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Abstract. A vertex w ∈ V resolves two elements x, y ∈ V ∪ E if d(w, x) , d(w, y). The mixed resolving
set is a set of vertices S, S ⊆ V if any two elements of E ∪ V are resolved by some element of S. The
minimum cardinality of a mixed resolving set is called the mixed metric dimension of a graph G. This
paper introduces three new general lower bounds for the mixed metric dimension of a graph. The exact
values of mixed metric dimension for torus graph are determined using one of these lower bounds. Finally,
some illustrative examples of these new lower bounds and those known in the literature are presented on
a set of some well-known graphs.

1. Introduction

Let G = (V,E) be a connected simple graph. Distance between pairs of vertices is measured by the
number of edges in a shortest u − v path in G where u, v ∈ V, and denoted as dG(u, v). A vertex w resolves
vertices u and v if dG(w,u) , dG(w, v). Set of a graph S ⊆ V is a resolving set if any pair of vertices from V
are resolved by some element from S. For an ordered set S as S = {w1, . . . ,wk} and arbitrary vertex u ∈ V
we can determine the vector of resolving coordinates denoted by rS(u) = (dG(u,w1), . . . , dG(u,wk)). In this
context, S is a resolving set if every vertex u has the unique vector of resolving coordinates. A resolving
set of minimum cardinality is called the metric basis and its cardinality the metric dimension of G. The metric
dimension of G is denoted as β(G). The term resolving set was introduced by Harrary and Melter [1], while
Slater used the term locating set [2]. In the literature synonymous to these terms is also metric generators. In
order to simplify the notation we replace dG(u, v) with d(u, v).

As the metric dimension and resolving sets give some information about vertices of the graph, it is
natural to ask if there is some parameter, or graph invariant, which deals in the same way with graph’s
edges. Answer to that question was given by Kelenc et al. in [3], where authors introduced the edge metric
dimension of graphs. The distance between vertex and edge in a graph was defined as the minimum
distance between given vertex and endpoints of a given edge. Formally, if w ∈ V and e = {u, v} then
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d(w, e) = min(d(w,u), d(w, v)). (1)

Now, the vertex w resolves two edges e1 and e2 if d(w, e1) , d(w, e2). Similarly as for the metric dimension,
the edge resolving set S ⊆ V is defined as a set of vertices such that for any pair of edges from E, there is
some element in S that resolves them. The minimum edge resolving set is the edge metric basis and its
cardinality is called the edge metric dimension of a graph G and is denoted as βE(G).

Finally, as there is the metric and the edge metric dimension of a graph G, Kelenc et al. (2017) in
[4] recently introduced a concept of mixed metric dimension and initiated the study of its mathematical
properties. It is said that vertex w resolves two items x, y ∈ V∪E if d(w, x) , d(w, y). The mixed resolving set
S ⊆ V is defined as a set such that for any pair of elements from V∪E there is some element in S that resolves
them. Following the earlier definitions, the mixed metric basis and the mixed metric dimension are defined
as the minimum mixed resolving set and the cardinality of such minimum resolving set, respectively. The
mixed metric dimension of G is denoted as βM(G).

Example 1.1. Graph G from Figure 1 has 5 vertices and 7 edges. The mixed metric dimension is equal 5 and its
obtained by total enumeration, while metric dimension and edge metric dimension are equal 3 and 4, respectively. The
mixed metric basis is {v1, v2, v3, v4, v5}, i.e. all vertices are elements of the basis and deleting any element from basis,
it will always exist two items with the same coordinates.
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Figure 1: Small graph G with 5 vertices

1.1. Literature review
There are several proposed applications for the metric dimension in the literature. Originally, Slater

considered unique recognition of intruders in the network, while others observed problems of navigating
robots in networks [5], chemistry [6, 7], some applications in pattern recognition and image processing [8].
After initial works, some variations of this problem were introduced such as resolving dominating sets [9],
independent resolving sets [10], strong metric dimension [11], local metric dimension [12] among others.

In the article [4] where the mixed metric dimension problem was introduced, the authors presented
some facts considering structure of mixed resolving sets. In the cases were upper and lower bounds of
mixed metric dimension could be easily obtained, the authors presented characterization of graphs whose
mixed metric dimension reaches these bounds. Since lower and upper bounds are 2 and n, the authors
have shown that for paths mixed metric dimension is 2, and mixed metric dimension is equal n if and only
if every vertex has a maximal neighbor.

In order to better present mixed metric dimensions, the authors in [4] determined exact values for some
classes of graphs, notably cycles, trees, complete bipartite graphs and grid graphs. Moreover, few general
lower/upper bounds are presented. Finally, the authors proved that computing mixed metric dimension is
NP-hard in general case.
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An integer linear programming (ILP) formulation of the mixed metric problem is given in the paper [4].
ILP naturally produces a lower bound, notably the LP relaxation of the given problem.

Some other classes of graphs also attracted attention of researchers. Raza et al. (2019) in [13] gave
the exact value of mixed metric dimension for three well-known classes of graphs: prism, antiprism and
graph of convex polytope Rn. Milivojević Danas in [14], provided the exact results for two other important
well-known classes of graphs: flower snarks and wheels.

1.2. Definitions and properties

Let us denote de1v as degree of vertex v ∈ V and δ(G) as the minimum degree of vertices in G, i.e.
δ(G) = min{de1v|v ∈ V}.

Torus graph Tm,n can be defined as follows:

V(Tm,n) = {(i, j) | 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}

and
E(Tm,n) = {(i, j)(i + 1, j) | 0 ≤ i ≤ m − 2, 0 ≤ j ≤ n − 1}

⋃
{(i, j)(i, j + 1) | 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 2}

⋃
{(m − 1, j)(0, j) | 0 ≤ j ≤ n − 1}

⋃
{(i,n − 1)(i, 0) | 0 ≤ i ≤ m − 1}.

Torus graph can be also shown as Cartesian product of two cycles, i.e. Tm,n = Cm�Cn.
Following propositions, theorems and their corollaries are used in rest of the paper to prove validity of

new general lower bounds. We cite them as they were stated in articles [4, 15].

Proposition 1.2. ([4]) For any graph G it holds

βM(G) ≥ max{β(G), βE(G)}. (2)

For two vertices u, v ∈ G, we say that they are false twins if they have the same open neighborhoods, i.e.,
N(u) = N(v). The vertices u, v are called true twins if N[u] = N[v]. Also, vertex v is called an extreme vertex if
N(v) induces a complete graph. Further on, an arbitrary vertex u ∈ N(v) is called a maximal neighbor of the
vertex v if all neighbors of vertex v, including itself, are also in the closed neighborhood of u.

Proposition 1.3. ([4]) If u, v are true twins in a graph G, then u, v belong to every mixed metric generator for G.

Proposition 1.4. ([4]) If u, v are false twins in a graph G and S is a mixed metric generator for G, then {u, v}∩S , ∅.

Proposition 1.5. ([4]) If u is a simplicial (extreme) vertex in a graph G, then u belongs to every mixed metric
generator for G.

Corollary 1.6. ([4]) If u is a vertex of degree 1 in a graph G, then u belongs to every mixed metric generator for G.

Proposition 1.7. ([3]) Let G be a connected graph and let 4(G) be the maximum degree of G. Then

βE(G) ≥ dlog2 4(G)e. (3)

Theorem 1.8. ([15]) Let G be a connected graph, then

βE(G) ≥ 1 + dlog2 δ(G)e. (4)
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2. New general lower bounds

First, we introduce a lower bound for mixed metric dimension of any connected graph G, which slightly
improves the lower bound for edge metric dimension from Theorem 1.8 given in [15].

Theorem 2.1. Let G be a connected graph and let x be an arbitrary vertex from mixed resolving set S of G. Then,
|S| ≥ 1 + dlog2(1 + degx)e.

Proof. Without loss of generality we can assume that S = {x,w2, . . . ,wp}. Vector of metric coordinates
of vertex x with respect to S is r(x,S) = (0, d2, . . . , dp), where di = d(wi, x), for all i, 2 ≤ i ≤ p. Vertex x
is incident to de1x edges. Name them as e1,. . . ,ede1x . For each position i = 2, . . . , p in the ordering of S
and each index j = 1, . . . , de1x, edge e j is incident to vertex x, so by the definition of d(e j,wi) it directly
implies d(e j,wi) ∈ {di − 1, di}, i.e. there can be only two different possible distances. Therefore vertex x
and edges e1,. . . , ede1x have at most 2p−1 different mixed metric representations with respect to S, implying
1 + de1x ≤ 2p−1 and p ≥ 1 + log2(1 + degx) follows. Having in mind that p = |S| is an integer, we have
|S| ≥ 1 + dlog2(1 + degx)e.

Next corollary describes vertices which cannot be members of mixed resolving sets:

Corollary 2.2. Let G be a connected graph and let v be an arbitrary vertex v ∈ V. If de1v > 2βM(G)−1
− 1, then v is

not a member of any mixed resolving set S of cardinality βM(G) of G.

Since δ(G) is the minimum degree of vertices in G we have another corollary of Theorem 2.1:

Corollary 2.3. Let G be a connected graph, then

βM(G) ≥ 1 + dlog2(δ(G) + 1)e. (5)

Example 2.4. For the graph given in Example 1.1 this lower bound is calculated as follows: Since the minimum
degree of vertices δ(G) = 2 and from the inequality (5), the lower bound is equal 3.

For regular graphs, next corollary holds:

Corollary 2.5. Let G be an r-regular graph, then

βM(G) ≥ 1 + dlog2(r + 1)e. (6)

In the following consideration, we propose a relationship between the mixed metric dimension and the
minimum hitting set problem. Let us first define the hitting set H. For a given set U and a collection T of
subsets S1, . . . ,Sm of U such that their union is equal to U, the hitting set H is a set which has a nonempty
intersection with each set from this collection, i.e. (∀i ∈ {1, . . . ,m}) H ∩ Si , ∅. Finding a hitting set of
minimum cardinality is called the minimum hitting set problem (MHSP). It should be noted that minimum
hitting set problem is equivalent to a famous set covering problem.

For an arbitrary edge uv we define sets Wuv = {w ∈ V|d(u,w) < d(v,w)} and Wvu = {w ∈ V|d(u,w) >
d(v,w)}. The relationship between these sets and mixed resolving sets are given in the following lemma.

Lemma 2.6. Let G be a connected graph, uv ∈ E an arbitrary edge and S a mixed resolving set, then

a) Wvu ∩ S , ∅;

b) Wuv ∩ S , ∅.

Proof. a) Suppose the opposite, i.e. (∃uv ∈ E) so that Wvu ∩ S = ∅, which means that for each vertex w ∈ S
holds d(u,w) ≤ d(v,w). According to equality (1), it is easy to see that mixed metric coordinate of u is same
as the mixed metric coordinate of uv, i.e. r(u,S) = r(uv,S), which means that S is not a mixed resolving set
which is contradiction to the starting assumption.

b) The proof of this part of lemma is analogous to the proof of part a).
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To each edge uv ∈ E, we assign sets Wuv and Wvu and it is easy to see that there are 2m sets. Our idea is
to find a minimal hitting set H∗ for the family of sets {Wvu,Wuv|uv ∈ E}. The cardinality of minimum hitting
set of this family of sets will be denoted as MHSP({Wuv,Wvu|uv ∈ E}).

The following theorem proposes the new lower bound for mixed metric dimension based on the cardi-
nality of above-mentioned minimum hitting set.

Theorem 2.7. For any connected graph G, it holds

βM(G) ≥MHSP({Wuv,Wvu|uv ∈ E}). (7)

Proof. Let βM(G) be the mixed metric dimension of an arbitrary graph G. Then, there is a mixed resolving
set S so that |S| = βM(G). From Lemma 2.6, for arbitrary edge uv, it follows that

Wuv ∩ S , ∅ ∧Wvu ∩ S , ∅. (8)

This means that there is at least one element from S in each of these sets for every edge uv.
Let us now consider minimal hitting set problem over family of these sets Wuv and Wvu where uv ∈ E.

Since a mixed resolving set S satisfies (8), S is a hitting set for a family of sets {Wvu,Wuv|uv ∈ E}. The
cardinality of each hitting set is greater or equal to the cardinality of minimal hitting set, so it can be
concluded that inequality (7) holds.

Example 2.8. The lower bound from Theorem 2.7, for the graph from the Figure 1, obtained by using total enumeration
for hitting set problem is equal 5.

Let us present another lower bound for mixed metric dimension based on the diameter of a graph,
where the diameter of graph is defined as the maximum distance between the pair of vertices.

Theorem 2.9. Let G = (V,E) be a connected graph with mixed metric dimension βM(G) and let D(G) be the diameter
of G, then

|V| + |E| ≤ D(G)βM(G) + βM(G)(4(G) + 1). (9)

Proof. We will consider all possible representations of metric coordinates for all items of the graph G. Since
the diameter of graph is D(G), then it is easy to see that each item of graph can have integer coordinates
between 0 and D(G). The set of all items can be separated into two disjunctive classes:

I) items whose metric coordinates do not have 0;

II) items whose metric coordinates have 0.

Each item from I) class, which does not have a coordinate equal 0, must have unique coordinates from
one of D(G)βM(G) possibilities. For items from II), i.e. with one coordinate equal to zero, it is easy to see that
it will be the vertex which is an element of the basis, or an edge containing that vertex. Hence, for each
element of the basis, there are at the most 4(G) + 1 possibilities, i.e. it must have a unique coordinate from
one of βM(G)(4(G) + 1) possibilities. Therefore, from the previous, it is easy to conclude that inequality (9)
follows, thus completing the proof of theorem.

Example 2.10. The lower bound from Theorem 2.9, for the graph from the Figure 1, is obtained by calculating
inequalities (9) and it is equal 2.

3. Exact results on torus graph

In this section we will use previously introduced general lower bounds to obtain the exact values of
mixed metric dimension of torus graph.
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Theorem 3.1. For m,n ≥ 3 it holds βM(Tm,n) = 4.

Proof. We will prove that both upper and lower bounds for βM(Tm,n) is equal to 4.
Step 1: Upper bound is 4.

There are four cases which are identified by parity of the torus dimensions:
Case 1. m = 2k + 1,n = 2l + 1
Let S = {(0, 0), (0, l), (1, l+1), (k+1, l+1)}. Let us prove that S is mixed metric resolving set. The representation
of coordinates of each vertex and each edge,with respect to S, is shown in Table 1 and Table 2.

Table 1: Metric coordinates of vertices of T2k+1,2l+1
vetex cond. r(v,S)
(0, 0) (0, l, l + 1, l + k)
(i, 0) 1 ≤ i ≤ k (i, i + l, l + i − 1, l + k − i + 1)
(0, j) 1 ≤ j ≤ l ( j, l − j, l − j + 2, l − j + k + 1)
(i, j) 1 ≤ i ≤ k − 1 ( j + i, i + l − j, l − j + i, l − j + k − i + 2)

1 ≤ j ≤ l
(0, j) l + 1 ≤ j ≤ n − 1 (n − j, j − l, j − l, j − l + k − 1)
(i, j) l + 1 ≤ j ≤ n − 1 (n − j + i, j − l + i, j − l + i − 2, k − i + j − l)

1 ≤ i ≤ k − 1
(i, 0) k + 2 ≤ i ≤ m − 1 (m − i,m − i + l,m − i + l + 1, l − k + i − 1)
(i, j) k + 2 ≤ i ≤ m − 1 (m − i + j,m − i + l − j,m − i + l − j + 2, i − k + l − j)

1 ≤ j ≤ l
(i, j) k + 2 ≤ i ≤ m − 1 (m + n − i − j, j − l + m − i,

l + 1 ≤ j ≤ n − 1 j − l − i + m, j − l + i − k − 2)
(k + 1, 0) (k, k + l, k + l, l)

(k, j) 1 ≤ j ≤ l (k + j, k + l − j, k + l − j, l − j + 2)
(k + 1, j) 1 ≤ j ≤ l (k + j, k + l − j, k + l − j + 1, l − j + 1)

(k, j) l + 1 ≤ j ≤ n − 1 (k + n − j, j − l + k, k + j − l − 2, j − l)
(k + 1, j) l + 1 ≤ j ≤ n − 1 (k + n − j, k + j − l, k + j − l − 1, j − l − 1)

Table 2: Metric coordinates of edges of T2k+1,2l+1
edge cond. r(e,S)

(0, 0)(1, 0) (0, l, l, k + l)
(0, 0)(0,n − 1) (0, l, l, k + l − 1)
(0, 0)(m − 1, 0) (0, l, l + 1, l + k − 1)
(0, j)(0, j + 1) 0 ≤ j ≤ l − 1 ( j, l − j − 1, l − j + 1, k + l − j)
(i, 0)(i + 1, 0) 1 ≤ i ≤ k − 1 (i, l + i, l + i − 1, k − i + l)
(i, j)(i, j + 1) 1 ≤ i ≤ k (i + j, l − j − 1 + i, l + i − j − 1, l − j + k − i + 1)

1 ≤ j ≤ l − 1
(i, l)(i, l + 1) 1 ≤ i ≤ k (l + i, i, i − 1, k − i + 1)

(i, 0)(i, 1) 1 ≤ i ≤ k (i, l + i − 1, l + i − 1, l + k − i + 1)
(0, j)(1, j) 1 ≤ j ≤ l ( j, l − j, l − j + 1, k + l − j + 1)

(0, j)(0, j + 1) l + 1 ≤ j ≤ n − 2 (n − j − 1, j − l, j − l, k + j − l − 1)
(i, j)(i, j + 1) 1 ≤ i ≤ k (n − j + i − 1, j − l + i,

l + 1 ≤ j ≤ n − 2 j − l + i − 2, k + j − l − i)
(i, j)(i + 1, j) 1 ≤ i ≤ k − 1 (i + j, l − j + i, l − j + i, l − j + k − i + 1)

1 ≤ j ≤ l
(i, 0)(i,n − 1) 1 ≤ i ≤ k (i, l + i, l + i − 2, l + k − i)
(i, j)(i + 1, j) 1 ≤ i ≤ k − 1 (n − j + i, j − l + i,

l + 1 ≤ j ≤ n − 1 j − l + i − 2, k − i + j − l − 1)
(0, j)(1, j) l + 1 ≤ j ≤ n − 1 (n − j, j − l, j − l − 1, k + j − l − 1)

(i, j)(i + 1, j) k + 1 ≤ i ≤ m − 2 ( j + m − i − 1, l − j + m − i − 1,
1 ≤ j ≤ l m − i + l − j + 1, l − j + i − k)

(i, j)(i, j + 1) k + 2 ≤ i ≤ m − 1 (m − i + j, l − j − 1 + m − i,
1 ≤ j ≤ l − 1 l − j + m − i, l − j + i − k − 1)

(i, 0)(i + 1, 0) k + 1 ≤ i ≤ m − 2 (m − i − 1,m − i + l − 1,m − i + l, i − k − 1 + l)
(i, 0)(i, 1) k + 2 ≤ i ≤ m − 1 (m − i,m − i + l − 1,m − i + l + 1, l + i − k − 1)

(k, j)(k + 1, j) 1 ≤ j ≤ l (k + j, k + l − j, k + l − j, l − j + 1)
(0, j)(m − 1, j) 1 ≤ j ≤ l ( j, l − j, l − j + 2, k + l − j)

(k + 1, j)(k + 1, j + 1) 1 ≤ j ≤ l − 1 (k + j, k + l − j − 1, k + l − j, l − j)
(i, j)(i + 1, j) k + 1 ≤ i ≤ m − 2 (n − j + m − i − 1,m − i + j − l − 1,

l + 1 ≤ j ≤ n − 1 m − i + j − l − 1, i − k + j − l − 2)
(i, j)(i, j + 1) k + 2 ≤ i ≤ m − 1 (n − j − 1 + m − i, j − l + m − i,

l + 1 ≤ j ≤ n − 2 j − l + m − i + 1, j − l + i − k − 2)
(i, l)(i, l + 1) k + 2 ≤ i ≤ m − 1 (m − i + l,m − i,m − i + 1, i − k − 1)

(k, j)(k + 1, j) l + 1 ≤ j ≤ n − 1 (n − j + k, j − l + k, k + j − l − 2, j − l − 1)
(i, 0)(i,n − 1) k + 2 ≤ i ≤ m − 1 (m − i,m − i + l,m − i + l, l + i − k − 2)
(0, j)(m − 1, j) l + 1 ≤ j ≤ n − 1 (n − j, j − l, j − l, k + j − l − 2)
(0, l)(0, l + 1) (l, 0, 1, k)
(k, 0)(k + 1, 0) (k, k + l, k + l − 1, l)

(k + 1, 0)(k + 1, 1) (k, k + l − 1, k + l, l)
(k + 1, 0)(k + 1,n − 1) (k, k + l, k + l − 1, l − 1)
(k + 1, j)(k + 1, j + 1) l + 1 ≤ j ≤ n − 2 (n − j + k − 1, j − l + k, j − l + k − 1, j − l − 1)
(k + 1, l)(k + 1, l + 1) (k + l, k, k, 0)
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Since metric coordinates of all items are mutually different, S is a mixed resolving set. Therefore,
βM(T2k+1,2l+1) ≤ 4.

Case 2. m = 2k + 1,n = 2l
Let S = {(0, 0), (0, l), (1, 0), (k + 1, 1)}. Let us prove that S is mixed metric resolving set. The representation of
coordinates of each vertex and each edge, with respect to S, is shown in Table 3 and Table 4.

Table 3: Metric coordinates of vertices of T2k+1,2l
vetex cond. r(v,S)
(0, 0) (0, l, 1, k + 1)
(i, 0) 1 ≤ i ≤ k (i, i + l, i − 1, k − i + 2)
(0, j) 1 ≤ j ≤ l ( j, l − j, j + 1, k + j − 1)
(i, j) 1 ≤ i ≤ k ( j + i, l − j + i, j + i − 1, j + k − i)

1 ≤ j ≤ l
(0, j) l + 1 ≤ j ≤ n − 1 (n − j, j − l,n − j + 1,n − j + k + 1)
(i, j) l + 1 ≤ j ≤ n − 1 (n − j + i, j − l + i,n − j + i − 1,n − j + k − i + 2)

1 ≤ i ≤ k
(i, 0) k + 2 ≤ i ≤ m − 1 (m − i,m − i + l,m − i + 1, i − k)

(k + 1, 0) (k, k + l, k, 1)
(i, j) k + 2 ≤ i ≤ m − 1 (m − i + j,m − i − j + l,m − i + j + 1, i − k + j − 2)

1 ≤ j ≤ l
(k + 1, j) 1 ≤ j ≤ l (k + j, k + l − j, k + j, j − 1)

(i, j) k + 2 ≤ i ≤ m − 1 (m − i + n − j,m − i + j − l,
l + 1 ≤ j ≤ n − 1 m − i + 1 + n − j,n + i − k − j)

(k + 1, j) l + 1 ≤ j ≤ n − 1 (n − j + k,n − j + 1, j − l + k,n − j + 1)

Table 4: Metric coordinates of edges of T2k+1,2l
edge cond. r(e,S)

(0, 0)(0, 1) (0, l − 1, 1, k)
(0, 0)(1, 0) (0, l, 0, k + 1)

(0, 0)(0,n − 1) (0, l − 1, 1, k + 1)
(0, 0)(m − 1, 0) (0, l, 1, k)
(0, j)(0, j + 1) 1 ≤ j ≤ l − 1 ( j, l − j − 1, j + 1, k + j − 1)
(i, 0)(i + 1, 0) 1 ≤ i ≤ k (i, i + l, i − 1, k − i + 1)
(i, j)(i, j + 1) 1 ≤ i ≤ k (i + j, i + l − j − 1, j + i − 1, k + j − i)

1 ≤ j ≤ l − 1
(i, l)(i, l + 1) 1 ≤ i ≤ k (l + i − 1, i, l + i − 2, k − i + l)

(i, 0)(i, 1) 1 ≤ i ≤ k (i, l − 1 + i, i − 1, k − i + 1)
(0, j)(1, j) 1 ≤ j ≤ l ( j, l − j, j, k + j − 1)

(0, j)(0, j + 1) l + 1 ≤ j ≤ n − 2 (n − j − 1, j − l,n − j, k + n − j)
(i, j)(i, j + 1) 1 ≤ i ≤ k (n − j − 1 + i, j − l + i,n − j − 2 + i, k + n − j − i + 1)

l + 1 ≤ j ≤ n − 2
(i, j)(i + 1, j) 1 ≤ i ≤ k (i + j, i + l − j, j + i − 1, k − i + j − 1)

1 ≤ j ≤ l
(i, 0)(i,n − 1) 1 ≤ i ≤ k (i, i + l − 1, i − 1, k − i + 2)
(i, j)(i + 1, j) 1 ≤ i ≤ k (n − j + i, j − l + i,

l + 1 ≤ j ≤ n − 1 n − j + i − 1,n + k − i − j + 1)
(0, j)(1, j) l + 1 ≤ j ≤ n − 1 (n − j, j − l,n − j,n − j + k + 1)

(i, j)(i + 1, j) k + 1 ≤ i ≤ m − 2 (m − i + j − 1,m − i + l − j − 1,
1 ≤ j ≤ l m − i + j, i − k + j − 2)

(i, j)(i, j + 1) k + 2 ≤ i ≤ m − 1 (m − i + j,m − i + l − j − 1,
1 ≤ j ≤ l − 1 m − i + 1 + j, i − k + j − 2)

(k + 1, j)(k + 1, j + 1) 1 ≤ j ≤ l − 1 (k + j, k + l − j − 1, k + j, j − 1)
(i, 0)(i + 1, 0) k + 2 ≤ i ≤ m − 2 (m − i − 1,m − i + l − 1,m − i, i − k)

(i, 0)(i, 1) k + 2 ≤ i ≤ m − 1 (m − i,m − i − 1 + l,m − i + 1, i − k − 1)
(k + 1, 0)(k + 1, 1) (k, k + l − 1, k, 0)

(0, j)(m − 1, j) 1 ≤ j ≤ l ( j, l − j, j + 1, k + j − 2)
(i, j)(i + 1, j) k + 1 ≤ i ≤ m − 2 (n − j + m − i − 1, j − l + m − i − 1,

l + 1 ≤ j ≤ n − 1 m + n − j − i,n − j + i − k)
(i, j)(i, j + 1) k + 2 ≤ i ≤ m − 1 (n − j + m − i − 1,m + j − i − l,

l + 1 ≤ j ≤ n − 2 n − j + m − i,n − j + i − k − 1)
(k + 1, j)(k + 1, j + 1) l + 1 ≤ j ≤ n − 2 (n + k − j − 1, k + j − l,

k + n − j − 1,n − j)
(i, l)(i, l + 1) k + 2 ≤ i ≤ m − 1 (l + m − i − 1,m − i, l + m − i, l + i − k − 2)

(k + 1, l)(k + 1, l + 1) (l + k − 1, k, l + k − 1, l − 1)
(i, 0)(i,n − 1) k + 2 ≤ i ≤ m − 1 (m − i,m − i + l − 1,m − i + 1, i − k)

(k + 1, 0)(k + 1,n − 1) (k, l + k − 1, k, 1)
(0, j)(m − 1, j) l + 1 ≤ j ≤ n − 1 (n − j, j − l,n − j + 1, k + n − j)
(0, l)(0, l + 1) (l − 1, 0, l, k + l − 1)

(k + 1, 0)(k + 2, 0) (k − 1, k + l − 1, k, 1)

Since metric coordinates of all items are mutually different, so S is a mixed resolving set. Therefore,
βM(T2k+1,2l) ≤ 4.

Case 3. m = 2k,n = 2l + 1
Let S = {(0, 0), (k, 0), (0, 1), (1, l + 1)}. Since Cm�Cn is the same as Cn�Cm, the proof of this case is similar to
the proof of Case 2.

Case 4. m = 2k,n = 2l
Let S = {(0, 0), (0, 1), (1, l), (k, 0)}. Let us prove that S is mixed metric resolving set. The representation of
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coordinates of each vertex and each edge, with respect to S, is shown in Table 5 and Table 6.

Table 5: Metric coordinates of vertices of T2k,2l
vetex cond. r(v,S)
(0, 0) (0, 1, l + 1, k)
(i, 0) 1 ≤ i ≤ k (i, i + 1, l + i − 1, k − i)
(0, j) 1 ≤ j ≤ l ( j, j − 1, l − j + 1, k + j)
(i, j) 1 ≤ i ≤ k ( j + i, j − 1 + i, l − j + i − 1, j + k − i)

1 ≤ j ≤ l
(0, j) l + 1 ≤ j ≤ n − 1 (n − j,n − j + 1, j − l + 1,n − j + k)
(i, j) l + 1 ≤ j ≤ n − 1 (n − j + i,n − j + i + 1, j − l + i − 1,n − j + k − i)

1 ≤ i ≤ k
(i, 0) k + 1 ≤ i ≤ m − 1 (m − i,m − i + 1,m − i + l + 1, i − k)
(i, j) k + 1 ≤ i ≤ m − 1 (m − i + j,m − i + j − 1,m − i + l − j + 1, i − k + j)

1 ≤ j ≤ l
(i, j) k + 1 ≤ i ≤ m − 1 (m + n − i − j,m + n − i − j + 1,

l + 1 ≤ j ≤ n − 1 m + j − l − i + 1,n + i − k − j)

Table 6: Metric coordinates of edges of T2k,2l
edge cond. r(e,S)

(0, 0)(0, 1) (0, 0, l, k)
(0, 0)(1, 0) (0, 1, l, k − 1)

(0, 0)(0,n − 1) (0, 1, l, k)
(0, 0)(m − 1, 0) (0, 1, l + 1, k − 1)
(0, j)(0, j + 1) 1 ≤ j ≤ l − 1 ( j, j − 1, l − j, k + j)
(i, 0)(i + 1, 0) 1 ≤ i ≤ k − 1 (i, i + 1, l + i − 1, k − i − 1)
(i, j)(i, j + 1) 1 ≤ i ≤ k (i + j, i + j − 1, l − j + i − 2, k + j − i)

1 ≤ j ≤ l − 1
(i, 0)(i, 1) 1 ≤ i ≤ k (i, i, l + i − 2, k − i)
(0, j)(1, j) 1 ≤ j ≤ l ( j, j − 1, l − j, k + j − 1)

(0, j)(0, j + 1) l + 1 ≤ j ≤ n − 2 (n − j − 1,n − j, j − l + 1,n − j − 1 + k)
(i, j)(i, j + 1) 1 ≤ i ≤ k (n − j + i − 1,n − j + i,

l + 1 ≤ j ≤ n − 2 j − l + i − 1,n − j + k − i − 1)
(i, j)(i + 1, j) 1 ≤ i ≤ k − 1 (i + j, i + j − 1, l − j + i − 1, j + k − i − 1)

1 ≤ j ≤ l
(i, l)(i, l + 1) 1 ≤ i ≤ k (l + i − 1, l + i − 1, i − 1, l + k − i − 1)

(i, 0)(i,n − 1) 1 ≤ i ≤ k (i, i + 1, l + i − 2, k − i)
(i, j)(i + 1, j) 1 ≤ i ≤ k − 1 (n − j + i,n − j + i + 1,

l + 1 ≤ j ≤ n − 1 j − l + i − 1,n − j + k − i − 1)
(0, j)(1, j) l + 1 ≤ j ≤ n − 1 (n − j,n − j + 1, j − l,n − j + k − 1)

(i, j)(i + 1, j) k + 1 ≤ i ≤ m − 2 (m − i + j − 1,m − i + j − 2,
1 ≤ j ≤ l m − i + l − j, i − k + j)

(i, j)(i, j + 1) k + 1 ≤ i ≤ m − 1 (m − i + j,m − i + j − 1,
1 ≤ j ≤ l − 1 m − i + l − j, j + i − k)

(i, 0)(i + 1, 0) k + 1 ≤ i ≤ m − 2 (m − i − 1,m − i,m − i + l, i − k)
(i, 0)(i, 1) k + 1 ≤ i ≤ m − 1 (m − i,m − i,m − i + l, i − k)

(k, j)(k + 1, j) 1 ≤ j ≤ l (k + j − 1, k + j − 2,
k + l − j − 1, j)

(0, j)(m − 1, j) 1 ≤ j ≤ l ( j, j − 1, l − j + 1, k + j − 1)
(i, j)(i + 1, j) k + 1 ≤ i ≤ m − 2 (n − j + m − i − 1,n + m − j − i,

l + 1 ≤ j ≤ n − 1 j − l + m − i,n − j + i − k)
(i, j)(i, j + 1) k + 1 ≤ i ≤ m − 1 (n − j + m − i − 1,n + m − j − i,

l + 1 ≤ j ≤ n − 2 j − l + m − i + 1,n − j + i − k − 1)
(i, l)(i, l + 1) k + 1 ≤ i ≤ m − 1 (l + m − i − 1,m + l − i − 1,

m − i + 1, l + i − k − 1)
(k, j)(k + 1, j) l + 1 ≤ j ≤ n − 1 (n − j + k − 1,n − j + k,

j − l + k − 1,n − j)
(i, 0)(i,n − 1) k + 1 ≤ i ≤ m − 1 (m − i,m − i + 1,m − i + l, i − k)
(0, j)(m − 1, j) l + 1 ≤ j ≤ n − 1 (n − j,n − j + 1, j − l + 1,n − j + k − 1)
(0, l)(0, l + 1) (l − 1, l − 1, 1, l − 1 + k)
(k, 0)(k + 1, 0) (k − 1, k, k − 1 + l, 0)

Since metric coordinates of all items are mutually different, S is a mixed resolving set. Therefore,
βM(T2k,2l) ≤ 4.

Step 2: Lower bound is 4.
Torus graph is 4-regular graph, so by Corollary 2.5 follows βM(Tm,n) ≥ 1 + dlo12(r + 1)e = 1 + dlo125e = 4.

Therefore, from the previous two steps, it follows that βM(Tm,n) = 4.

4. Illustrative example of new and old lower bounds

In this section we illustrate the relationship between the lower bounds and the exact values of the mixed
metric dimension for two sets of graphs. The lower bounds known in the literature [4, 15] and the new
lower bounds proposed in this paper are determined for two sets of graphs: all connected graphs with 5
vertices and a set of 12 well-known graphs, which are listed in Table 8.
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The set of all connected graphs with 5 vertices contains 21 different configurations. Graphical repre-
sentation of all these graphs can be found at https://mathworld.wolfram.com/ConnectedGraph.html. The
graph shown in Table 7 are ordered in the same way as their graphic representation on the provided link.
Columns of Table 7 are organized as follows: In the first four columns, the ordinal number, number of edges
|E|, metric dimension β(G) and edge metric dimension βE(G) are shown respectively. The following three
columns contain the lower bounds from literature: L1 and L2 denote lower bounds from Proposition 1.7
and Theorem 1.8. Each of Proposition 1.3, Proposition 1.4, Proposition 1.5 and Corollary 1.6 determines one
lower bound. For the purpose of transparency of Table 7, we have decided to give a unified lower bound
that encompasses all of them, denoted as L3. This lower bound cannot be obtained generally, while for each
specific graph, all three lower bounds from propositions and Corollary 1.6 can be calculated separately and
unified together.

Lower bound L4 is based on the LP relaxation of the mixed metric dimension problem. In the last three
columns new lower bounds N1, N2 and N3 from Corollary 2.3, Theorem 2.7 and Theorem 2.9 are given
respectively.

It should be noted that total enumeration is able to quickly compute metric dimension, edge metric
dimension and mixed metric dimension for graphs up to 36 vertices, so it is used to obtain data for β(G),
βE(G) and βM(G) for all considered graphs. Data shown column labeled as L4, which represents a LP
relaxation of the mixed metric dimension problem, can be quickly obtained by any linear programming
software: CPLEX, Gurobi, GLPK, LP solve, etc. Data displayed in column labeled as N2 is also computed
by total enumeration.

Table 7: Direct comparison of lower bounds for connected graphs with 5 vertices
LB from lit. New LB

Num |E| β(G) βE(G) L1 L2 L3 L4 N1 N2 N3 βM(G)
1. 4 3 3 2 1 4 4 2 4 2 4
2. 4 2 2 2 1 3 3 2 3 2 3
3. 5 2 3 2 1 4 4 2 4 2 4
4. 5 2 2 2 1 3 3 2 3 2 3
5. 5 2 2 2 1 2 3 2 2 2 3
6. 6 2 3 2 1 3 4 2 4 2 4
7. 6 3 3 2 2 2 3 3 2 2 4
8. 7 3 4 2 2 5 5 3 5 2 5
9. 4 1 1 1 1 2 2 2 2 2 2
10. 5 2 2 2 1 3 3 2 3 2 3
11. 6 2 3 2 2 4 4 3 4 2 4
12. 6 2 3 2 1 4 4 2 4 2 4
13. 7 3 3 2 1 4 4 2 4 2 4
14. 5 2 2 1 2 0 3 3 3 2 3
15. 6 2 2 2 2 1 3 3 3 2 3
16. 7 2 3 2 2 2 4 3 4 2 4
17. 8 3 4 2 2 5 5 3 5 2 5
18. 7 2 3 2 2 3 4 3 3 2 4
19. 8 2 4 2 3 2 4 3 4 2 4
20. 9 3 4 2 3 5 5 3 5 2 5
21. 10 4 4 2 3 5 5 4 5 3 5

As it can be seen from Table 7 new lower bounds obtain very good results as well as bounds L1, L2,
L3 and L4 from the literature, since number of vertices is relatively small (|V| = 5). Therefore, additional
calculations will be conducted on 12 well-known graphs. In Table 8 are shown graph characteristics for each
graph, while the values of the various lower bounds are shown in Table 9. Columns in Table 9, nominated
as L1, L2, L3, L4, N1, N2 and N3, have the same meaning as in Table 7. From Table 9 it can be seen that
the new lower bounds are better than the ones from the literature since in 10 cases new lower bounds are
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better or equal to the already known, while in 7 cases it produced the best lower bounds until now.
However, only in two cases mixed metric dimension equals one of the presented lower bounds (1 from

literature and 1 from the new ones). For all 12 graphs some of the 7 lower bounds gives relatively good
approximation of the mixed metric dimension. All 7 lower bounds should be used in union since different
lower bounds are applicable for different graphs and no one is uniquely dominant over the others. The
important feature of presented lower bounds is that their calculation complexity is usually much smaller
in comparison with standard/edge/mixed metric dimension problem complexity.

Table 8: Graph characteristic
Num Name |V| |E| β(G) βE(G) Another notions
1. Rook’s graph 36 180 7 8 srg(36,10,4,2)
2. 9-triangular graph 36 252 6 32 Johnson graph; srg(36,14,7,4)
3. Clebsch graph 16 40 4 9 srg(16,5,0,2)
4. Generalized quadrangle 27 135 5 18 srg(27,10,1,5)
5. Hypercube Q5 32 80 4 4 5−cube graph
6. Kneser (7,2) 21 105 5 12 srg(21,10,3,6)
7. Mobius Kantor 16 24 4 4 Generalized Petersen GP(8, 3)
8. Paley graph 13 39 4 6 srg(13,6,2,3)
9. Petersen graph 10 15 3 4 Generalized Petersen GP(5, 2)
10. Small graph 6 vert. 6 11 3 4
11. Hamming H(2,6) 36 180 7 8 K6�K6

12. Hamming H(3,3) 27 81 4 5 K3�K3�K3

Table 9: Direct comparison of lower bounds for some graphs
LB from lit.

Num L1 L2 L3 L4 N1 N2 N3 βM(G)
1. 4 5 0 6 5 6 8 9
2. 4 5 0 18 5 9 8 32
3. 3 4 0 4 4 5 5 9
4. 4 5 0 4 5 6 8 18
5. 3 4 0 2 4 2 3 4
6. 4 5 0 4 5 6 6 12
7. 2 3 0 2 3 3 3 4
8. 3 4 0 4 4 5 5 6
9. 2 3 0 4 3 4 4 6
10. 2 2 5 5 3 4 3 5
11. 4 5 0 6 5 6 8 9
12. 3 4 0 3 4 3 4 6

It should be noted that actually the best lower bound with respect to experimental results is the edge
metric dimension. However, this fact has very limited practical impact, since both mixed and edge metric
dimension problems are NP-hard. So, computationally, we can obtain edge metric dimension (as lower
bound) only in cases when we can obtain exact value of mixed metric dimension. Only gain can be obtained
in cases, when exact value, or tight lower bound, of edge metric dimension can be found in literature, but
exact value of mixed metric dimension is unknown.
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[14] M. Milivojević Danas, http://arxiv.org/abs/2001.09333, Mixed metric dimension of flower snarks and wheels, Arxiv preprint

2001.09333.
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