
Filomat 35:13 (2021), 4501–4513
https://doi.org/10.2298/FIL2113501J

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, the notion of statistical point-wise convergence, equi-statistical convergence
and statistical uniform convergence of a sequence of distribution functions via the deferred Nörlund
summability mean has been introduced, and accordingly an inclusion relation between these interesting
notions is established. Moreover, as an application point of view, a new Korovkin-type approximation
theorem is proved via the deferred Nörlund equi-statistical convergence for the sequence of distribution
functions. Also, some illustrative examples are considered to justify that the proposed theorem is a
nontrivial extension of some well established Korovkin-type approximation theorems for sequence of real-
valued functions. Finally, a number of interesting cases are highlighted in support of the definitions and
outcomes.

1. Introduction and Motivation

The theory of summability plays a vital role in the convergence analysis of the sequence spaces. Grad-
ually, a new concept has been merged in sequence space called the statistical convergence, and it is more
general than the ordinary convergence. This concept was initially introduced and studied independently
by two Mathematicians, Fast [10] and Steinhaus [29]. Recently, Et et. al [9] has established the µ-deferred
statistical convergence and strongly deferred summable functions. Now, several researchers are working
on the sequence spaces by using the concept of statistical convergence as well as statistical summability.
This concept is also closely related to different fields of pure and applied mathematics, such as, Probability
theory, Number theory, Fourier analysis and Measure theory and Differential equations, etc. For more
details, see the recent works [3], [4], [11], [15], [19], [27] and [28].

Let S ⊂ R. Also, let Xn : S −→ R (n ∈N) be a sequence of random variables defined as

Xn(si) = xni,

where S is the sample space consisting of finite number of elements and i = 1, 2, · · ·, k.
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A sequence of random variables (Xn(s)) converges to a random variable X(s), if

lim
n→∞

Xn(s) = X(s).

That is, for every ε > 0, there exists a number n ∈N such that

|Xn(s) − X(s)| < ε, ∀ n.

Let Ω ⊆N and suppose that

Ωn = { j : j 5 n and j ∈ Ω},

where |Ωn| is the cardinality of Ωn. Then the natural density of Ω is defined by

δ(Ω) = lim
n→∞

|Ωn|

n
,

provided that the limit exists.

Now, we give the definition of statistical convergence of a sequence of random variables.

Definition 1.1. A sequence (Xn(s)) of random variables is statistically convergent to ν if, for each ε > 0,

Ωε = { j : j ∈N and |(X j(s)) − ν| = ε}

has natural density zero (see [11], [13]). This means that, for each ε > 0,

Ωε = lim
n→∞

|Ωε|

n
= 0.

Symbolically, it is written as

stat lim
n→∞

(Xn(s)) = ν.

Based on Definition 1.1, the following example, provides the idea of statistical convergence in random
variables which is different from simple convergence in random variables.

Example 1.2. A fair coin is tossed once with sample space S = {H,T}. Let us define a sequence of random variables
(Xn(s)) on this sample space S given by

Xn(s) =


1 (s = H; n = m2, m ∈N)

0 (s = T; otherwise).

Here, the sequence of random variables (Xn(s)) converges to X(s), where X(s) = 0 irrespective of s is a head (H) or tail
(T).

In the year 2002, Gadjiev and Orhan [12] established some approximation theorems via statistical
convergence of a real sequences. Later on, Belen and Mohiuddine [6] studied the generalized statistical
convergence and proved some approximation theorems. Subsequently, Braha et. al [7] used weighted
statistical convergence to prove Korovkin and Voronovskaya type theorems. Furthermore, Baliarsingh et.
al [2] has established the statistical convergence of difference sequences of fractional order and related
Korovkin-type approximation theorems. Recently, a few researchers are working in this direction over the
probability space. For some current works, see [1], [14], [22], [23] and [26].
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Let us recall the concept of deferred Nörlund Db
a(N, p, q) summability method.

Let (an) and (bn) be the sequences of non-negative integers such that an < bn(n ∈N) and limn→∞ bn = ∞,
and let (pn) and (qn) be the sequences of non-negative real numbers satisfying

Pn =

bn∑
m=an+1

pm and Qn =

bn∑
m=an+1

qm.

The convolution of the above sequences is

H
bn
an+1 =

bn∑
v=an+1

pvqbn−v.

Now the deferred Nörlund mean Db
a(N, p, q) of a sequence of random variables is given by

ϕn =
1

H
bn
an+1

bn∑
m=an+1

pbn−mqmXm(s).

Motivated essentially by the above mentioned works, the present investigation aims to introduce the con-
cept of statistical point-wise convergence, equi-statistical convergence and statistical uniform convergence
of a sequence of distribution functions via the deferred Nörlund summability mean. Also, an inclusion
relation has been established by interrelating these beautiful notions. Moreover, as an application point
of view, a new Korovkin-type approximation theorem is proved via the deferred Nörlund equi-statistical
convergence for the sequence of distribution functions. Also, some illustrative examples are considered
to justify that the proposed theorem is a nontrivial extension of some well established Korovkin-type ap-
proximation theorems for sequence of real-valued functions. Finally, a number of interesting cases are
highlighted in support of the definitions and outcomes.

2. Equi-statistical Convergence for the Sequence of Distribution Functions

A sequence (Xn) of random variables is distribution convergent (or convergence in distribution) to a
random variable X, if

lim
n→∞

FXn (x) = FX(x)

for all x ∈ R at which FX(x) is continuous.

Let C(D) be the set of all real valued continuous probability density function defined over a compact
subset D ⊆ R. Also, let C(D) is a complete normed linear space. For FX(x) ∈ C(D), we have

||FX||∞ = sup
x∈D
|FX(x)|.

Let FXn (x) ∈ C(D).

Let us introduce the following definitions for the proposed study.

Definition 2.1. A sequence {FXn (x) : n ∈ N} of distribution functions is deferred Nörlund statistically point-wise
convergent to a distribution function FX(x) if, for each ε > 0 and for every x ∈ D,

lim
n→∞

|{k : k 5 Hbn
an+1 and pbn−kqk|FXk (x) − FX(x)| = ε}|

H
bn
an+1

= 0.

Symbolically, it is denoted by

FXn → FX (ϕn − stat-point-wise).
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Definition 2.2. A sequence {FXn (x) : n ∈N} of distribution functions is said to be deferred Nörlund equi-statistically
convergent to a distribution function FX(x) if, for each ε > 0,

lim
n→∞

χn(x, ε)

H
bn
an+1

= 0

uniformly with respect to x ∈ D, that is,

lim
n→∞

||χn(x, ε)||C(D)

H
bn
an+1

= 0,

where

χn(x, ε) = |{k : k 5 Hbn
an+1 and pbn−kqk|FXk (x) − FX(x)| = ε}|.

Symbolically, it is written as

FXn → FX (ϕn-equi-stat).

Definition 2.3. A sequence {FXn (x) : n ∈ N} of distribution functions is said to be deferred Nörlund statistically-
uniform convergent to a distribution function FX if, for each ε > 0,

lim
n→∞

|{k : k 5 Hbn
an+1 and pbn−kqk||FXk (x) − FX(x)||C(D) = ε}|

H
bn
an+1

= 0.

Symbolically,

FXn ⇒ FX (ϕn − stat-uniform).

Next, in view of Definitions 2.1, 2.2 and 2.3 the following Lemma is trivial.

Lemma 2.4. The following implications are true

FXn ⇒ FX(ϕn − stat − uni f orm)⇒ FXn → FX(ϕn − equi − stat)
⇒ FXn → FX(ϕn − stat − point − wise). (1)

The inclusions in (1) are strict, that is, the reverse implications in (1) are not always true.

The following examples will justify the strictness of the implications asserted by Lemma 2.4.

Example 2.5. Let {Xn; n ∈N} be a sequence of random variables and let

pn = 1, qn =
1

n + 2
, an = n and bn = 2n.

Let

FXn : [0, 1]→ R

be the sequence of continuous real valued probability density functions defined by

FXn (x) =


[
( 1

n+2 )2
−x2

]
(n+2)2

1+x2

(
0 5 x 5 1

n+2

)
0 (otherwise).

(2)
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Then, for each ε > 0,

1

H
bn
an+1

|{k : k 5 Hbn
an+1 and pbn−kqk|FXk (x) − FX(x)| = ε}| 5

1

H
bn
an+1

= 0

uniformly on D.
This implies that

FXn (x)→ 0 (ϕn − equi-stat).

However,

sup
x∈[0,1]

|FXn (x)| = 1 (∀ n ∈N).

This yields that

FXn (x)⇒ 0 (ϕn − uniform-stat)

does not hold.

Example 2.6. This example illustrates that the second inclusion in (1) is strict.
Indeed, for

pn = 1, qn =
1

n + 2
, an = n and bn = 2n.

Let

FXn : [0, 1]→ R

be the sequence of continuous real-valued probability density functions defined by

FXn (x) = xn.

Suppose that

lim
n→∞

FXn (x) = FX(x) (x ∈ [0, 1]).

Then

FXn (x)→ FX(x) (ϕn − point-wise-stat).

If ε = 1
3 , then for all n ∈N, there exists r > n such that r ∈ [n + 1, 2n] and for each x ∈

([
1
3

] 1
n , 1

)
, it yields

|FXr (x)| = |xr
| >

∣∣∣∣∣∣∣
[1

3

] 1
n
r∣∣∣∣∣∣∣ >

∣∣∣∣∣∣∣
[1

3

] 1
r
r∣∣∣∣∣∣∣ =

1
3
. (3)

Clearly, the following condition

FXn (x)→ 0 (ϕn − equi-stat)

does not hold.
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3. A Korovkin-type Theorem for Sequence of Distribution Functions

In the recent years, quite a few researchers worked toward extending (or generalizing) the Korovkin-
type theorems in different fields of pure and applied mathematics. This concept is extremely valuable in
Real analysis, Measure Theory, Probability Theory, Summability Theory, Functional analysis, Harmonic
Analysis and so on. For further details with several results related to the Korovkin-type theorems and other
related developments, one can refer the recent works [5], [8], [15], [16], [17], [18] and [26].

Let C(D) be the linear space of all real-valued continuous probability density function FX defined on D,
where D ⊆ R is compact, and suppose that A : C(D)→ C(D) be a sequence of random variables of positive
linear operators. The operator A is positive if, A(FX; x) = 0 whenever x ∈ [a, b]. It is also known that C(D) is
a complete normed linear space. For FX ∈ D, the infinite norm of a function FX is denoted by ||FX||∞, and is
given by

||FX||∞ = sup
x∈D
|FX(x)|.

This section extends the result of Srivastava et al. [25] for the sequence of distribution functions.

Theorem 3.1. Let Am (m ∈N) be the sequence of random variables of positive linear operators from C(D) into itself
and let FX ∈ C(D). Then

An(FX, x)→ FX (ϕn − equi − stat) on D (4)

if and only if

An(FXi , x)→ FXi (x) (ϕn − equi − stat) on D (i = 0, 1, 2) (5)

where

FX0 (x) = 1, FX1 (x) = x, FX2 (x) = x2.

Proof. Since each of the functions given by

FXi (x) = xi

is continuous, the implications (4) to (5) is fairly obvious.

In order to complete the proof of Theorem 3.1, it is assumed that (5) holds. Since FX ∈ C(D), there exists
a constantK > 0 such that

|FX(x)| 5 K (∀ x ∈ D)

which implies that

|FX(t) − FX(x)| 5 2K (∀ x, t ∈ D).

Clearly, for a given ε > 0, there exists δ > 0 such that

|FX(t) − FX(x)| 5 ε whenever |t − x| < δ. (6)

Let us now choose

µ = µ(t, x) = (t − x)2.

Then if

|t − x| = δ (x, t ∈ D)
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then

|FX(t) − FX(x)| <
2K
δ2 µ(t, x). (7)

From (6) and (7), it yields

|FX(t) − FX(x)| < ε +
2K
δ2 µ(t, x),

and this implies that

−ε −
2K
δ2 µ(t, x) 5 FX(t) − FX(x) 5 ε +

2K
δ2 µ(t, x). (8)

Now, since the operator Am(1, x) is monotone and linear, by applying this operator to the inequality in (8),
it yields

Am(1, x)
(
−ε −

2K
δ2 µ(t, x)

)
5 Am(1, x)[FX(t) − FX(x)]

5 Am(1, x)
(
ε +

2K
δ2 µ(t, x)

)
. (9)

One may note here that x is fixed and so FX(x) is a constant number. Therefore,

−ε Am(1, x) −
2K
δ2 Am(µ, x) 5 Am(FX, x) − FXAm(1, x)

5 ε Am(1, x) +
2K
δ2 Am(µ, x) (10)

which in conjunction with the following obvious identity

Am(FX, x) − FX = [Am(FX, x) − FX(x)Am(1, x)] + FX(x)[Am(1, x) − 1].

This yields

Am(FX, x) − FX < ε Am(1, x) +
2K
δ2 Am(µ, x) + FX(x)[Am(1, x) − 1]. (11)

Next, in order to estimate Am(µ, x), let us write

Am(µ, x) = Am((t − x)2, x) = Am(t2
− 2xt + x2, x)

= Am(t2, x) − 2x Am(t, x) + x2Am(1, x)

= [Am(t2, x) − x2] − 2x[Am(t, x) − 2x] + x2[Am(1, x) − 1].

By using (11), it yields

Am(FX, x) − FX(x) < εAm(1, x) +
2K
δ2 {[Am(t2, x) − x2] − 2x[Am(t, x) − x]

+ x2[Am(1, x) − 1] + FX(x)[Am(1, x) − 1]}

= ε[Am(1, x) − ε] + ε +
2K
δ2 {[Am(t2, x) − x2] − 2x[Am(t, x) − x]

+ x2[Am(1, x) − 1] + FX(x)[Am(1, x) − 1]}.
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Since ε > 0 is arbitrary, one can write

Am(FX, x) − FX(x) ≤ (ε +
2K
δ2 +K )|Am(1, x) − 1|

+
4k
δ2 |Am(t, x) − x| +

2K
δ2 |Am(t2, x) − x2

|

5M(|Am(1, x) − 1| + |Am(t, x) − x| + |Am(t2, x) − x2
|). (12)

This implies that

pbn−mqm‖Am(FX, x) − FX(x)‖C(D) 5 B pbn−mqm|Am(1, x) − 1|

+Bpbn−mqm|Am(t, x) − x| +Bpbn−mqm|Am(t2, x) − x2
| (13)

where

B = max
{
ε +

2K
δ2 +K ,

4K
δ2 ,

2K
δ2

}
.

Now, for a given r > 0, we can choose ε > 0 such that 0 < ε < r. Then upon setting

Rm(x, r) = |{m : m 5 Hbn
an+1 and pbn−mqm|Am(FX, x) − FX(x)| = r}|

and

Ri,m(x, r) =

∣∣∣∣∣∣
{

m : m 5 Hbn
an+1

and pbn−mqm|Am(FXi , x) − FXi (x)| =
r − ε

3k

}∣∣∣∣∣∣,
we easily find from (13) that

Rm(x, r) 5
2∑

i=0

Ri,m(x, r).

Hence,

‖ Rm(x, r) ‖C(D)

H
bn
an+1

5
2∑

i=0

‖ Ri,m(x, r) ‖C(D)

H
bn
an+1

. (14)

Finally by using the above assumption the implication in (5) and by Definition 2.2 the right-hand side of
(14) is tends to zero as n→∞. Consequently, it yields

‖ Rm(x, r) ‖C(D)

H
bn
an+1

= 0. (15)

Therefore, the implication (4) holds. The proof of Theorem 3.1 is thus completed.

Example 3.2. Let D = [0, 1] and consider the classical Bernstein polynomial on C[0, 1].

B∗r(FX, x) = (1 + FXr (x))
r∑

k=0

FX

(
k
r

) (
r
k

)
xr(1 − x)r−k, x ∈ [0, 1]. (16)
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Then, it immediately yields

B∗r(FX0 , x) = (1 + FXr (x))FX0 (x)
B∗r(FX1 , x) = (1 + FXr (x))FX1 (x)

B∗r(FX2 , x) = (1 + FXr (x))
(
FX2 (x) +

x(1 − x)
r

)
.

Here (FXr )r∈N being the sequence of distribution functions given by Example 2.5 and also FXr → 0 (ϕn − equi-stat),
it is concluded that

B∗r(FXi , x)→ FXi (x) (ϕn − equi-stat). (17)

So, by Theorem 3.1, it immediately yields

B∗r(FX, x)→ FX(x) (ϕn − equi-stat) (18)

on [0, 1] for all FX ∈ C[0, 1].

Moreover, since the sequence (FXn ) of distribution functions is (ϕn)-equi-statistical convergent but it is not
ϕn−equi-statistical convergent under the choice of real sequences. Thus the result of Srivastava et al. [25] does not
work under the operators defined by (16).

4. Rate of Equi-statistical Convergence for Sequence of Distribution Functions

In this section, the rate of the deferred Nörlund equi-statistical convergence of a sequence of random
variables of positive linear operators defined on C(D) under the modulus of continuity is discussed.

Definition 4.1. Let (un) be a positive non-increasing sequence. A sequence (FXn ) of distribution functions is (ϕn)-
equi-statistically convergent to a distribution function FX with the rate o(un) if, for each ε > 0,

lim
n→∞

Υn(x, ε)

unH
bn
an+1

= 0

uniformly with respect to x ∈ D or, equivalently, if

lim
n→∞

‖Υn(x, ε)‖C(D)

unH
bn
an+1

= 0

where

Υm(x, r) = |{m : m 5 Hbn
an+1 and pbn−mqm|Am(FX, x) − FX(x)| = r}|.

Symbolically,

FXn − FX = o(un) (ϕn − equi-stat) on D.

Next, a result is considered and proved in the form of Lemma 4.2 as follows.

Lemma 4.2. Let the sequences (FXn ) and (GXn ) belonging to C(D) satisfy the following conditions:

FXn − FX = o(sn) (ϕn − equi-stat)

and

GXn − GX = o(cn) (ϕn − equi-stat) on D.

Then, the following assertions hold:
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(i) [FXn (x) + GXn (x)] − [FX(x) + GX(x)] = o(dn) (ϕn − equi − stat)

(ii) [FXn (x) − FX(x)][GXn (x) − GX(x)] = o(sncn) (ϕn − equi − stat)

(iii) λ[FXn (x) − FX(x)] = o(sn)(ϕn − equi − stat)

(iv)
√
|FXn (x) − FX(x)| = o(sn)(ϕn − equi − stat)

where dn = max{sn, cn}.

Proof. In order to prove the assertion (i) of Lemma 4.2, let us consider the following sets. For ε > 0 and
x ∈ D

En(x, ε) = |{m : m 5 Hbn
an+1 and

pbn−mqm|(FXn (x) + GXn (x)) − (FX + GX)(x)| = ε}|,

E0,n(x, ε) = |{m : m 5 Hbn
an+1 and pbn−mqm|FXn (x) − FX(x)| =

ε
2
}|

and

E1,n(x, ε) = |{m : m 5 Hbn
an+1 and pbn−mqm|GXn (x) − GX(x)| =

ε
2
}|.

Clearly,

En(x, ε) ⊆ E0,n(x, ε) ∪ E1,n(x, ε). (19)

Moreover, since

dn = max{sn, cn} (20)

by applying the assertion (4) of Theorem 3.1, it yields

||En(x, ε)||C(D)

dnH
bn
an+1

5
||E0,n(x, ε)||C(D)

dnH
bn
an+1

+
||E1,n(x, ε)||C(D)

cnH
bn
an+1

. (21)

Also, by applying the assertion (5) of Theorem 3.1, it easily yields

||En(x, ε)||C(D)

dnH
bn
an+1

= 0. (22)

This proves the assertion (i) of Lemma. The other assertions (ii) to (iv) of Lemma 4.2 are similar to (i), so it is
not difficult to prove these assertions along the similar lines. This evidently completes the proof of Lemma
4.2.

Recalling that the modulus of continuity of a distribution function FX ∈ C(D) which is defined by

ω(FX, δ) = sup
|t−x|5δ(x,t∈D)

|FX(t) − FX(x)|. (23)

Theorem 4.3. Let D ⊂ R be compact set and Am : C(D) → C(D) be the sequence of random variables of positive
linear operators. Suppose that the following conditions are satisfied.
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(i) Am(FX0 , x) − FX0 = O(sn) (ϕn − equi-stat ) on D

(ii) ω(FX, δn) = O(cn) (ϕn − equi-stat) on D

where

δn(x) =
√
Am(µ2 : x) and µ(t) = t − x.

Then, for all FX ∈ C(D), the following assertion holds:

|Am(FX; x) − FX(x)| = O(dn) (ϕn − equi − stat) on D (24)

where dn is given by (20).

Proof. Let f ∈ C[D] and x ∈ D. Then it is well known that

|Am(FX; x) − FX(x)| 5 N|Am(FX0 ; x) − FX0 (x)| + (Am(FX0 ; x) +
√
Am(FX0 ; x))ω(FX, δn)

where
N = (||FX||C(D),FX0 ).

This yields

|Am(FX; x) − FX(x)| ≤ N|Am(FX0 ; x) − FX0 (x)| + 2ω(FX, δn)
+ ω(FX, δn)|Am(FX0 ; x) − FX0 (x)|

+ ω(FX, δn)
√
|Am(FX0 ; x) − FX0 (x)|. (25)

Finally, in view of the conditions (i) and (ii) of Theorem 4.3 in conjunction with Lemma 4.2, the last inequality
(25) leads to the assertion (24) of Theorem 4.3. This completes the proof of Theorem 4.3.

5. Concluding Remarks and Observations

In this concluding section of the investigation, several further remarks and observations concerning the
various results are presented.

Remark 5.1. Let (FXn )n∈N be a sequence of functions given in Example 2.5. Then, since

FXn → 0 (tn − equi − stat)

on [0, 1], it yields

Am(FXi ; x)→ FXi (x) (ϕn − equi − stat) on [0, 1] (i = 0, 1, 2). (26)

Therefore, by applying Theorem 3.1,

Am(FX, x)→ FX(x) (ϕn − equi-stat) on [0, 1] (27)

for all f ∈ C(D).

However, since (FXn ) is not ϕn-statistically uniform convergent to the function FX(= 0) on the interval [0, 1] and
also since (FXn ) is not uniformly convergent to the function FX(= 0) on the interval [0, 1], the classical Korovkin-type
theorem does not work for the operators defined by (16). Therefore, this application clearly shows that Theorem 3.1 is
a non-trivial generalization of the classical and statistical versions of the Korovkin-type theorems [17] and [25].
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Remark 5.2. Let us replace the conditions (i) and (ii) in Theorem 4.3 by the following conditions

Am(FXi ; x) − FXi = 0(sni ) (ϕn − equi-stat) on D (i = 0, 1, 2). (28)

Then, since

Am(φ2; x) = Am(FX2 (t); x) − 2xAm(FX1 (t); x) + x2Am(FX0 (t); x),

one can write

Am(φ2; x) 5 κ
2∑

i=0

|Am(FXi ; x) − FXi |, (29)

where

κ = 1 + 2||FX1 ||C(D) + ||FX2 ||C(D).

It now follows from (28), (29) and Lemma 4.2, that

δn =
√
Am(φ2) = O(un) (ϕn − equi-stat) on D, (30)

where

O(un) = max{sn0 , sn1 , sn2 }.

Hence, it clearly yields

ω(FX, δ) = o(un) (ϕn − equi − stat) on D.

By using (30) in Theorem 4.3, one can immediately see for all f ∈ C(D),

Am(FX; x) − FX(x) = O(un) (tn − qui-stat) on D.

Therefore, if instead of conditions (i) and (ii), the condition (28) is used in Theorem 4.3, then the rates of the deferred
Nörlund equi-statistical convergence of the sequence (Am) of random variables of positive linear operators in Theorem
3.1 can fairly be obtained.

Remark 5.3. In random graph theory (see [20, 21]) in the sense that almost convergence means convergence with
probability 1, whereas in probability convergence the probability is not necessarily 1. Mathematically, a sequence of
random variables {Xn} is probability convergent (converges in probability) to a random variable X if limn→∞ P(|Xn−
X| = ε) = 0, for all ε > 0 (arbitrarily small); and almost convergent to X if P(limn→∞ Xn = X) = 1 (see [24]).
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