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Abstract. In this paper we give a solution for the problem of identifying and predicting latent components
of the integer-valued time series with skewed Skellam marginal distribution. At the beginning, expressions
for latent components identification and prediction are derived. These expressions give us a possibility of
revealing the values of two hidden, immeasurable components which affect the integer-valued time series
with skewed Skellam marginals. Yule-Walker estimators of the unknown parameters are obtained. Also,
quality of identification and lag-one prediction is tested on simulated data. At the very end, the model
validation is performed in application on the real-life data.

1. Introduction

The area of integer-valued autoregressive (INAR) time series has been the subject of research during
several decades. The major breakthrough in this area was made, independently of each other, by [13] and
[2]. In the period that followed, development of INAR models proceeded in two directions. Some authors
introduced new thinning operators, as it was done by [3], [12], [17, 18] or [16]. On the other hand, some
of them discussed marginal distributions, as it was done by [14], [1], [4], [5] etc. The most of introduced
models were non-negative, although in many real-life situations there are processes which may consist of
integer values including both, positive and negative numbers.

A step forward in this direction was made by [11], who introduced true integer-valued time series with
Skellam marginal distribution, defined in distribution as a difference between two nonnegative, indepen-
dent INAR time series with Poisson marginal distributions. Similar idea was used by [7], who introduced
a integer-valued autoregressive time series with geometric-Poisson marginals. Lately, [8] proposed a new
INAR time series with generalized Poisson difference marginal distributions based on difference of two
quasi-binomial thinning operators. On the other hand, [15] and [6] introduced INAR models with sym-
metric discrete Laplace and skewed discrete Laplace marginal distributions, defined in distribution as a
difference between two non-negative and independent NGINAR(1) time series with geometric marginal
distributions. However, none of the mentioned researches doesn’t discuss the problem of latent components
identification and their prediction. This topic was first analyzed by [10], who introduced a new time series
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of order 1 with skewed discrete Laplace marginals and managed to derive expressions for identification
and prediction of its latent components. Also, similar was done in [9], except that the time series of order p
came in focus of the author.

Here, we give a method for quantifying two opposite, latent dimensions having only their difference
- the resultant of these two hidden forces. Knowing the values of latent components can help us a lot in
understanding the primary time series we want to analyze. Predicting their values give us a clue how the
primary time series will behave in the future. Inspired by ideas given in [9, 10], we can conclude it would
be useful to determine expressions for identification and prediction of latent components of TINAR(1) time
series with Skellam marginal distribution. In particular, we will pay attention on TINAR(1) time series
{Zn} with skewed Skellam marginal distribution, which can be presented in distribution as the difference
between two nonnegative, independent INAR(1) components {Xn} and {Yn}with different Poisson marginal

distributions, i.e. Zn
d
= Xn − Yn. Expression for calculating the mathematical expectation of a random vari-

able Xn+k, k = 0, 1, given Zn, represents the foundation of the obtained results.

Section 2 brings us expressions for identification and prediction of latent components, as a functions of
random sequence {Zn} and latent components marginal distributions parameters. In Section 3, Yule-Walker
(YW) estimates of unknown parameters of the model are provided. In Section 4, the quality of extraction
and lag-one prediction of latent components is examined on simulated data. Application of this kind of
modeling on selected real-life data is presented in Section 5..

2. Extracting and predicting latent components of the skewed TINAR(1) time series

For any time series {Zn} that is defined in distribution as a difference of two independent time series
{Xn} and {Yn},

Zn
d
= Xn − Yn,

it could be easily shown that conditional moment of order r, r ∈ N, of the variable Xn+k, given Zn = z, is of
the form

E(Xr
n+k|Zn = z) =


∞∑
j=0

E(Xr
n+k |Xn= j+z,Yn= j)P(Xn= j+z)P(Yn= j)

P(Zn=z) , z > 0,
∞∑
j=0

E(Xr
n+k |Xn= j,Yn= j−z)P(Xn= j)P(Yn= j−z)

P(Zn=z) , z ≤ 0.

(1)

Namely, let us suppose that z is greater than 0. We have that

E(Xr
n+k|Zn = z) =

∞∑
i=0

irP(Xn+k = i|Zn = z) =

∞∑
i=0

ir
P(Xn+k = i,Zn = z)

P(Zn = z)
.

With z > 0, we have that P(Zn = z) =
∞∑
j=0

P(Xn = j + z,Yn = j), so it holds

E(Xr
n+k|Zn = z) =

1
P(Zn = z)

∞∑
i=0

ir
∞∑
j=0

P(Xn+k = i,Xn = j + z,Yn = j)

=
1

P(Zn = z)

∞∑
i=0

ir
∞∑
j=0

P(Xn+k = i|Xn = j + z,Yn = j)

×P(Xn = y + z)P(Yn = y).
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Exchanging the order of summation, we get

E(Xr
n+k|Zn = z) =

1
P(Zn = z)

∞∑
j=0

P(Xn = j + z)P(Yn = j)
∞∑

i=0

irP(Xn+k = i|Xn = j + z,Yn = j)

=
1

P(Zn = z)

∞∑
j=0

E(Xr
n+k|Xn = j + z,Yn = j)P(Xn = j + z)P(Yn = j).

Corresponding equality can be obtained in case of z ≤ 0 as well. And, using the same procedure
suggested above, similar result can be derived for the other latent component, i.e.

E(Yr
n+k|Zn = z) =


∞∑

i=0
E(Yr

n+k |Xn=i+z,Yn=i)P(Xn=i+z)P(Yn=i)

P(Zn=z) , z > 0,
∞∑

i=0
E(Yr

n+k |Xn=i,Yn=i−z)P(Xn=i)P(Yn=i−z)

P(Zn=z) , z ≤ 0.

(2)

As it was previously mentioned, TINAR(1) model with skewed Skellam marginal distribution could be
presented as the difference of two nonnegative, independent INAR(1) time series with different Poisson
marginal distributions, hence (1) and (2) holds for TINAR(1). Using these equations, we shall try to show
in this paper our approach in identifying and predicting its latent components.

Let the {Zn} be a TINAR(1) time series of the first order with skewed Skellam(µ/(1−α), ν/(1−β)) marginal
distribution. And let {Xn} and {Yn} be two independent INAR(1) time series with Poisson, P(µ/(1− α)) and
P(ν/(1 − β)) distribution, defined using the binomial thinning operator in the following way:

Xn+1 = α ◦ Xn + εn+1 i Yn+1 = β ◦ Yn + ηn+1, (3)

where ”α ◦ ” is the binomial thinning operator, elements of counting series are independent and identically
distributed random variables with Bernoulli distributions with parameter α and parameter β. Let those two
time series be latent components of the time series {Zn} and let

Zn
d
= Xn − Yn.

In order to determine expressions for identification and prediction of latent components upon realization
of the time series {Zn},we should find, for k = 0, 1, conditional expectations E(Xn+k|Zn = z) and E(Yn+k|Zn = z),
whereby the conditional expectation of the variable Xn, given Zn = z, is defined as

E(Xn|Zn = z) =

∞∑
j=0

j · pXn |Zn ( j|z)

and pXn |Zn ( j|z) represents the conditional probability mass function of the variable Xn, given Zn = z.

With that goal in mind, we use (1) and get the following. Let’s suppose that k = 0, r = 1 and z > 0. In
that case, we get that

E(Xn|Zn = z) =
1

P(Zn = z)

∞∑
j=0

E(Xn|Xn = j + z,Yn = j)P(Xn = j + z)P(Yn = j)

Bearing in mind that distributions of random variables Xn and Yn are Poisson with parameters µ
1−α and

ν
1−β , respectively, with the probability mass functions given as

P(Xn = x) =

(
µ

1−α

)x

x!
e−

µ
1−α , P(Yn = y) =

(
ν

1−β

)y

y!
e−

ν
1−β , (4)
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it can be shown that

E(Xn|Zn = z) =
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)

∞∑
j=0

(
µ

1−α

) j+z ( ν
1−β

) j

j!( j + z)!
E(Xn|Xn = j + z,Yn = j)

=
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)

∞∑
j=0

(
µ

1−α

) j+z ( ν
1−β

) j

j!( j + z)!
( j + z)

=
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)

∞∑
j=0

(
µ

1−α

) j+z ( ν
1−β

) j

j!( j + z − 1)!
.

Considering the fact that the marginal distribution of the time series {Zn} is Skellam(µ/(1 − α), ν/(1 − β)), i.e.

P(Zn = z) = e−
(
µ

1−α+ ν
1−β

) (µ (
1 − β

)
ν (1 − α)

) z
2

Iz

(
2
√

µ

1 − α
ν

1 − β

)
, (5)

where Iz(x) is modified Bessel function of the first order, defined as

Iz(x) =

∞∑
j=0

(
x
2

)2 j+z

j!Γ( j + z + 1)
, (6)

it becomes easy to obtain

E(Xn|Zn = z) =

√
µ

1 − α
ν

1 − β

Iz−1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) . (7)

Using the same procedure given above, for z ≤ 0, it could be obtain in the similar way that

E(Xn|Zn = z) =

√
µ

1 − α
ν

1 − β

I−z+1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) . (8)

In order to present the results in a clearer form, (7) and (8) may be pooled in

E(Xn|Zn = z) =

√
µ

1 − α
ν

1 − β

I|z−1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) .
Since E(Zn|Zn = z) = E(Xn−Yn|Zn = z) = E(Xn|Zn = z)−E(Yn|Zn = z) = z, it is obvious that E(Yn|Zn = z) =

E(Xn|Zn = z)−z. This will be an excellent starting point for revealing formula for calculating the conditional
expectation E(Yn|Zn = z). Namely, using (7), for z > 0, it holds

E(Yn|Zn = z) = E(Xn|Zn = z) − z =

√
µ

1 − α
ν

1 − β

Iz−1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) − z.
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Using (6) and extracting the factor

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

) , we have

E(Yn|Zn = z) =

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

)

∞∑
j=0

(√
µ

1−α
ν

1−β

)2 j+z−1

j!( j + z − 1)!
−

∞∑
j=0

z

(√
µ

1−α
ν

1−β

)2 j+z−1

j!( j + z)!


=

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

)

∞∑
j=0

( j + z)
(√

µ
1−α

ν
1−β

)2 j+z−1

j!( j + z)!
−

∞∑
j=0

z

(√
µ

1−α
ν

1−β

)2 j+z−1

j!( j + z)!


=

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

) ∞∑
j=1

j
(√

µ
1−α

ν
1−β

)2 j+z−1

j!( j + z)!
.

Finally, by introducing the replacement k = j − 1 and using again (6), we obtain that

E(Yn|Zn = z) =

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

) ∞∑
k=0

(√
µ

1−α
ν

1−β

)2k+z+1

k!(k + z + 1)!
=

√
µ

1 − α
ν

1 − β

Iz+1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) . (9)

The aforementioned procedure of obtaining the conditional expectation E(Yn|Zn = z) can be carried out
in the case of z ≤ 0 as well, which results in

E(Yn|Zn = z) =

√
µ

1 − α
ν

1 − β

I−z−1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) . (10)

Also, (9) and (10) can be presented in shortened unified form,

E(Yn|Zn = z) =

√
µ

1 − α
ν

1 − β

I|z+1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) .
Regarding the prediction of latent components, derivation takes place in a similar way as it was done

with their extraction. Namely, starting from (1), for k = 1 and r = 1, we can get the expression for the mean
of future values of latent component Xn+1, conditioned by Zn.

Let it be z > 0. Using (1) and (4), we have that

E(Xn+1|Zn = z) =
1

P(Zn = z)

∞∑
j=0

E(Xn+1|Xn = j + z,Yn = j)P(Xn = j + z)P(Yn = j)

=
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)

∞∑
j=0

(
µ

1−α

) j+z ( ν
1−β

) j

j!( j + z)!
E(Xn+1|Xn = j + z,Yn = j).

Due to the properties of the binomial thinning operator and the fact that {Xn} is the Poisson INAR(1) time
series given by (3), whose innovation process {εn} has P(µ) distribution, it becomes easy to obtain that
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E(Xn+1|Xn = j + z,Yn = j) = E(Xn+1|Xn = j + z) = α( j + z) + µ. Then, extracting the factor e
−

(
µ

1−α + ν
1−β

)
P(Zn=z)

(√
µ

1−α
ν

1−β

)z

,

we have

E(Xn+1|Zn = z) =
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)

∞∑
j=0

(
µ

1−α

) j+z ( ν
1−β

) j

j!( j + z)!
(α( j + z) + µ)

=
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)


√√

µ
1−α
ν

1−β


z
α

√
µ

1 − α
ν

1 − β

∞∑
j=0

(√
µ

1−α
ν

1−β

)2 j+z−1

j!( j + z − 1)!
+ µ

∞∑
j=0

(√
µ

1−α
ν

1−β

)2 j+z

j!( j + z)!

 .
Now, (6) gives us that

α

√
µ

1 − α
ν

1 − β

∞∑
j=0

(√
µ

1−α
ν

1−β

)2 j+z−1

j!( j + z − 1)!
+ µ

∞∑
j=0

(√
µ

1−α
ν

1−β

)2 j+z

j!( j + z)!
=

α

√
µ

1 − α
ν

1 − β
Iz−1

(
2
√

µ

1 − α
ν

1 − β

)
+ µIz

(
2
√

µ

1 − α
ν

1 − β

)
,

which, with the help of (5), enables us to obtain

E(Xn+1|Zn = z) = α

√
µ

1 − α
ν

1 − β

Iz−1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) + µ. (11)

In the similar way, for z ≤ 0, we have that

E(Xn+1|Zn = z) = α

√
µ

1 − α
ν

1 − β

I−z+1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) + µ. (12)

Finally, we will pool (11) and (12) in

E(Xn+1|Zn = z) = α

√
µ

1 − α
ν

1 − β

I|z−1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) + µ.

For the other latent component Y, we have the following. First of all, let z be greater then 0. Starting
from (2), it holds

E(Yn+1|Zn = z) =
1

P(Zn = z)

∞∑
j=0

E(Yn+1|Xn = j + z,Yn = j)P(Xn = j + z)P(Yn = j).

Due to (4) and the fact that {Yn} is the Poisson INAR(1) time series given with (3), whose innovation
process {ηn} has P(ν) distribution, it becomes easy to obtain that

E(Yn+1|Zn = z) =
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)

∞∑
j=0

(
µ

1−α

) j+z ( ν
1−β

) j

j!( j + z)!
E(Yn+1|Xn = j + z,Yn = j)

=
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)

∞∑
j=0

(
µ

1−α

) j+z ( ν
1−β

) j

j!( j + z)!
(β j + ν).
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Extracting the factor e
−

(
µ

1−α + ν
1−β

)
P(Zn=z)

(√
µ

1−α
ν

1−β

)z

and using (6), will give

E(Yn+1|Zn = z) =
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)


√√

µ
1−α
ν

1−β


z
β

√
µ

1 − α
ν

1 − β

∞∑
j=0

(√
µ

1−α
ν

1−β

)2 j+z+1

j!( j + z + 1)!

+ ν
∞∑
j=0

(√
µ

1−α
ν

1−β

)2 j+z

j!( j + z)!


=

e−
(
µ

1−α+ ν
1−β

)
P(Zn = z)


√√

µ
1−α
ν

1−β


z

β

√
µ

1 − α
ν

1 − β
Iz+1

(
2
√

µ

1 − α
ν

1 − β

)

+
e−

(
µ

1−α+ ν
1−β

)
P(Zn = z)


√√

µ
1−α
ν

1−β


z

νIz

(
2
√

µ

1 − α
ν

1 − β

)
,

which finally, with the help of (5), provides that

E(Yn+1|Zn = z) = β

√
µ

1 − α
ν

1 − β

Iz+1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) + ν. (13)

Using the previously given procedure, for z ≤ 0, it could be shown in the similar way that

E(Yn+1|Zn = z) = β

√
µ

1 − α
ν

1 − β

I−z−1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) + ν. (14)

In order to present the results in a clearer form, (13) and (14) can be pooled in

E(Yn+1|Zn = z) = β

√
µ

1 − α
ν

1 − β

I|z+1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) + ν.

3. Parameter estimation

In order to estimate unknown parameters of the model, we used the Yule-Walker method. As an initial
step, we took the mean, the variance and autocovariances of orders one and two,

E (Zt) =
µ

1 − α
−

ν
1 − β

Var (Zt) =
µ

1 − α
+

ν
1 − β

γZ (1) = α
µ

1 − α
+ β

ν
1 − β

γZ (2) = α2 µ

1 − α
+ β2 ν

1 − β
.
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By equalizing the true moments with the corresponding sample moments and by solving the system
thus obtained, we get the following results:

µ̂ =

((
S̄Z

)2
− γ̂Z (1)

) ((
S̄Z

)2
+ Z̄

)
−

√(
γ̂Z (2)

(
S̄Z

)2
− γ̂2

Z (1)
) (((

S̄Z
)2)2
−

(
Z̄
)2
)

2
(
S̄Z

)2

ν̂ =
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S̄Z

)2
− γ̂Z (1)

) ((
S̄Z

)2
− Z̄

)
+

√(
γ̂Z (2)

(
S̄Z

)2
− γ̂2

Z (1)
) (((

S̄Z
)2)2
−

(
Z̄
)2
)

2
(
S̄Z

)2

α̂ =

γ̂Z (1)
((

S̄Z
)2

+ Z̄
)

+

√(
γ̂Z (2)

(
S̄Z

)2
− γ̂2

Z (1)
) (((

S̄Z
)2)2
−

(
Z̄
)2
)

((
S̄Z

)2)2
+

(
S̄Z

)2 Z̄

β̂ =

γ̂Z (1)
((

S̄Z
)2
− Z̄

)
−

√(
γ̂Z (2)

(
S̄Z

)2
− γ̂2

Z (1)
) (((

S̄Z
)2)2
−

(
Z̄
)2
)

((
S̄Z

)2)2
−

(
S̄Z

)2 Z̄
.

After dividing numerators and denominators of the aforementioned results with the sample variance(
S̄Z

)2, we obtain following estimators:

µ̂ =

(
1 − ρ̂Z (1)

) (
1 + Z̄

(S̄Z)2

)
−

√(
ρ̂Z (2) − ρ̂2

Z (1)
) 1 −

(
Z̄

(S̄Z)2

)2
2

ν̂ =

(
1 − ρ̂Z (1)

) (
1 − Z̄

(S̄Z)2

)
−

√(
ρ̂Z (2) − ρ̂2

Z (1)
) 1 −

(
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)2
2

α̂ =

ρ̂Z (1)
(
1 + Z̄

(S̄Z)2

)
+

√(
ρ̂Z (2) − ρ̂2

Z (1)
) 1 −

(
Z̄
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)2
1 + Z̄

(S̄Z)2

β̂ =

ρ̂Z (1)
(
1 − Z̄

(S̄Z)2

)
+

√(
ρ̂Z (2) − ρ̂2

Z (1)
) 1 −

(
Z̄
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.

In this paper we didn’t analyze properties of the estimators. The asymptotical behavior of the obtained
estimators is going to be in focus of authors’ next research.

Finally, we can formulate statistics that can be used in order to extract or predict the latent components
of a time series with skewed Skellam marginal distribution. More precisely, statistics for extracting latent
components are given as

X̂n =

√
µ̂

1 − α̂
ν̂

1 − β̂

I|Zn−1|

(
2
√

µ̂
1−α̂

ν̂
1−β̂

)
I|Zn |

(
2
√

µ̂
1−α̂

ν̂
1−β̂

) , Ŷn =

√
µ̂

1 − α̂
ν̂

1 − β̂

I|Zn+1|

(
2
√

µ̂
1−α̂

ν̂
1−β̂

)
I|Zn |

(
2
√

µ̂
1−α̂

ν̂
1−β̂

) ,
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whereas statistics for predicting latent componenets are of the form

X̂n+1 = α̂

√
µ̂

1 − α̂
ν̂

1 − β̂

I|Zn−1|

(
2
√

µ̂
1−α̂

ν̂
1−β̂

)
I|Zn |

(
2
√

µ̂
1−α̂

ν̂
1−β̂

) + µ̂, Ŷn+1 = β̂

√
µ̂

1 − α̂
ν̂

1 − β̂

I|Zn+1|

(
2
√

µ̂
1−α̂

ν̂
1−β̂

)
I|Zn |

(
2
√

µ̂
1−α̂

ν̂
1−β̂

) + ν̂.

4. Simulations

In order to check performances of suggested statistics we simulated four skewed TINAR(1) time series
by creating appropriate pairs of independent Poisson time series and calculating their differences. We
simulated samples of size 5000. We decided to simulate skewed TINAR(1) time series with different
combinations of parameters, small numbers, large numbers, close and distant numbers. For the first case
we used µ = 0.6, ν = 0.8, α = 0.2, β = 0.7. These are relatively small and close values for parameters µ and
ν. For the second case we used relatively different values µ = 2, ν = 0.5, α = 0.6, β = 0.3. Parameters for the
third case were µ = 4, ν = 8, α = 0.2, β = 0.4, which are relatively large and different values for parameters µ
and ν. We decided for an almost symmetric model for the fourth case, i.e. the same values for parameters
µ and ν, and very close values for parameters α and β, µ = ν = 3, α = 0.6, β = 0.5.

First of all, we estimated parameters for each of the four cases. In Table 1 parameter estimates are
derived for subsamples of sizes 200, 500, 1000 and 5000 and corresponding standard errors are calculated.
With the increase of sample size, all estimates are convergent with the standard errors decreasing towards 0.
Upon obtained parameter values in case of n = 5000 we extracted latent components. According to RMSE
values given in Table 2, regarding true mean values of the original Poisson time series, we can conclude
that this estimation is quite good. In Figure 1, we show parts of original Poisson time series trajectories and
the proposed estimation. We can see pretty good fitting capacity of extracted latent components.

Table 1: True and estimated values (with standard errors in parentheses) of the parameters of simulated skewed TINAR(1) time series

n µ̂ ν̂ α̂ β̂ µ̂ ν̂ α̂ β̂
True
values µ = 0.6 ν = 0.8 α = 0.2 β = 0.7 µ = 4 ν = 8 α = 0.2 β = 0.4
200 0.543 2.865 0.357 0.812 4.867 6.687 0.057 0.499

(0.221) (0.498) (0.293) (0.236) (1.519) (1.990) (0.284) (0.218)
500 0.567 2.943 0.313 0.796 4.689 6.992 0.069 0.478

(0.146) (0.350) (0.205) (0.0164) (1.052) (1.472) (0.252) (0.161)
1000 0.570 3.003 0.300 0.756 4.686 7.007 0.071 0.469

(0.122) (0.238) (0.166) (0.011) (0.920) (1.132) (0.209) (0.123)
5000 0.595 0.757 0.271 0.742 4.499 7.325 0.076 0.448

(0.048) (0.117) (0.104) (0.063) (0.619) (0.837) (0.160) (0.075)
True
values µ = 2 ν = 0.5 α = 0.6 β = 0.3 µ = 3 ν = 3 α = 0.6 β = 0.5
200 2.252 0.690 0.701 0.209 2.867 3.901 0.752 0.382

(0.472) (0.386) (0.272) (0.180) (1.806) (1.260) (0.293) (0.227)
500 1.799 0.652 0.669 0.251 2.339 3.688 0.707 0.401

(0.303) (0.288) (0.180) (0.109) (1.025) (0.906) (0.211) (0.182)
1000 1.806 0.642 0.661 0.257 2.386 3.679 0.704 0.419

(0.290) (0.259) (0.153) (0.077) (0.874) (0.836) (0.182) (0.135)
5000 1.866 0.597 0.639 0.277 2.531 3.405 0.681 0.432

(0.143) (0.107) (0.067) (0.044) (0.591) (0.483) (0.115) (0.095)
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Table 2: Values of the root mean square errors of extraction and prediction for given true parameter values and estimated parameter
values (with standard errors in parentheses) in case of n = 5000

True values Estimated values
µ ν α β µ̂ ν̂ α̂ β̂ RMSE RMSE(1)

0.6 0.8 0.2 0.7 0.595 0.757 0.271 0.742 0.775 1.030
(0.048) (0.117) (0.104) (0.063)

2 0.5 0.6 0.3 1.866 0.597 0.639 0.277 0.860 1.875
(0.143) (0.107) (0.068) (0.044)

4 8 0.2 0.4 4.499 7.325 0.076 0.448 1.871 3.404
(0.619) (0.837) (0.160) (0.075)

3 3 0.6 0.5 2.531 3.405 0.681 0.432 1.800 3.381
(0.591) (0.483) (0.115) (0.095)
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Figure 1: Parts of the trajectories of simulated Poisson components and their estimations extracted from the skewed TINAR(1)
time series; (a) µ = 0.6, ν = 0.8, α = 0.2, β = 0.7; (b) µ = 2, ν = 0.5, α = 0.6, β = 0.3; (c) µ = 4, ν = 8, α = 0.2, β = 0.4; (d)
µ = 3, ν = 3, α = 0.6, β = 0.5
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Figure 2: Parts of the trajectories of simulated Poisson components and their predictions of lag-one obtained from the skewed
TINAR(1) time series; (a) µ = 0.6, ν = 0.8, α = 0.2, β = 0.7; (b) µ = 2, ν = 0.5, α = 0.6, β = 0.3; (c) µ = 4, ν = 8, α = 0.2, β = 0.4; (d)
µ = 3, ν = 3, α = 0.6, β = 0.5

As expected, results of lag-one prediction are not as good as results obtained for extraction of latent
components. The prediction RMSE (denoted as RMSE(1)), given in Table 2, is quite larger that the extraction
one, but again, regarding the mean value of the Poisson components, is still acceptable. In Figure 2 there
are parts of original Poisson time series trajectories and the proposed prediction of lag-one. In comparison
with extracted components, we can notice a bit reduced flexibility and fitting power.

5. Real life application

Regarding the application to real-life data, the goal is to check real power of our statistics in extracting
or predicting a latent component from an integer valued series, i.e. extracting or predicting the minuend
and the diminutive knowing only the difference. The difficulty might be the fact that we don’t know
original values of latent components since they are latent. In order to bypass this difficulty, we should find
a difference made as subtraction of two measurable components and try to reconstruct or predict those
components.

Thus, we applied statistics on ”artificial” differences which components are not ”so latent” and as such
eligible for comparison. We used goal differences of the Southampton FC and BV Borussia Dortmund
in order to extract and predict number of goals scored by each of these teams or their opponents. Data
were collected from website www.world f ootball.net. For Southampton FC, we took the data from the season
2010/11 to the season 2014/15, and for BV Borussia Dortmund the data from the season 2000/01 to the season
2018/19. Their goal difference distributions were tested if they significantly differ from Skellam distribution.
χ2
−test revealed that in both cases we should accept the null hypothesis, which claims that the distributions

of goal differences are Skellam. The results of the χ2
−test are shown in Table 3.

We also observed differences in the number of criminal acts reported to two police stations and tried to
reconstruct and to predict number of criminal acts reported to each police station. The data were collected
from the website www. f orecastin1principles.com. We focused on the difference in the number of robberies
reported to two police stations, number 8800 and 9602, both in Rochester, New York, USA, during the
period from the January 1991 to the December 2001 and the difference in the number of aggravated assaults
reported to two police stations, number 700 and 1700, also, both in Rochester, New York, USA, during the
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same period. According those data, we extracted and predicted particular number of reported criminal
acts for each police station. Basic statistics of all four real-life data sequences are given in Table 4.

Table 3: Results of χ2
−test for testing differences between empirical and Skellam distributions

Variable χ2 p-value
Southampton FC goal difference 10.709 0.218

BV Borussia Dortmund goal difference 10.463 0.314
Difference in the number of robberies 8.182 0.146

Difference in the number of aggravated assaults 4.319 0.889
Test distribution: Skellam

Table 4: Basic statistics of the real-life data
Basic Southampton FC BV Borusia Dortmund Difference in the Difference in the number

statistics goal difference goal difference number of robberies of aggravated assaults

Sample mean −0.362 1.002 1.098 1.073
Sample variance 1.742 1.953 1.497 1.406

Median 0 1 1 1
Maximum 4 7 9 8
Minimum −9 −6 −2 −3

First quartile −1 0 0 0
Third quartile 1 2 2 2

During the estimation of model parameters, the obtained value for parameter β was negative, so we
replaced it by a small positive number. This could be associated to relatively small sample sizes.

Again, we used RMSE as a measure of fitting quality. As we can see from Table 5, regarding observed
values, level of errors in extracting the components are really good. The quality of extraction is presented
in Figure 3.

As it was the case with the simulations, the prediction has a bit higher values of RMSE (denoted as
RMSE(1)), which can be also seen from Table 5. A lack of ability to reach extremes could be noticed from
Figure 4, but predictions follow the form of original data.

Table 5: Parameter estimations and RMSEs of extraction and prediction of real-life data

Variable µ̂ ν̂ α̂ β̂ RMSE RMSE(1)
Southampton FC goal difference 1.359 2.200 0.275 0.001 0.799 1.422

BV Borussia Dortmund goas difference 1.545 1.876 0.253 0.001 0.823 1.558
Difference in the number of robberies 1.195 0.851 0.281 0.001 0.426 1.153

Difference in the number of aggravated assaults 0.631 1.222 0.295 0.001 0.537 1.069
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Figure 3: Trajectories of Poisson components obtained from real data and their estimations obtained from the appropriate skewed
TINAR(1) time series; Number of goals scored by Southampton (a) and Borussia Dortmund (b) and their estimation extracted from
goal differences; Number of robberies reported to the Rochester police station No. 8800 (c) and number of aggravated assaults reported
to the Rochester police station No. 700 (d) and their estimations extracted from differences in the number of crimes reported to two
police stations
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Figure 4: Trajectories of Poisson components obtained from real data and their lag-one predictions obtained from the appropriate
skewed TINAR(1) time series; Number of goals scored by Southampton (a) and Borussia Dortmund (b) and their predictions extracted
from goal differences; Number of robberies reported to the Rochester police station No. 8800 (c) and number of aggravated assaults
reported to the Rochester police station No. 700 (d) and their predictions extracted from differences in the number of crimes reported
to two police stations
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6. Conclusion

The possibility of identifying and predicting the latent components of the integer-valued time series
with skewed Skellam marginals has been introduced in this paper. The main feature of these components
is that, by affecting in opposite directions, they give as a result the observed skewed TINAR(1) time series.
Besides expressions for identification and prediction of latent components, estimation of the model param-
eters was carried out using the method of moments. Quality of extraction and lag-one prediction of latent
components is examined on the simulated data series, each of length 5000. At the very end, application of
this kind of modeling on appropriate real-life data is presented.

Of course, this does not exhaust all issues related to this subject matter. Further research might be
focused on models in which latent components are not independent. Also, a step forward might be made
on the issue of parameter estimation, for instance, by using the conditional least square method.
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