, m) only depend on the parameter #, not the other parameter m. Considering this fact
and the transformation f + m — t, we get the claimed result that the spectrum of G,(a, t, m) is given by

t

A(Goe(a, t,m)) = {% (m +t=+ \/(t —m)* + 32ak + 64k2)} U {m}
k=1

and

4

A (Gt (at, m)) = {% (m +tF \/(t —m)? +16 (2k — 1) (a + 2k — 1))}

k=1
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So, we can compute the determinant of the matrix G,(a, t, m) as following

mg [% (m +it \/(t —m)* + 32ak + 64k2)]

m ﬁ (mt — 8ak — 16k2)

k=1

det Gy, (a,t, m)

and

n

H[%(m+t$ \/(t—m)2+16(2k—1)(a+2k—1))]

k=1

det G2Vl—1 (a/ t/ m) =

= JJimt-4@k-1)@+2k-1)].

k=1

3. The right eigenvectors

We used the left eigenvectors in the previous section to prove the formulas for the eigenvalues of
the matrix G,(a,t,m). In this final section, we first consider the matrix G,(a,t,0), or shortly G,, and
provide explicitly right eigenvectors corresponding to A* and A~. We realize how these eigenvectors can
be complicated, and this fact can be important to the interested readers. Thus, we only note the right
eigenvectors of the matrix G,(a, t, m) by again using the same transform.

So, regarding the right eigenvectors, the formulas seem rather intricate and providing a compact for-
mulation of them seems difficult to achieve. This is mainly due to the fact that they include combinatorial
expressions with certain rational coefficients.

Notice that the matrix G,,-1 has the eigenvalues

(t+ VE+16@n-1)(@+2n-1)) and 5(t— VR+16@2n—1)(a+2n-1))

N —
NI

associated with the following eigenvectors

¢(n—1,0) %N — st row
b(n—l,O)% — 2nd row
c(n—l,l)%)\* — 3rd row
b(n—l,l)% — 4th row
1 :

b(n-1,n-1) c(n—l,k—l)%/v — (2k — 1) st row
b(n—l,k—l)% — (2k) th row
N A I g:)‘th”rst row
b(n—1,n—1) @D ow

s(a;n+1,n)
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and

—c(n—1,0)s%k
b(n—l,O)S(;%’jzjjlg
—c(n—1,1)sg;f;11i—,’gf_z);r
b(n—1,1) Lol

1 :
b(n=1,n=1)| —c(n-1k-1) Ja2 -

s(a;kn—1)
b (7’1 - 1’k - 1) s(a;n+1,2n-k—-1)

—-c(n-1,n-1) san-1n-2) 5 -

.s(a;nfl,n)
b(n—1,n-1) {EaT)
respectively, for 1 < k < n, where
2n\2n — 2k + 1
b(ﬂ,k) = 4(27’1—1)(k)m,
2n+1\2(n—-k+1)

c(nb) ( k )2n—k+2

and
n
s(a;m,n) = H(a +2k+1)
k=m

@+1@+3)@a+5)---(a+2n+1).

Similarly, the matrix Gy, of order 2n + 1 has the eigenvalues

24@n-1)@a+2n-1) and -2+/@2n-1)(a+2n-1)

and the following corresponding eigenvectors

d (n, 0) s(u;O,n—l)

s(a;n+1,2n)

c(n—1,0) el

s(a;n+1,2n)

d (n’ 1) S(Il;l,l’l—l)

s(an+1,2n-1)

s(a;2,n—1)
c(n-1,1) ZirmsA*

cn-1,n-1) c(n—l,k—l)%fr

s(a;k,n—1)
d (1’1, k) s(a;n+1,2n—k)

;Z(n—l n—1) Semnl) s

s(an+1,n+1)

s(ann—1)
d (n’ I’Z) s(a;n+1,n)

— 1st row
— 2nd row
— 3rd row

— 4th row

— (2k) th row
— (2k + 1) th row

— (2n) th row
— (2n + 1) th row

4030
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d (I’l, 0) s(a;,0,n—-1)

s(a;n+1,2n)

—c (1’1 -1 0) s(a;1,n—-1) A~

s(a;n+1,2n)

s(a;1,n—1)
d(n,1) i mes

—c (1’[ _ 1[ 1) s(a;2,n-1) A-

s(a;n+1,2n-1)

_ _ ’ s(a;k,n—1) _
C(Tl 1,Tl 1) —C (11 — 1,(kk— 11)) m)\
s(a;k,n—
d (Tl, k) s(a;n+1,2n—k)

—c(n—1,n-1) 2Dy~

( ) s(@n+1,n+1)
s(a;n,n—1
d (1’l, }’l) s(a;n+1,n)

for 0 < k < n respectively, where c (1, k) and s (a; k, ) are defined as before and

2n\2n -2k +1
d(n’k)_(k)Zn—k+1 '

We would like to finish the paper mentioning that for the right eigenvectors of the matrix G,(a, t, m), it
is enough to take t — m instead of the parameter ¢ in each eigenvector of the matrix G,(a, t, 0) given in this
section.

Acknowledgement

The authors are indebted to the referees for the careful reviews and valuable comments.

References

(1]
(2]
[3]

[4]
[5]

[6]
[7]

(8]
9]
[10]
[11]
[12]

[13]
[14]

[15]

T.S. Chow, A class of Hessenberg matrices with known eigenvalues and inverses, SIAM Review 11 (1969) 391-395.

W. Chu, Spectrum and eigenvectors for a class of tridiagonal matrices, Linear Algebra and its Applications 582 (2019) 499-516.
W. Chu, Fibonacci polynomials and Sylvester determinant of tridiagonal matrix, Applied Mathematics of Computation 216
(2010) 1018-1023.

W. Chu, X. Wang, Eigenvectors of tridiagonal matrices of Sylvester type, Calcolo 45 (2008) 217-233.

D.E. Coelho, V.S. Dimitrov, L. Rakai, Efficient computation of tridiagonal matrices largest eigenvalue, Journal of Computational
and Applied Mathematics 330 (2018) 268-275.

P.A. Clement, A class of triple-diagonal matrices for test purposes, SIAM Review 1 (1959), 50-52.

C.M. da Fonseca, A short note on the determinant of a Sylvester-Kac type matrix, International Journal of Nonlinear Sciences
and Numerical Simulation 21 (2020) 361-362.

C.M. da Fonseca, E. Kilig, A new type of Sylvester-Kac matrix and its spectrum, Linear and Multilinear Algebra 69 (2021)
1072-1082.

C.M. da Fonseca, E. Kili¢, An observation on the determinant of a Sylvester-Kac type matrix, Analele Universitatii “Ovidius”
Constanta - Seria Matematica 28 (2020) 111-115.

C.M. da Fonseca, E. Kilig, A. Pereira, The interesting spectral interlacing property for a certain tridiagonal matrix, Electronic
Journal of Linear Algebra 36 (2020) 587-598.

C.M. da Fonseca, D.A. Mazilu, 1. Mazilu, H.T. Williams, The eigenpairs of a Sylvester-Kac type matrix associated with a simple
model for one-dimensional deposition and evaporation, Applied Mathematics Letters 26 (2013) 1206-1211.

E. Kilig, Sylvester-tridiagonal matrix with alternating main diagonal entries and its spectra, International Journal of Nonlinear
Sciences and Numerical Simulation 14 (2013) 261-266.

A. Kovacec, Schrodinger’s tridiagonal matrix, Special Matrices 9 (2021) 149-165.

R. Oste, ]J. Van der Jeugt, Tridiagonal test matrices for eigenvalue computations: Two-parameter extensions of the Clement matrix,
Journal of Computational and Applied Mathematics 314 (2017) 30-39.

J.J. Sylvester, Théoréme sur les déterminants, Nouvelles Annales de Mathématiques 13 (1854) 305.



