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Abstract. A topological gyrogroup is a gyrogroup endowed with a topology such that the binary operation
is jointly continuous and the inverse mapping is also continuous. In this paper, it is proved that if G is
a sequential topological gyrogroup with an ωω-base, then G has the strong Pytkeev property. Moreover,
some equivalent conditions about ωω-base and strong Pytkeev property are given in Baire topological
gyrogroups. Finally, it is shown that if G is a strongly countably complete strongly topological gyrogroup,
then G contains a closed, countably compact, admissible subgyrogroup P such that the quotient space G/P
is metrizable and the canonical homomorphism π : G→ G/P is closed.

1. Introduction

As we all know, first-countability as an important and basic topological property has been researched
for many years. During the times, various topological properties generalizing first-countability have been
posed. For example, following [30], Pytkeev claimed that every sequential space satisfies a property which
is stronger than countable tightness. Then, in [29], Malykhin and Tironi named the property the Pytkeev
property. Furthermore, Tsaban and Zdomskyy [36] strengthened this property and posed a concept of the
strong Pytkeev property.

The strong Pytkeev property is usually studied combining the other spaces, such as topological groups,
topological vector spaces, etc., see [11, 20, 21, 28, 32]. In this paper, we mainly research the strong Pytkeev
property in topological gyrogroups. The concept of a gyrogroup was introduced by Ungar in [37, 38] when
he researched the c-ball of relativistically admissible velocities with the Einstein velocity addition. It is
well-known that a gyrogroup has a weaker algebraic structure than a group. Then, Atiponrat [2] gave the
concept of topological gyrogroups, that is, a topological gyrogroup is a gyrogroup endowed with a topology
such that the binary operation is jointly continuous and the inverse mapping is also continuous. He proved
that T0 and T3 are equivalent in topological gyrogroups. Moreover, he gave some examples of topological
gyrogroups, such as Möbius gyrogroups, Einstein gyrogroups, and Proper Velocity gyrogroups, that were
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studied in [14–16, 38]. After then, Cai, Lin and He in [12] proved that every topological gyrogroup
is a rectifiable space and deduced that first-countability and metrizability are equivalent in topological
gyrogroups. In fact, this kind of space has been studied for many years, see [3, 4, 7–9, 23–26, 31, 33–
35, 39–41]. In 2019, Bao and Lin [5] defined the concept of strongly topological gyrogroups and claimed
that Möbius gyrogroups, Einstein gyrogroups, and Proper Velocity gyrogroups are all strongly topological
gyrogroups. Furthermore, they gave an example to show that there exists a strongly topological gyrogroup
which has an infinite L-subgyrogroup.

This paper is organized as follows. In Section 3, we mainly research the strong Pytkeev property in
topological gyrogroups. We show that if G is a topological gyrogroup with an ωω-base {Uα : α ∈ NN}
and the set

⋃
k∈NDk(α) is a neighborhood of the identity element 0 for all α ∈ NN, then G has the strong

Pytkeev property. Moreover, we claim that if G is a sequential topological gyrogroup with an ωω-base
{Uα : α ∈NN}, then the set

⋃
k∈NDk(α) is a neighborhood of the identity element 0 for all α ∈NN. The two

results above can deduce that if G is a sequential topological gyrogroup with an ωω-base {Uα : α ∈ NN},
then G has the strong Pytkeev property. In Section 4, we study the strongly countably complete property in
strongly topological gyrogroups. We claim that if G is a strongly countably complete strongly topological
gyrogroup, then G contains a closed, countably compact, admissible subgyrogroup P such that the quotient
space G/P is metrizable and the canonical homomorphism π : G→ G/P is closed.

2. Preliminaries

Throughout this paper, all topological spaces are assumed to be Hausdorff, unless otherwise is explicitly
stated. Let N be the set of all positive integers and ω the first infinite ordinal. The readers may consult
[1, 13, 27, 38] for notation and terminology not explicitly given here. Next we recall some definitions and
facts.

Definition 2.1. ([38]) Let (G,⊕) be a groupoid. The system (G,⊕) is called a gyrogroup, if its binary operation
satisfies the following conditions:

(G1) There exists a unique identity element 0 ∈ G such that 0 ⊕ a = a = a ⊕ 0 for all a ∈ G;

(G2) For each x ∈ G, there exists a unique inverse element 	x ∈ G such that 	x ⊕ x = 0 = x ⊕ (	x);

(G3) For all x, y ∈ G, there exists gyr[x, y] ∈ Aut(G,⊕) with the property that x⊕(y⊕z) = (x⊕y)⊕gyr[x, y](z)
for all z ∈ G, and

(G4) For any x, y ∈ G, gyr[x ⊕ y, y] = gyr[x, y].

Notice that a group is a gyrogroup (G,⊕) such that gyr[x, y] is the identity function for all x, y ∈ G. The
definition of a subgyrogroup is given as follows.

Definition 2.2. ([33]) Let (G,⊕) be a gyrogroup. A nonempty subset H of G is called a subgyrogroup, denoted
by H ≤ G, if H forms a gyrogroup under the operation inherited from G and the restriction of 1yr[a, b] to H
is an automorphism of H for all a, b ∈ H.

Furthermore, a subgyrogroup H of G is said to be an L-subgyrogroup, denoted by H ≤L G, if 1yr[a, h](H) =
H for all a ∈ G and h ∈ H.

Lemma 2.3. ([38]) Let (G,⊕) be a gyrogroup. Then for any x, y, z ∈ G, we obtain the following:

1. (	x) ⊕ (x ⊕ y) = y. (left cancellation law)

2. (x ⊕ (	y)) ⊕ 1yr[x,	y](y) = x. (right cancellation law)

3. (x ⊕ 1yr[x, y](	y)) ⊕ y = x.

4. 1yr[x, y](z) = 	(x ⊕ y) ⊕ (x ⊕ (y ⊕ z)).
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Definition 2.4. ([2]) A triple (G, τ,⊕) is called a topological gyrogroup if the following statements hold:
(1) (G, τ) is a topological space.
(2) (G,⊕) is a gyrogroup.
(3) The binary operation ⊕ : G × G→ G is jointly continuous while G × G is endowed with the product

topology, and the operation of taking the inverse 	(·) : G→ G, i.e. x→ 	x, is also continuous.

Obviously, every topological group is a topological gyrogroup. However, every topological gyrogroup
whose gyrations are not identically equal to the identity is not a topological group.

Example 2.5. ([2]) The Einstein gyrogroup with the standard topology is a topological gyrogroup but not
a topological group.

Let R3
c = {v ∈ R3 : ||v|| < c}, where c is the vacuum speed of light, and ||v|| is the Euclidean norm of a

vector v ∈ R3. The Einstein velocity addition ⊕E : R3
c ×R

3
c → R

3
c is given as follows:

u ⊕E v =
1

1 + u·v
c2

(u +
1
γu

v +
1
c2

γu

1 + γu
(u · v)u),

for any u,v ∈ R3
c , u · v is the usual dot product of vectors in R3, and γu is the gamma factor which is given

by

γu =
1√

1 − u·u
c2

.

It was proved in [38] that (R3
c ,⊕E) is a gyrogroup but not a group. Moreover, with the standard topology

inherited from R3, it is clear that ⊕E is continuous. Finally, −u is the inverse of u ∈ R3 and the operation of
taking the inverse is also continuous. Therefore, the Einstein gyrogroup (R3

c ,⊕E) with the standard topology
inherited from R3 is a topological gyrogroup but not a topological group.

Definition 2.6. ([10, 18, 22]) A point x of a topological space X is said to have a neighborhood ωω-base or a
localG-base if there exists a base of neighborhoods at x of the form {Uα(x) : α ∈NN} such that Uβ(x) ⊂ Uα(x)
for all elements α ≤ β inNN, whereNN consisting of all functions fromN toN is endowed with the natural
partial order, ie., f ≤ 1 if and only if f (n) ≤ 1(n) for all n ∈ N. The space X is said to have an ωω-base or a
G-base if it has a neighborhood ωω-base or a local G-base at every point x ∈ X.

Then we define the concept of an ωω-base or a G-base in topological gyrogroups.

Definition 2.7. Let G be a topological gyrogroup. A family U = {Uα : α ∈ NN} of neighborhoods of the
identity element 0 is called anωω-base or aG-base ifU is a base of neighborhoods at 0 and Uβ ⊂ Uα whenever
α ≤ β for all α, β ∈NN.

A topological space Y has the strong Pytkeev property [36] if for each y ∈ Y, there exists a countable family
D of subsets of Y, such that for each neighborhood U of y and each A ⊂ Y with y ∈ A \ A, there is D ∈ D
such that D ⊂ U and D ∩ A is infinite.

Then we define this property for topological gyrogroups.

Definition 2.8. A topological gyrogroup G has the strong Pytkeev property if there exists a sequence D =

{Dn}n∈N of subsets of G such that for each neighborhood U of the identity 0 and each A ⊂ G with 0 ∈ A \ A,
there is n ∈N such that Dn ⊂ U and Dn ∩ A is infinite.

Definition 2.9. ([19]) A family N of subsets of a topological space X is called a cn-network at a point x ∈ X
if for each neighborhood Ox of x the set

⋃
{N ∈ N : x ∈ N ⊂ Ox} is a neighborhood of x; N is a cn-network

in X ifN is a cn-network at each point x ∈ X.
A familyN of subsets of a topological space X is called a ck-network at a point x ∈ X if for each compact

subset K ⊂ Ox there exists a finite subfamilyF ⊂ N satisfying x ∈
⋂
F and K ⊂

⋃
F ⊂ Ox;N is a ck-network

in X ifN is a ck-network at each point x ∈ X.
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3. Topological Gyrogroups with Strong Pytkeev Property

In this section, we mainly research topological gyrogroups with ωω-base and strong Pytkeev property.
We show that if G is a topological gyrogroup with an ωω-base {Uα : α ∈ NN} and the set

⋃
k∈NDk(α) is a

neighborhood of the identity element 0 for all α ∈ NN, then G has the strong Pytkeev property. Moreover,
we claim that if G is a sequential topological gyrogroup with an ωω-base {Uα : α ∈ NN}, then the set⋃

k∈NDk(α) is a neighborhood of the identity element 0 for all α ∈ NN. Therefore, we conclude that if
G is a sequential topological gyrogroup with an ωω-base {Uα : α ∈ NN}, then G has the strong Pytkeev
property. Finally, we give some equivalent conditions about ωω-base and strong Pytkeev property in Baire
topological gyrogroups.

For every α = (αi)i∈N ∈NN and each k ∈N, set

Ik(α) = {β ∈NN : βi = αi f or i = 1, ..., k}.

Indeed, Ik(α) is defined by the finite subset {α1, ..., αk} ofN. Therefore, the family {Ik(α) : k ∈ N, α ∈ NN} is
countable. Moreover, suppose that a topological gyrogroup G has an ωω-base {Uα : α ∈NN}. Set

Dk(α) =
⋂
β∈Ik(α)

Uβ, where α = (αi)i∈N ∈N
N and k ∈N.

It is clear that Dk(α) ⊂ Uα and Dk(α) ⊂ Dm(α) for every α ∈NN, k ∈N and every natural number k ≤ m. Set
D0(α) = {0}, for every α = (αi)i∈N ∈NN. Then, putD = {Dk(α) : k ∈N, α ∈NN}.

For every α = (αi)i∈N ∈NN and each k ∈N, set Kα = Πi∈N[1, αi] ⊂NN,

L0(α) =NN and Lk(α) =
⋃
β∈Ik(α)

Kβ = Πk
i=1[1, αi] ×NN\{1,...,k}.

Lemma 3.1. ([20]) Let α = (αi)i∈N ∈ NN and β jk = (β jk
i )i∈N ∈ Lk−1(α) \ Lk(α) for every k ∈ N and each

1 ≤ j ≤ sk < ∞. Then there is γ ∈NN such that α ≤ γ and β jk
≤ γ for every k ∈N and each 1 ≤ j ≤ sk.

Theorem 3.2. Suppose that G is a topological gyrogroup with an ωω-base {Uα : α ∈NN}. Suppose further that the
set
⋃

k∈NDk(α) is a neighborhood of the identity element 0 for all α ∈NN. Then G has the strong Pytkeev property.

Proof. Let A ⊂ G be such that 0 ∈ A\A. So, for every α ∈NN, the set A∩Uα is infinite. Since W =
⋃

k∈NDk(α)
is a neighborhood of the identity element 0, the intersection A∩W =

⋃
k∈N(A∩ [Dk(α) \Dk−1(α)]) is infinite.

For an arbitrary neighborhood U of 0 in G, there exists α ∈ NN such that Uα ⊂ U. Then Dk(α) ⊂ Uα ⊂ U.
Put Ak = A ∩ [Dk(α) \Dk−1(α)] for all k ∈N. It suffices to show that Ak is infinite for some k ∈N.

Claim. There exists k ∈N such that Ak is infinite.
Suppose on the contrary, for every k ∈ N, A is finite. Then we can find an infinite subset I of N such

that Ak = {ak
1, ..., a

k
sk
} if for all k ∈ I for some natural number sk and Ak = ∅ if k < I.

For all k ∈ I, take β jk = (β jk
i )i∈N ∈ Ik−1(α) such that ak

j < Uβ jk for every 1 ≤ j ≤ sk. By Lemma 3.1, there is

a γ ∈ NN such that α ≤ γ and β jk
≤ γ for every k ∈ I and each 1 ≤ j ≤ sk. Therefore, for all k ∈ I and every

1 ≤ j ≤ sk, ak
j < Uγ. Since W is a neighborhood of 0, we can find δ ∈ NN, γ ≤ δ, such that Uδ ⊂ W. Then

A ∩Uδ is empty and thus 0 < A \ A, which is a contradiction.

Naturally, we have the following question.

Question 3.3. Suppose that a topological gyrogroup G with an ωω-baseU = {Uα : α ∈NN} has the strong Pytkeev
property. Is the set

⋃
k∈NDk(α) a neighborhood of the identity element 0 of G for all α ∈ ωω?

Then we show that if G is a sequential topological gyrogroup with an ωω-baseU = {Uα : α ∈NN}, then
G has the strong Pytkeev property.
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Lemma 3.4. Let G be a topological gyrogroup with an ωω-baseU = {Uα : α ∈NN}. If G is sequential, then the set⋃
k∈NDk(α) is an open neighborhood of the identity element 0 for any α ∈NN.

Proof. Let A =
⋃

k∈NDk(α). Since G is sequential, it suffices to prove that A is sequentially open. Suppose
that x ∈ A and {xn}n∈N is a sequence converging to x in G.

Claim. There exists N ∈N such that xn ∈ A for every n > N.
Suppose on the contrary, let m be the minimal index such that x ∈ Dm(α). For every β ∈ Im(α), x ∈ Uβ.

Since there exists n1 such that xn1 < A, xn1 < Dm+1(α). Hence, xn1 < Uβ1 for some β1
∈ Im(α). There exists

n2 > n1 such that xn2 < A. Then, xn2 < Dm+2(α). For some β2
∈ Im+2(α), xn2 < Uβ2 . By induction, we obtain a

subsequence {xnk }k of {xn}n and a sequence {βk
}k inNN such that

xnk < Uβk and βk
∈ Im+k(α) f or every k ∈N.

Let γ = (γi)i∈N, where γi = αi if 1 ≤ i ≤ m and γi = max{β1
i , β

2
i , ..., β

i−m
i } if i > m. Then x ∈ Dm(α) ⊂ Uγ.

Moreover, since Uγ ⊂ Uβk , we have xnk < Uγ for every k ∈N. Then Uγ is open and x ∈ Uγ. Therefore, xn 9 x
which is a contradiction.

We conclude that A is sequentially open and hence A is open.

Theorem 3.5. Let G be a topological gyrogroup with an ωω-baseU = {Uα : α ∈ NN}. If G is a sequential space, G
has the strong Pytkeev property.

Proof. Since G is a sequential space, it follows from Lemma 3.4 that the set
⋃

k∈NDk(α) is an open neighbor-
hood of the identity element 0 for any α ∈NN. By Theorem 3.2, G has the strong Pytkeev property.

Let Ω be a set and I be a partially ordered set with an order ≤. We say that a family {Ai}i∈I of subsets of
Ω is I-decreasing if A j ⊂ Ai for every i ≤ j in I. Let M ⊂ NN and letU = {Uα : α ∈ M} be an M-decreasing
family of subsets of a set Ω. Let

DMk(α) =
⋂

β∈Ik(α)∩M

Uβ.

Define a countable family DU = {DMk(α) : α ∈ M, k ∈ N}, where U satisfies the condition (D) if Uα =⋃
k∈NDMk(α) for every α ∈M, see [18].

Lemma 3.6. If G is a topological gyrogroup and has the strong Pytkeev property with a sequenceD = {Dn}n∈N, for
every neighborhood U of the identity element 0, there is α = (αi)i∈N ∈NN such that the set Nα =

⋃
i∈N(Dαi ∪ {0}) is

a neighborhood of 0 and Nα ⊂ U.

Proof. Set J = {n ∈ N : Dn ⊂ U}. Then J = {αi}i∈N, where α1 < α2 < · · ·. Set α = (αi)i∈N. Therefore, α ∈ NN

and Nα ⊂ U.
Suppose on the contrary that Nα is not a neighborhood of the identity element 0. Then 0 ∈ U \Nα. Since

0 < U \ Nα, it follows that 0 ∈ (U \Nα) \ (U \ Nα). By the definition of the Pytkeev property, there exists
m ∈ N such that Dm ⊂ U and Dm ∩ (U \ Nα) is infinite. Therefore, it is a contradiction with the choice of J
and the definition of Nα. Hence, Nα is a neighborhood of 0.

Theorem 3.7. If G is a topological gyrogroup and has the strong Pytkeev property with a sequence D = {Dn}n∈N,
then G has a base {Uα : α ∈M} of neighborhood at 0, where

(1) M is a subset of the partially ordered setNN;
(2) If α ∈M and β ∈NN are such that β ≤ α, then β ∈M, and
(3) Uβ ⊂ Uα, where α ≤ β for α, β ∈M.

Proof. Since every topological gyrogroup is homogeneous, without loss of generality, we suppose that
0 ∈ Dn for every n ∈ N. For each k, i ∈ N, set Di

k =
⋂k

l=1 Di−1+l. So the sequence {Di
k}k∈N is decreasing for

every i ∈ N. Furthermore, for each α = (αi)i∈N ∈ NN, put Uα =
⋃

i∈NDi
αi

. It is clear that Uα ⊂ Uβ for each
α, β ∈NN with β ≤ α.
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Fix an increasing sequence 0 = n0 < n1 < n2 < · · · inN such that
⋃

k∈NDnk is a neighborhood at 0.
Claim. There is α = (αi)i∈N ∈NN such that Uα =

⋃
k∈NDnk .

Indeed, if i = nk for some k ∈ N, we set αi = 1. So Di
αi

= Dnk . However, if nk−1 < i < nk for some k ∈ N,
we set αi = nk − i + 1. Then Di

αi
=
⋂αi

l=1 Di−1+l ⊂ Dnk . Thus, Uα =
⋃

k∈NDnk .
Set M = {α ∈ NN : Uα is a nei1hborhood o f 0}. By Lemma 3.6, the set {Uα : α ∈ M} forms a base

at 0 satisfying (iii). Indeed, let α ∈ M and β ∈ NN be such that β ≤ α, then Uα ⊂ Uβ. Therefore, Uβ is a
neighborhood of the identity element 0. Hence, β ∈M.

Corollary 3.8. If a topological gyrogroup G has the strong Pytkeev property, then χ(G) ≤ c.

Finally in this section, we give some equivalent conditions about Baire topological gyrogroups.

Lemma 3.9. ([18]) Let x be a point of a topological space X. Then X has a countable cn-network at x if and only if X
has a small baseU(x) = {Uα : α ∈Mx} at x satisfying the condition (D). In that case the familyDU(x) is a countable
cn-network at x.

Theorem 3.10. Let G be a Baire topological gyrogroup. Then the following are equivalent:
(i) G is metrizable.
(ii) G has the strong Pytkeev property.
(iii) G has countable ck-character.
(iv) G has countable cn-character.
(v) G has an ωω-base satisfying the condition (D).

Proof. The implications (i)⇒ (ii) and (iii)⇒ (iv) are trivial. Moreover, (ii)⇒ (iii) directly follows from the
fact that every countable cp-network at a point x of a topological space X is a ck-network at x [11]. Then (v)
⇒ (iv) follows from Lemma 3.9. Then we show that (i)⇒ (v) and (iv)⇒ (i).

(i) ⇒ (v) If {Vn}n∈N is a decreasing base of neighborhoods at the identity element 0 of G, the family
{Uα : α ∈NN}, where Uα = Vα1 for α = (αi) ∈NN, is an ωω-base and satisfies the condition (D).

(iv)⇒ (i) Suppose that G has a countable cn-character and we claim that G is first-countable. It follows
from Lemma 3.9 that there is a small local base U = {Uα : α ∈ M} at 0 which satisfies the condition (D).
For an arbitrary open neighborhood W of 0, choose a symmetric open neighborhood V of 0 such that
V⊕V ⊂ V⊕V ⊂W. Then, we can find α ∈M with Uα =

⋃
k DMk(α) ⊂ V and Int(Uα) is open in G. Moreover,

it follows from the Baire property of G that there is k ∈ N such that Int(Uα) ∩ DMk(α) has a non-empty
interior in Uα. Therefore, Int(Uα) ∩ DMk(α) has a non-empty interior in G and hence DMk(α) ⊕ (	DMk(α))
is a countable neighborhood of the identity element 0 which is contained in W. Furthermore, since G is
homogeneous, G is first-countable. Then, every first-countable topological gyrogroup is metrizable, so G is
metrizable.

4. Strongly Topological Gyrogroups with Strong Countable Completeness

In this section, we claim that if G is a strongly countably complete strongly topological gyrogroup, then
G contains a closed, countably compact, admissible subgyrogroup P such that the quotient space G/P is
metrizable and the canonical homomorphism π : G→ G/P is closed.

A space X is called strongly countably complete [17] if there exists a sequence {γn : n ∈ N} of open
covering of X such that every decreasing sequence {Fn : n ∈N} of nonempty closed sets in X has nonempty
intersection provided each Fn is contained in some element of γn.

Definition 4.1. ([5]) Let G be a topological gyrogroup. We say that G is a strongly topological gyrogroup if
there exists a neighborhood base U of 0 such that, for every U ∈ U , gyr[x, y](U) = U for any x, y ∈ G. For
convenience, we say that G is a strongly topological gyrogroup with neighborhood base U of 0.
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Clearly, we may assume that U is symmetric for each U ∈ U in Definition 4.1. Moreover, in the classical
Möbius, Einstein or Proper Velocity gyrogroups, we know that gyrations are indeed special rotations.
However, for an arbitrary gyrogroup, gyrations belong to the automorphism group of G and need not be
necessarily rotations.

In [5], the authors proved that there is a strongly topological gyrogroup which is not a topological group,
see Example 4.2.

Example 4.2. ([5]) Let D be the complex open unit disk {z ∈ C : |z| < 1}. We consider D with the standard
topology. In [2, Example 2], define a Möbius addition ⊕M : D ×D→ D to be a function such that

a ⊕M b =
a + b

1 + āb
for all a, b ∈ D.

Then (D,⊕M) is a gyrogroup, and it follows from [2, Example 2] that

1yr[a, b](c) =
1 + ab̄
1 + āb

c for any a, b, c ∈ D.

For any n ∈N, let Un = {x ∈ D : |x| ≤ 1
n }. Then, U = {Un : n ∈N} is a neighborhood base of 0. Moreover, we

observe that | 1+ab̄
1+āb | = 1. Therefore, we obtain that 1yr[x, y](U) ⊂ U, for any x, y ∈ D and each U ∈ U , then it

follows that 1yr[x, y](U) = U by [33, Proposition 2.6]. Hence, (D,⊕M) is a strongly topological gyrogroup.
However, (D,⊕M) is not a group [2, Example 2].

Remark 4.3. Even though Möbius gyrogroups, Einstein gyrogroups, and Proper Velocity gyrogroups are
all strongly topological gyrogroups, all of them do not possess any non-trivial L-subgyrogroups. However,
there is a class of strongly topological gyrogroups which has a non-trivial L-subgyrogroup, see Example 4.4.

Example 4.4. ([5]) There exists a strongly topological gyrogroup which has an infinite L-subgyrogroup.

Indeed, let X be an arbitrary feathered non-metrizable topological group, and let Y be an any strongly
topological gyrogroup with a non-trivial L-subgyrogroup (such as the gyrogroup K16 [40, p. 41]). Put
G = X × Y with the product topology and the operation with coordinate. Then G is an infinite strongly
topological gyrogroup since X is infinite. Let H be a non-trivial L-subgyrogroup of Y, and take an arbitrary
infinite subgroup N of X. Then N ×H is an infinite L-subgyrogroup of G.

Then, we recall the following concept of the coset space of a topological gyrogroup.
Let (G, τ,⊕) be a topological gyrogroup and H an L-subgyrogroup of G. It follows from [33, Theorem

20] that G/H = {a ⊕H : a ∈ G} is a partition of G. We denote by π the mapping a 7→ a ⊕H from G onto G/H.
Clearly, for each a ∈ G, we have π−1

{π(a)} = a ⊕ H. Denote by τ(G) the topology of G. In the set G/H, we
define a family τ(G/H) of subsets as follows:

τ(G/H) = {O ⊂ G/H : π−1(O) ∈ τ(G)}.

The following concept of an admissible subgyrogroup of a strongly topological gyrogroup was first
introduced in [6].

A subgyrogroup H of a topological gyrogroup G is called admissible if there exists a sequence {Un : n ∈ ω}
of open symmetric neighborhoods of the identity 0 in G such that Un+1 ⊕ (Un+1 ⊕Un+1) ⊂ Un for each n ∈ ω
and H =

⋂
n∈ω Un. If G is a strongly topological gyrogroup with a symmetric neighborhood base U at 0 and

each Un ∈ U , we say that the admissible topological subgyrogroup is generated from U .

Lemma 4.5. ([7]) Suppose that (G, τ,⊕) is a strongly topological gyrogroup with a symmetric neighborhood base U
at 0. Then each admissible topological subgyrogroup H generated from U is a closed L-subgyrogroup of G.
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Lemma 4.6. ([5]) Let G be a strongly topological gyrogroup with the symmetric neighborhood base U at 0, and let
{Un : n ∈ ω} and {V(m/2n) : n,m ∈ ω} be two sequences of open neighborhoods satisfying the following conditions
(1)-(5):

(1) Un ∈ U for each n ∈ ω.
(2) Un+1 ⊕Un+1 ⊂ Un, for each n ∈ ω.
(3) V(1) = U0;
(4) For any n ≥ 1, put

V(1/2n) = Un,V(2m/2n) = V(m/2n−1)

for m = 1, ..., 2n−1, and

V((2m + 1)/2n) = Un ⊕ V(m/2n−1) = V(1/2n) ⊕ V(m/2n−1)

for each m = 1, ..., 2n−1
− 1;

(5) V(m/2n) = G when m > 2n;
Then there exists a prenorm N on G satisfies the following conditions:

(a) for any fixed x, y ∈ G, we have N(gyr[x, y](z)) = N(z) for any z ∈ G;
(b) for any n ∈ ω,

{x ∈ G : N(x) < 1/2n
} ⊂ Un ⊂ {x ∈ G : N(x) ≤ 2/2n

}.

Theorem 4.7. Let G be a strongly countably complete strongly topological gyrogroup with a symmetric neighborhood
base U . Then G contains a closed, countably compact, admissible subgyrogroup P such that the quotient space G/P
is metrizable and the canonical homomorphism π : G→ G/P is closed.

Proof. Let A be a Gδ-set in G containing the identity element 0. Take a family λ = {Wn : n ∈ N} of open
sets in G such that A =

⋂
λ. Suppose that {γn : n ∈ N} is a family of open coverings of G witnessing

the strongly countable completeness of G. For each n ∈ N, choose an element Un ∈ γn containing the
identity element 0 of G. Define a sequence {Vn : n ∈ N} ⊂ U by induction such that V0 ⊂ U0 ∩W0 and
Vn+1 ⊕ (Vn+1 ⊕ Vn+1) ⊂ Un+1 ∩ Vn ∩Wn+1 for each n ∈ N. Put P =

⋂
n∈N Vn. By Lemma 4.5, P is a closed

admissible L-subgyrogroup of G and P ⊂
⋂

n∈NWn = A.
Claim 1. If xn ∈ Vn for each n ∈ N and the set X = {xn : n ∈ N} is infinite, then X has an accumulation

point in P.
Let X = {xn : n ∈N}. Since Vn+1 ⊂ Vn+1⊕Vn+1 ⊂ Vn, the definition of P and the inclusion xn ∈ Vn for each

n ∈ N together imply that all accumulation points of X lie in P. Hence, if X has no accumulation points in
P, X will be closed and discrete in G. Set Fn = {xk : k ≥ n} for each n ∈ N. The sets Fn are closed in G and
Fn ⊂ Vn ⊂ Un ∈ γn for each n ∈ N. However,

⋂
n∈N Fn = ∅, which is a contradiction with the choice of the

family {γn : n ∈N}.
Claim 2. P is countably compact.
If X = {xn : n ∈N} is an infinite subset of P, it is clear that xn ∈ P ⊂ Vn ⊂ Un for each n ∈N. Therefore X

has an accumulation point in P and P is countably compact.
Claim 3. The family {Vn : n ∈N} forms a base of neighborhoods of P in G.
For an arbitrary open neighborhood V of P in G. If Vn \V , ∅ for each n ∈N, fix points xn ∈ Vn \V. Then

X = {xn : n ∈ N} has no accumulation points in G, which contradicts with the Claim 1 above. Therefore,
{Vn : n ∈N} is an open neighborhood base of P in G.

Claim 4. The left coset space G/P is metrizable.
Apply Lemma 4.6 to choose a continuous prenorm N on G which satisfies

N(1yr[x, y](z)) = N(z)

for any x, y, z ∈ G and
{x ∈ G : N(x) < 1/2n

} ⊂ Vn ⊂ {x ∈ G : N(x) ≤ 2/2n
},

for each integer n ≥ 0. It is clear that N(x) = 0 if and only if x ∈ P.
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We claim that N(x ⊕ p) = N(x) for every x ∈ G and p ∈ P. Indeed, for every x ∈ G and p ∈ P, N(x ⊕ p) ≤
N(x) + N(p) = N(x) + 0 = N(x). Moreover, by the definition of N, we observe that N(1yr[x, y](z)) = N(z) for
every x, y, z ∈ G. Since H is a L-subgyrogroup, it follows from Lemma 2.3 that

N(x) = N((x ⊕ p) ⊕ 1yr[x, p](	p))
≤ N(x ⊕ p) + N(1yr[x, p](	p))
= N(x ⊕ p) + N(	p)
= N(x ⊕ p).

Therefore, N(x ⊕ p) = N(x) for every x ∈ G and p ∈ P.
Now define a function d from G × G to R by d(x, y) = |N(x) − N(y)| for all x, y ∈ G. Obviously, d is

continuous. We show that d is a pseudometric.
(1) For any x, y ∈ G, if x = y, then d(x, y) = |N(x) −N(x)| = 0.
(2) For any x, y ∈ G, d(y, x) = |N(y) −N(x)| = |N(x) −N(y)| = d(x, y).
(3) For any x, y, z ∈ G, we have

d(x, y) = |N(x) −N(y)|
= |N(x) −N(z) + N(z) −N(y)|
≤ |N(x) −N(z)| + |N(z) −N(y)|
= d(x, z) + d(z, y).

If x′ ∈ x ⊕ P and y′ ∈ y ⊕ P, there exist p1, p2 ∈ P such that x′ = x ⊕ p1 and y′ = y ⊕ p2, then

d(x′, y′) = |N(x ⊕ p1) −N(y ⊕ p2)| = |N(x) −N(y)| = d(x, y).

This enables us to define a function % on G/P × G/P by

%(πp(x), πp(y)) = d(	x ⊕ y, 0) + d(	y ⊕ x, 0)

for any x, y ∈ G.
It is obvious that % is continuous, and we verify that % is a metric on Y = G/P.
(1) Obviously, for any x, y ∈ G, then

%(πP(x), πP(y)) = 0 ⇔ d(	x ⊕ y, 0) = d(	y ⊕ x, 0) = 0
⇔ N(	x ⊕ y) = N(	y ⊕ x) = 0
⇔ 	x ⊕ y ∈ P and 	 y ⊕ x ∈ P
⇔ y ∈ x + P and x ∈ y + P
⇔ πP(x) = πP(y).

(2) For every x, y ∈ G, it is obvious that %(πP(y), πP(x)) = %(πP(x), πP(y)).
(3) For every x, y, z ∈ G, it follows from [39, Theorem 2.11] that

%(πP(x), πP(y)) = N(	x ⊕ y) + N(	y ⊕ x)
= N((	x ⊕ z) ⊕ 1yr[	x, z](	z ⊕ y))

+N((	y ⊕ z) ⊕ 1yr[	y, z](	z ⊕ x))
≤ N(	x ⊕ z) + N(1yr[	x, z](	z ⊕ y))

+N(	y ⊕ z) + N(1yr[	y, z](	z ⊕ x))
= N(	x ⊕ z) + N(	z ⊕ y) + N(	y ⊕ z) + N(	z ⊕ x)
= d(	x ⊕ z, 0) + d(	z ⊕ x, 0) + d(	z ⊕ y, 0) + d(	y ⊕ z, 0)
= %(πP(x), πP(z)) + %(πP(z), πP(y)).
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Let us verify that % generates the quotient topology of the space Y. Given any points x ∈ G, y ∈ Y and
any ε > 0, we define open balls,

B(x, ε) = {x′ ∈ G : d(x′, x) < ε}

and
B∗(y, ε) = {y′ ∈ G/P : %(y′, y) < ε}

in X and Y, respectively. Obviously, if x ∈ G and y = πP(x), then we have B(x, ε) = π−1
P (B∗(y, ε)). Therefore,

the topology generated by % on Y is coarser than the quotient topology. Suppose that the preimage
O = π−1

P (W) is open in G, where W is a non-empty subset of Y. For every y ∈ W, there exists x ∈ G such
that π(x) = y, then we have π−1

P (y) = x ⊕ P ⊂ O. Since {Vn : n ∈ ω} is a base for G at P, there exists
n ∈ ω such that x ⊕ Vn ⊂ O. Then there exists δ > 0 such that B(x, δ) ⊂ x ⊕ Vn. Therefore, we have
π−1

P (B∗(y, δ)) = B(x, δ) ⊂ x⊕Vn ⊂ O. It follows that B∗(y, δ) ⊂W. So the set W is the union of a family of open
balls in (Y, %). Hence, W is open in (Y, %), which proves that the metric and quotient topologies on Y = G/P
coincide. Therefore, the left coset space G/P is metrizable.

Claim 5. The canonical mapping π : G→ G/P is closed.
Suppose that F is a closed subset of G and suppose further that y ∈ Y \ π(F). Then, there exists a

point x ∈ G such that π(x) = y. Therefore, the coset x ⊕ P = π−1(y) is disjoint from F, thus O = G \ F is a
neighborhood of x⊕ P in G. Since {x⊕Vn : n ∈N} is a base of open neighborhood of x⊕ P in G, we can find
n ∈N such that x⊕ P ⊂ x⊕Vn ⊂ O. Therefore, π(x⊕Vn+1) is an open neighborhood of y disjoint from π(F),
so π(F) is closed in Y. Hence, the canonical mapping π is closed.

Corollary 4.8. Every strongly countably complete (locally) pseudocompact strongly topological gyrogroup G contains
a closed countably compact L-subgyrogroup H such that the quotient space G/H is metrizable and (locally) compact,
and the canonical mapping π is closed.

Proof. Let H be a closed L-subgyrogroup of G as the L-subgyrogroup P in Theorem 4.7. Then the metrizable
space G/H is (locally) pseudocompact as an open continuous image of (locally) pseudocompact space G by
[5, Theorem 3.7]. Moreover, every metrizable (locally) pseudocompact space is (locally) compact.

Lemma 4.9. Let G be a topological gyrogroup, and let H be a closed countably compact L-subgyrogroup of G. If D is
an infinite closed discrete subsets of G, π(D) is infinite in the quotient space G/H.

Proof. LetD = {{d} : d ∈ D}. ThenD is a family of locally finite subsets of G. Since the L-subgyrogroup x⊕H
is closed in G, we have thatD|x⊕H is also locally finite in x ⊕H. It follows from the countable compactness
of H thatD|x⊕H is finite. Hence, D ∩ (x ⊕H) is finite for all x ∈ G. Therefore, π(D) is infinite.

Theorem 4.10. Every strongly countably complete (locally) pseudocompact strongly topological gyrogroup G is
(locally) countably compact.

Proof. Assume that G is pseudocompact. It follows from Corollary 4.8 that G contains a closed countably
compact L-subgyrogroup H such that the quotient space G/H is compact, and the canonical mapping π is
closed. Suppose on the contrary that G is not countably compact, then there exists an infinite closed discrete
subset D of G. By Lemma 4.9, π(D) is infinite. Moreover, since π is a closed mapping, π(D) is closed and
discrete in G/H. However, G/H is compact, which is a contradiction. Then G is countably compact.

If G is locally pseudocompact, By Corollary 4.8, there exists a compact neighborhood V of π(0) in the
quotient space G/H. Since π is a closed mapping, π−1(V) is a countably compact neighborhood of 0 in G.
Therefore, G is locally countably compact.

Until now, we do not know whether the inverse of Theorem 4.7 also holds. Therefore, we pose the
following question.

Question 4.11. Let G be a strongly topological gyrogroup with a symmetric neighborhood base U . If G contains
a closed, countably compact, admissible subgyrogroup P such that the quotient space G/P is metrizable and the
canonical homomorphism π : G→ G/P is closed, is G strongly countably complete?
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