Filomat 35:13 (2021), 4577-4586
https://doi.org/10.2298/FIL2113577]

Published by Faculty of Sciences and Mathematics,
University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

2y

ey
b
gy gy

&
Ipapor®
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Abstract. In this note we study the generalized Hilbert series operator H,, induced by a positive Bore
measure u on [0, 1), between weighted sequence spaces. We characterize the measures u for which H,
is bounded between different sequence spaces. Finally, for certain special measures, we obtain the sharp

norm estimates of the operators and establish some new generalized Hilbert series inequalities with the
best constant factors.

1. Introduction

Let p > 1 and let a be a real number. We define the weighted sequence space I, as

ZZ =4a= {ﬂn}:;l ¢ lal

oo
1
b = () nlaulf)7 < oo
n=1

If a = 0, we will write I, and [|a||, instead of I’ and ||a| ., TEspectively.
The Hilbert series operator, induced by the Hilbert kernel ——, is defined as

m+n’

(e8]

a, o
H(a)(m) = E p—— a={a,};,;, meN.
n=1

It is well known that H is bounded from [, into itself and [|H|| = 7 csc %, see [6]. Here

[Hall,

[[H]| = sup .
azoye, lally

It is natural to ask whether the Hilbert operator is still bounded from the weighted sequence space I,
into itself. We see that it is the case for certain weighted sequence spaces, and have the following
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n(l+a)

Proposition 1.1. Letp > 1. If -1 < a < p—1, then H is bounded from I into itself, and ||H||, = 7 csc — where

”Ha”p,a

IHll, = sup .
azoyer. 1llpa

Remark 1.2. This result is known in the literature, see [8] for an equivalent form of Proposition 1.1. We will establish
an extension of this result in the last section.

However, we find the Hilbert operator is not bounded from lf; into IZ, ifa < fand a > —1. Actually, if

atl+e

1 .
a<p,lete>0andseta, = (75;)rn” 7 .lItis easy to see that

— € . -1-¢ € * —1-¢ _
||a||p,a—l+an <—“€(1+f1 e dy) = 1.

n=1

For a > -1, we have
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IfH: IZ - ZZ is bounded, then there exists a constant C; > 0 such that
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But when ¢ <  — a, we see that

(o]
Z mﬁ—a—l—e = 400,

m=1

Hence we get that (1) is a contradiction. This implies that the Hilbert operator is not bounded from I, into
lg,ifa <pBand a > -1.
Note that the Hilbert kernel can be written as

1
1 - tm-H’l—ldt
m+n J, '

Let u be a positive Bore measure on [0, 1), we define the generalized Hilbert series operator H, as

Hy(a)(m) := Z plm +nla,, a ={a,},.,, meNN,

n=1
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where )
uln] = f " du(t), n € N.
0

In this note, we first study the problem of characterizing the measures u such that H, : I}, — lg is
bounded. We provide a sufficient and necessary condition of i for which H,, : I}, - I/ is bounded. It should

be pointed out that there has been a lot of work in recent years on the action of the Hilbert operator and its
generalizations in different analytic function spaces. See for example [3], [4], [1], [2], [5].

To state our first result, we introduce the notation of generalized Carleson measure on [0,1). Lets > 0, u
be a positive Borel measure on [0, 1). We say p is a s-Carleson measure if there is a constant C, > 0 such that

u(t 1) < (A -ty

forall t € [0,1).
We now state the first main result of this paper.

Theorem 1.3. Let p > 1. Let a, B be such that =1 < a, B < p — 1. Then the following statements are equivalent:
MH,:IL—> l’; is bounded.
Quisall+ :—J(ﬁ — a)]-Carleson measure on [0, 1).
@) uln] = O™ 77 ¢,

We end this section by fixing some notations. We denote by g the conjugate of p, i.e., % + % = 1. For two

positive numbers A, B, we write A < B, or A > B, if there exists a positive constant C independent of A and
B such that A < CB, or A > CB, respectively. We will write A <x Bif A < Band A > B.

2. Proof of Theorem 1.3

In our proof of Theorem 1.3, we need the Beta function defined as follows.

) tu—l
B = —dt .
(u,v) f(; A= u>0,v>0

It is known that
(W)l '(v)
T(u+0)"

1
B(u,v) = f Y1 - tdr =
0
and B(u,v) = B(v, u), where T is the Gamma function, defined as
I'(x) = f e~ dt, x > 0.
0

For more detailed introduction to the Beta function and Gamma function, see [9] .
For -1 <a,B <p—1, we define

0 1+a
1 na
wi (n) := . ,neN,
0 L e

and

) 1 = Da=55)

W =3

n=1 (Wl + Vl)

. m € IN.
lop_ 1+ 4
1+g(ﬁ @) n pﬂ
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Since -1 < &, f < p — 1, we see that

lta

e 1 na
wiil < f : d 2
“’ﬁ(n) 0 (x+ n)1+}7(ﬁ_“) xl‘% ) @
1+ 1
= B(—L,1- %0
p p

Similarly, we can show that
1+ 1
Wi (m) < B(—~ P Ly oo ®)

Now, we start to prove Theorem 1.3. We first show
(2)=(3). We note that (3) is obvious when 1 = 1. We get from integration by parts that, for n(> 2) € IN,

1 1
it = [P = o)== [ 2o, n

1
(=) [ 2

0
Since pisa[l+ %(‘B — a)]-Carleson measure on [0, 1), then we see that there is a constant C; > 0 such that

u(lt, 1)) < Ca(1 — 176,

forall t € [0, 1).
It follows that

1
uln] < Ci(n-1) f 721 — gy
0

T(n - DI+ 16— a)

= CGn-1)-

=1 T(n+1+1(6-a)
_ 1

n1+;—)(ﬁ—a)'

Here we have used the fact that
I'x) = V2rx e |1 + r(x)], x >0,
where |r(x)| < e — 1. Hence (2)=(3) is true.

B)=1). Take a = {a,}; | € I' and assume, without loss of generality, that a, > 0, n € N. By Holder’s
inequality and (3), we see from

ulm +n] = o(;)

(m +n) 6
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that, form € IN,
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1a_ g n
= (m+n) D

[wlgﬁﬂ—lg“n%fﬂil L -ﬂﬂ

a
1+1(B-a L n
= (m+n) » (B mi=

1+1 (ﬁa

IA

Consequently, we obtain from (2) that

] 1
o o Py s o -
aTl
IHall,p = [ mP |y ulm +nla, } < [ mh }
mZ:l ; mZ=1 nZ=1‘ (m +n)t
1
1+a 1
<[B(——,1- Nk ' o
¢ P ;; (m +n)t o6 st
1
1+8 1+a v
=[B(—,1- )]w[ W([j/l];(n)az
P n=1
1+ 1+a
SB“;EJ— el

This proves (3)=(1).

(1)=(2). We need the following estimate given in [10]. Let 0 < t < 1. For any ¢ > 0, we have

o)

c=12n _ 1
Zn " =< a-pr 4)

n=1

For0 < b <1, weset

G=(1-b)rn 7 by, neN.
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Then we see from (4) that I[Ii[lplgé = 1. In view of the boundedness of H,, : . lg, we obtain that

© 1
Z% f fm+n_1d[.l(f)
0

n=1

14

—_
Y

> |Hal, =) mf

m=1

00 00 1 P
A-2)Y mf|Y nip? f =14 (h)

ad a 1 P
> (1 —bZ)Zmﬁ Zn_%b% f tm+n—1d#(t))l
m=1 n=1 b
(o) o0 p
> (1- bz)[y([b, 1)) Z mP [Z nr b . bm+n—1J
m=1 n=1
© 0 p
= (1- bz)[y([b, 1)) [Z mﬁbm) (Z n—jbzp”m—l]
m=1 n=1
= Q=P e ——
o A=) (1-p2)pe
This implies that

(b, 1)) < (1 - B3¢9,

forall 0 < b < 1. It follows that pisa [1 + ;—7(/3 — a)]-Carleson measure on [0, 1) and (1)=(2) is proved. The
proof of Theorem 1.3 is now finished.

3. New generalized Hilbert series inequalities

In this section, we consider certain 1-Carleson measures and study a generalized Hilbert series operator
induced by a bounded function on [0, 1). As applications, we establish some new generalized Hilbert series
inequalities with the best constant factors.

Let g be a non-negative and non-decreasing bounded function on [0, 1). We further assume that ||g|l. > 0
and set

1
Ng[n] == f " 1g(t)dt, n € N.
0

We define the generalized Hilbert series operator H, as

o) 00 1
Hy(a)(m) = Z Aglm +nla, = Zan fo () dt, a = {ay)y,, m € N.
n=1 n=1

Remark 3.1. When g = 1, H; becomes the classical Hilbert series operator. We see from the fact that g is a non-
negative bounded function on [0, 1) that g(t)dt is a 1-Carleson measure on [0, 1). Then, by Theorem 1.3, we know that
Hy : I) — I is bounded if —1 < a < p — 1. Moreover, we shall show the following result.

Theorem 3.2. Let p > 1,-1 < a < p— 1. Let g,H, be as above. Then we have H, : Il — I, is bounded, and

1+
Hylla = llglleome csc 252, where

IHyallp,a

IHylla = sup .
a(#@)elﬁ ”a”p,a

Remark 3.3. Proposition 1.1 follows if we take g = 1.

It follows from Theorem 3.2 that
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Corollary 3.4. Under the assumptions and with the notations of Theorem 3.2, we have the following generalized
Hilbert inequality

1

’ 1
Z [Zan f e 1g(f)dt]l sngnwncscwnanp,m (5)

m=1

n(1+a)

holds for all a € 1", and the constant factor ||glleeTt csC ==— in (5) is the best possible.

We next present the proof of Theorem 3.2.

Proof. Fora ={a,}) | € P, a,>0,neN, by Holder’s inequality and (3), we obtain that, for m € N,

E Ng[m + nlay,
00 lta 1_lta
1 .1 ne 1 1 om0
S s P . -a q .
g Z{[m+n] =55 n}{[m+n] L

a,, t””” Lg(t) dt

=1 n
1 1
= 1 2 P 1w
< gl |}, = == -l e
n=1 m+n ml_T n=1 m+n nr
o M %
= gl Wi (m)] Z T
n=1

1—1ta
p— m+n m »

n(l+a)1 _a =1 nHTa ’
< 1glleo[tcsc ————=]1m " ¥ '—'QZ .
g ; {Z

Here we have used the fact that B(s,1 —s) = mcscts when 0 <s < 1.
Consequently, we get from (2) that

1
IHyallp,a = [Z m® ZAg[m + nlay, }
m=1 n=1
00 00 1+a 1
1 na p y
< Ilgllm[ncsc 17 TR - dly,
=1 n=
- 1
= llgllolm csc ”( o [Z (n)a’;}
1
n(l+a
< Ilgllrr csc %nanm.

n(l+a)
T
Finally, we prove that ||[H,ll, = [|glle7csc =——. For any ¢ € (0,[|gll~), we see from the fact that g is

non-decreasing on [0, 1) that there is a constant j, € (0, 1) such that

This proves that H, : I, — I, is bounded and ||Hy|lx < [|glleo7 csc Z22

n(l+a)

90) 2 lghs - 3¢
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for all t € [j, 1). It follows that

1 Il — Le
Ng[m+n] = (gl — —g)f pmn=1 gy — —1- jf.”") (6)
g 27, m+n
”g”oo —& [ & :| .
= 1+ 1 — ™),
m+n 2gle—o |

For all m € IN, since jI"*" < j?, and j# — 0(n — o0), we conclude from (6) that thereisa N = N(e) € N
such that

llglleo — €
Ag[m + 7’1] > W (7)
foralln > N, and all m € IN.
— — 1 _lta+t
Lett >0, weseta, =0whenne€[l,N],a, =N )rn » whenn > N.Itis easy to see that
II'aTIZ,a =T7N° Z n T < TNTf x Tdx = 1.
n=N+1 N
Then it follows that
oo o Py
“Hg“a 2 ”HgE”p,a = [Z m® ZAg[m +nlay l 8)
m=1 n=1
[ ) 1 14 %
_ T 1 a _M%
> (lglls = )N Y m | Y e l
| m=1 n=N+1
T 1 [ & v 0 1 l+a+t ¢ %
> 0 — ~ 9 0 - d
> (gl = )TN | Y m fNH e

(lglle = e)TNT)? | Y '

It is clear that

- <1 _ Ltast
Zm‘l‘T T
N+1 1 + t
m=1 m
> [ Z m T

m=N+1

© 1 S
f —-t‘“?”dt—f — T
o 1+t o 1+t

On the other hand, when 7 € (0,p — 1 — a), we have

pr

<1 _ liatr l+a+
Dy (1) := f — At = mose w, (10)

o 1+t p

and
N+1 N+1
Eonmm: = | —— 5 are [T rS 11)
e A b
_ p (N +1 )plp“
p-l-a-7 ™m
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By using the Bernoulli’s inequality(see [7]), (10) and (11), we see that

. 1 N+1 1 14
. _lta+t _ m . _ lta+t 12
f01+ttpdtj(;1+ttpdi'L (12)
n(l+a+1), Epo(t,m)|’
= [mcsc 1-
[ p ! Dp,a(T)
n(l+a+1) [ PEp.a(T, m)}
>[nese —— P [1 - ————|,
[ p Dp,a(T)
and
0 E :
Z m—l—’( . p p'a(T m) (13)
m=N+1 Dp’a(T)
5 p-l-a-t 0
. PN+ e
T (p-1-a—-1)Dpa(1) vl
2 ’7717&71 0 —1-a-1
< p (N+ 1) 14 1t =y
(P -l-a- 7/—)l_-_)p,o((’f) N+1
3N +1)7°[D, o (7)]
___ PWEDTIDLOF
p-1l-a-1)pr+p-1-a-1)
By (9), (12), (13), we obtain that
00 - 00 1 ' et rlr
Lzzlm f/\m 17 £ dt (14)
1 = ’
> mcsc mltatT [ Z m T = Fpa(N, T)}
P m=N+1
> mese A+ D ([xN + 1T = BN, 1))’
n(l+a+1) =1 . :
= 1 csc T[T(N + 177 [1= (N + ) FpuN, D] .
It follows from (8) that
n(l+a+rt T 5
Il 2 (gl = eymese S VOV + 1717 [1= e + 17Fa N, 0] (15)

Take T — 0% in (15), we easily see that

1
Il 2 Gl = emcse 2,

for any ¢ € (0, ||glleo). It follows that [[Hylls > llgllesTt csC %M). Hence [|Hylla = lIgllo7t csC %M). Theorem 3.2
is proved. O
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