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Abstract. In this paper, we establish some informational properties of transmuted distributions. Specifi-
cally, we derive Shannon entropy, Gini’s mean difference, and Fisher and Bayes Fisher information measures
of a transmuted distribution. Two extensions of Shannon entropy and Gini’s mean difference information
measures are also provided. Finally, the distances between transmuted distribution and its components
based on the Kullback-Leibler, chi-square and energy distance divergences are all derived.

1. The first section

In information theory, there are different criteria to measure the uncertainty of a probabilistic model.
Moreover, various divergences measures have been developed in the literature for measuring similarity
(closeness) between two probability distributions. Shannon entropy, Fisher information and Gini’s mean
difference are three most important information measures that have been used in many different fields. For
more details, see Shannon (1948), Fisher (1929) and Gini (1912). More recently, these information measures
have been generalized based on Jensen inequality, which have come to be knownas Jensen-Shannon, Jensen-
Fisher and Jensen-Gini information measures, respectively. For pertinent details, one may see Lin (1991),
Sánchez-Moreno et al. (2016) and Mehrali et al. (2018).

Recently, considerable work in distribution theory has focused on the family of transmuted distributions
derived through a quadratic rank transmutation map. Although the transmuted distributions are of partic-
ular importance in modeling various data sources, these models have not been studied from information
theory viewpoint so far.

With this in mind, our main interest here is to establish some informational properties, including
Shannon entropy, Fisher information, Bayes Fisher information and Gini’s mean difference for transmuted
distributions. These models get formulated by transforming a parent distribution into its generalized
counterpart. Transmuted distribution was introduced by Shaw and Buckley (2009) in an unpublished
report and applied to uniform, exponential and normal distributions. During the past decade, considerable
efforts have been directed at developing more flexible distributions with the use of this construct. Many
standard probability distributions have been generalized and developed into some flexible models in this
manner; see, for example, Sarabia et al. (2020) and the references therein. Kozubowski and Podgórski
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(2016) have provided an interesting link between transmutation distribution and random extrema concept
(maxima (or minima)) of a random number N of independent and identically distributed variables with
the base distribution, where N has a Bernoulli distribution shifted by one. In fact, this approach provides
a theoretical interpretation of the construction through transmuted mapping. Recently, Balakrishnan and
He (2021) have proposed analogous transmuted distributions based on the theory of records and examined
their hazard properties.

In the framework of transmutation map, from a given base cumulative distribution function (CDF) F, a
new probability CDF FXT is defined as

FXT (x) = (1 + λ)F(x) − λF2(x), x ∈ R, |λ| ≤ 1. (1)

Model (1) is referred to as a transmuted distribution. For a stochastic representation of (1), let X1 and X2
be a random sample of size two from the absolutely continuous CDF F with probability density function
(PDF) f . The density functions associated with extreme random variables min(X1,X2) and max(X1,X2) are
known to be fmin(x) = 2 f (x)(1 − F(x)) and fmax(x) = 2 f (x)F(x), respectively. Moreover, the corresponding
CDFs are given by Fmin(x) = 1 − (1 − F(x))2 and Fmax(x) = F2(x), respectively; see, for example, Arnold et al.
(1992). Hence, we can rewrite the CDF in (1) based on the components F and Fmax, as follows:

FXT (x) = (1 + λ)F(x) − λF2(x)
= (1 + λ)F(x) − λFmax(x). (2)

Further, the corresponding PDF is given by

fXT (x) = (1 + λ) f (x) − 2λ f (x)F(x)
= (1 + λ) f (x) − λ fmax(x). (3)

It is worthwhile to note that (2) and (3) can also be stated based on the variable min(X1,X2) as

FXT (x) = (1 − λ)F(x) + λFmin(x)

and

fXT (x) = (1 − λ) f (x) + λ fmin(x),

respectively. In order to avoid repetitive results within the present work, we only consider the transmuted
distribution in (2).

If the baseline distribution in (3) is considered as Uniform on (0, 1), then the density function of trans-
muted uniform variable UT is given by

fUT (u) = (1 + λ) − 2λu, u ∈ (0, 1). (4)

We now briefly introduce some informational measures that will be used in the sequel. Let X be an
absolutely continuous random variable with CDF F and density function f . Then, the Shannon entropy of
X (or density f ) is defined as

H(X) = H( f ) = −

∫
X

f (x) log f (x)dx,

where “log” stands for the natural logarithm. For more details, see the pioneering paper of Shannon
(1948). To simplify notation, we suppress X for integration with respect to dx throughout the paper, unless
a distinction becomes necessary.

Kullback-Leibler (KL) discrimination information is introduced next. Let X and Y be two continuous
random variables with absolutely continuous density functions f and 1, respectively. Then, the Kullback-
Leibler distance between X and Y (or f and 1) is defined as

KL(X||Y) = KL( f , 1) =

∫
f (x) log

f (x)
1(x)

dx.
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The Kullback-Leibler discrimination between Y and X can be defined analogously. For more details, see
Kullback and Leibler (1951).

Another important diversity measure between two density functions f and 1 is the chi-square diver-
gence, defined as

χ2( f , 1) =

∫
( f (x) − 1(x))2

1(x)
dx.

In the same way, we can define χ2(1, f ). For more details, see Nielsen and Nock (2013).
The Fisher information of a random variable X, or its PDF f (x;θ), about the parameter θ is defined as

I(θ) =

∫ [
∂ log f (x;θ)

∂θ

]2

f (x;θ)dx.

It is assumed that θ lies in an open interval in the real line and that f (x;θ) > 0 for all values of θ in
the parameter space and is differentiable with respect to θ. In Bayesian statistics, it is assumed that the
parameter θ is endowed with a prior π(θ). Then, the expected Fisher information Ĩ(θ) = Eπ[I(Θ)] is called
Bayes Fisher information. For more details, see Asadi et al. (2018) and the references therein.

Gini’s mean difference (GMD) and energy distance are two other prominent information measures that
will be considered in this work. Let X be a continuous random variable with distribution function F. Then,
the GMD associated with X is defined as

GMD(F) = 2
∫

F(x)F̄(x)dx,

where F̄(x) = 1− F(x) denotes the survival function of X. Yitzhaki (2003) stated that the GMD, as a measure
of variability, shares many properties of the variance of X, and is more suitable for distributions that are far
from normality. Moreover, the energy distance (L2) between two CDFs F1 and F2 is given by

D(F1,F2) =

∫
(F1(x) − F2(x))2dx.

For more details, see Mehrali et al. (2018).
In this paper, we establish some important informational properties of transmuted distributions. In

Section 2, we study the Shannon entropy of transmuted density functions and also consider the Kullback-
Libeler divergence between transmuted distribution and the densities of each of its components. We
then propose transmuted Shannon entropy, which is an extension of Shannon entropy of transmuted
distribution, as well as Jensen-Shannon entropy. It is shown that the KL divergence between a general
transmuted model and its components is free of the parent distribution. The proposed transmuted Shannon
entropy is further expressed based on the transmuted structure of two KL divergences of the general model
and its components. In Section 3, by considering the transmuted distribution, we obtain Gini’s mean
difference and also discuss the energy divergence between transmuted distribution and its components.
The transmuted Gini’s mean difference is also proposed and it is shown that this information measure can
be expressed in terms of a quadratic rank structure of two energy distances of the transmuted distribution
and its components. Section 4 discusses the chi-square divergence between the general transmuted density
function and the density functions of each of its components. In Section 5, the Fisher information for
parameter λ is derived. It is shown that the Fisher information of the transmuted model about parameter
λ is connected to chi-square divergence. A detailed discussion about Bayes Fisher information for the
parameter λ of transmuted distribution under different prior distributions is also discussed in this section.
It is specifically shown that the Bayes Fisher information measures for transmuted model under uniform
prior are the same as Jeffreys’ divergence. Another result shows that, under triangular and Beta priors, the
measures for these two models are different Kullback-Leibler based measures. Finally, Section 6 presents
some concluding remarks.
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2. Entropic measures

In this section, we first derive the Shannon entropy of the transmuted random variable XT with PDF as
in (3), and then examine the Kullback-Leibler divergence between the transmuted distribution and each of
its components. We further propose an extension of the Shannon entropy that is suitable for transmuted
distributions.

2.1. Shannon entropy
Suppose random variables X1 and X2 are independent and identically distributed as X with common

PDF f and CDF F. We now derive the Shannon entropy of the transmuted random variable XT.

Theorem 2.1. For the transmuted random variable XT with PDF as in (3), the Shannon entropy is given by

H(XT) = (1 + λ)H(X) − λH(max(X1,X2)) + λH(V) + H(UT), (5)

where the random variable V has Beta(2, 1) distribution with PDF

fV(v) = 2v, v ∈ (0, 1),

and the random variable UT is the transmuted uniform random variable on (0, 1) with its PDF as in (4).

Proof: By the definition of Shannon entropy, we have

H(XT) = −

∫
∞

−∞

fXT (x) log fXT (x)dx

= −

∫
∞

−∞

{
(1 + λ) f (x) − 2λ f (x)F(x)

}
log f (x)dx

−

∫
∞

−∞

{
(1 + λ) f (x) − 2λ f (x)F(x)

}
log

{
(1 + λ) − 2λF(x)

}
dx

= (1 + λ)H(X) − λH(max(X1,X2)) − λ
∫ 1

0
2v log(2v)dv

−

∫ 1

0

{
(1 + λ) − 2λu

}
log

{
(1 + λ) − 2λu

}
du

= (1 + λ)H(X) − λH(max(X1,X2)) + λH(V) + H(UT),

as required.
If we now define φ(λ) = λH(V) + H(UT), then by performing some algebraic manipulations, we can

obtain

φ(λ) = −λ
(

log 2 −
1
2

)
+

2λ + (λ − 1)2 log(1 − λ) − (λ + 1)2 log(λ + 1)
4λ

. (6)

In order to examine the shape of the function φ(λ), we get its first derivative to be

∂φ(λ)
∂λ

=
1 − λ2

4λ
log

(1 + λ
1 − λ

)
−

0.5 + 0.1931λ
λ

=
1 − λ2

2λ
tanh−1(λ) −

0.5 + 0.1931λ
λ

. (7)

The root of (7) is found to be λ = −0.543. Further, the second derivative of φ(λ) is also obtained to be

∂2φ(λ)
∂λ2 =

1
λ2

(
1 −

tanh−1(λ)
λ

)
.

Because tanh−1(λ) ≥ λ for λ in (0, 1) and tanh−1(λ) ≤ λ for λ in (−1, 0), we always have ∂2φ(λ)
∂λ2 ≤ 0. A plot of

the function φ(λ), for λ in the interval [−1, 1], is presented in Figure 1. From Figure 1, it easy to see that for
λ ∈ [−1, 0], the function φ(λ) is positive, while for λ ∈ (0, 1], φ(λ) is negative.
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Fig 1. Plot of the function φ(λ) for values of λ in [−1, 1].

Example 2.2. Suppose X1 and X2 are independent and identically distributed as an exponential variable X, with
PDF f (x) = αe−αx, x > 0. Then, the Shannon entropy of the corresponding transmuted random variable XT is given
by

H(XT) = (1 + λ)H(X) − λH(max(X1,X2)) + λH(V) + H(UT)

= (1 + λ)(1 − logα) + λ
{

log(2α) − 2
}

+ φ(λ),

where φ(λ) is as given in (6).

2.2. Kullback-Leibler divergence
In this subsection, we present some results concerning Kullbak-Leibler divergence between the trans-

muted density fXT and the density functions of each of its components, f and fmax. For this purpose, we first
derive in the following theorem the Kullback-Leibler divergence between the transmuted uniform random
variable and the uniform random variable in the interval (0, 1).

Theorem 2.3. Let variable X have its PDF as f (x) and the corresponding transmuted random variable XT have its
PDF as in (3). Then, the Kullbak-Leibler divergences between f and fT are given, respectively, by

(i) KL( fXT , f ) = KL( fUT , fU),

(ii) KL( f , fXT ) = KL( fU, fUT ),
where the random variables U and UT are uniform and transmuted uniform random variables on (0,1) with density

functions fU and fUT , respectively.

Proof: By using the definition of Kullback-Leibler divergence and setting u = F(x), we have

KL( fXT , f ) =

∫
∞

−∞

fXT (x) log
{ fXT (x)

f (x)

}
dx

=

∫
∞

−∞

fXT (x) log
{ f (x)(1 + λ − 2λF(x))

f (x)

}
dx

=

∫ 1

0
(1 + λ − 2λu) log(1 + λ − 2λu)du

= KL( fUT , fU),



O. Kharazmi, N. Balakrishnan / Filomat 35:13 (2021), 4287–4303 4292

as required for Part (i). Part (ii) can be proved similarly.

Theorem 2.4. Let X1 and X2 be independent and identically distributed as X with PDF f . Then, the Kullbak-Leibler
divergences between fmax and fXT are given by

(i) KL( fXT , fmax(X1,X2)) = KL( fUT , fV),
(ii) KL( fmax(X1,X2), fXT ) = KL( fV, fUT ),

where the random variables V and UT are as defined earlier in Theorem 2.1.

Proof: By using the definition of Kullback-Leibler divergence and using the transformation u = F(x), we
get

KL( fXT , fmax) =

∫
∞

−∞

fXT (x) log
{ fXT (x)

fmax(x)

}
dx

=

∫
∞

−∞

fXT (x) log
{ f (x)(1 + λ − 2λF(x))

2 f (x)F(x)

}
dx

=

∫ 1

0
(1 + λ − 2λu) log

1 + λ − 2λu
2u

du

= KL( fUT , fV),

as in Part (i). Part (ii) follows similarly.

Remark 2.5. From Theorems 2.3 and 2.4, it is clear that the KL distances between fXT and each of its components f
and fmax are free of the underlying distribution F.

Remark 2.6. From Theorems 2.3 and 2.4, Jeffreys’ divergences J( f , fXT ) and J( fmax, fXT ) can be readily obtained as

J( f , fXT ) = KL( fU, fUT ) + KL( fUT , fU) = J( fU, fUT )

and
J( fmax, fXT ) = KL( fV, fUT ) + KL( fUT , fV) = J( fV, fUT ),

respectively. Thus, Jeffreys’ divergences are also free of distribution F.
With regard to the results in Theorems 2 and 3, it should be noted that these results can also be presented

in terms of the invariant properties of Kullback-Leibler divergence under invertible transformations. For
more details, see Qiao and Minematsu (2010). Making use of this property of KL divergence and considering

the transformations X d
= F−1(U), XT

d
= F−1(UT) and max(X1,X2) d

= F−1(V), the results of Theorems 2 and 3
can be obtained.

Remark 2.7. Let the variables U, V and UT be distributed as uniform, Beta(2, 1) and transmuted uniform on the
interval (0, 1), respectively. Then:

(i) KL( fU, fUT ) =
2λ+(1−λ) log(1−λ)−(λ+1) log(λ+1)

2λ ,

(ii) KL( fUT , fU) =
−2λ−(λ−1)2 log(1−λ)+(λ+1)2 log(λ+1)

4λ ,

(iii) KL( fV, fUT ) = log 2 − 1
2 −

(3λ2
−2λ−1) log(1−λ)−2λ(2λ+1)+(1+λ)2 log(1+λ)

4λ2 ,

(iv) KL( fUT , fV) =
−2λ−(λ−1)2 log(1−λ)+(λ+1)2 log(λ+1)

4λ + λ
2 + 1 − log 2.

Proof: By the definition of Kullback-Leibler divergence, we have

KL( fU, fUT ) = −

∫ 1

0
log(1 + λ − 2λu)du

=
2λ + (1 − λ) log(1 − λ) − (λ + 1) log(λ + 1)

2λ
,
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Fig 2. Plot of the divergence measures KL( f , fXT ), KL( fXT , f ) and J( fXT , f ) for λ in [−1, 1].

which yields Part (i). Parts (ii), (iii) and (iv) can be derived in a similar manner.
The divergence measures KL( f , fXT ), KL( fXT , f ) and J( fXT , f ) are all plotted in Figure 2.

From Figure 2, we observe that, for λ ∈ [−1, 1],

KL( fXT , f ) ≤ KL( f , fXT ) ≤ J( fXT , f ).

It is possible to prove formally the above inequalities. As the arguments are quite similar for all cases, we
shall demonstrate it just for KL( fXT , f ) ≤ KL( f , fXT ) in the case when λ ∈ [0, 1]. Then, from the corresponding
expressions from Lemma 2.7, it is equivalent to showing that

6λ + (λ2
− 4λ + 3) log(1 − λ) − (λ2 + 4λ + 3) log(1 + λ) ≥ 0

for λ ∈ [0, 1]. Clearly, the left-hand side is 0 when λ = 0. Moreover, its derivative with respect to λ, namely,
(2λ − 4) log(1 − λ) − (2λ + 4) log(1 + λ), is clearly positive, meaning it is an increasing function of λ, thus
proving its non-negativity.

Next, let us consider a general mixture distribution with PDF fm(x) = p f (x)+2(1−p) f (x)F(x), p ∈ [0, 1],
and the transmuted density fXT in (3). We then derive the KL divergence between these two densities,
generalizing Theorems 2.3 and 2.4.

Example 2.8. The KL divergence between the mixture PDF fm and the transmuted PDF fXT in (3) is

KL( fm, fXT ) =

∫
(p f (x) + 2(1 − p) f (x)F(x)) log

{ p f (x) + 2(1 − p) f (x)F(x)
(1 + λ) f (x) − 2λ f (x)F(x)

}
dx

=

∫ 1

0
(p + 2(1 − p)u) log

{ p + 2(1 − p)u
(1 + λ) − 2λu

}
du

= p
(2 − 2p + (p − 2) log(2 − p) + p log p)

p − 1

+2(1 − p)
−4p2 + p2 log p + 6p + (p − 2)(3p − 2) log(2 − p) − 2

8(p − 1)2

−p
−2λ + (λ − 1) log(1 − λ) + (λ + 1) log(1 + λ)

2λ

−2(1 − p)
(3λ2

− 2λ − 1) log(1 − λ) − 2λ(2λ + 1) + (λ + 1)2 log(λ + 1)
8λ2 .
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Remark 2.9. The above result shows that the KL distance between fm and fXT is also free of the underlying distribution
F.

A 3D-plot of KL( fm, fXT ) is presented in Figure 3, from which we observe that the KL divergence gets
minimized when p = 1 (i.e., for the parent density f ) and gets maximized when p = 0 (i.e., for the density
fmax).
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Fig 3. 3D-plot of the KL divergence between the mixture PDF fm and the transmuted PDF fXT .

2.3. Transmuted Shannon entropy

We now present an extension of Shannon entropy of transmuted distribution as well as Jensen-Shannon
divergence, and we refer to it as transmuted Shannon (TS) entropy.

Definition 2.10. Let X be a continuous random variable with CDF F, and the corresponding transmuted random
variable XT have its PDF as in (3). Then, the transmuted Shannon entropy between components f and fmax is defined
as

TS( f , fmax;λ) = H( fXT ) −
[
(1 + λ)H( f ) − λH( fmax)

]
, λ ∈ [−1, 1].

Remark 2.11. The TS entropy is given by the formula

TS( f , fmax;λ) = (1 + λ)KL( f , fXT ) − λKL( fmax, fXT ).

Proof: Upon using Theorem 2.1, it is sufficient to show that

(1 + λ)KL( f , fXT ) − λKL( fmax, fXT ) = λH(V) + H(UT).

From Theorems 2.3 and 2.4, we have

KL( f , fXT ) = KL( fU, fUT )
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and

KL( fmax, fXT ) = KL( fV, fUT ),

where U, V and UT are as defined in Lemma 2.7. Thus, we have

(1 + λ)KL( f , fXT ) − λKL( fmax, fXT ) = (1 + λ)KL( fU, fUT ) − λKL( fV, fUT ),

from which we obtain

(1 + λ)KL( fU, fUT ) − λKL( fV, fUT ) = −(1 + λ)
∫ 1

0
log

{
(1 + λ) − 2λu

}
du

−λ

∫ 1

0
2u log

{ 2u
(1 + λ) − 2λu

}
du

= −λ

∫ 1

0
2v log 2vdv

−

∫ 1

0

{
(1 + λ) − 2λu

}
log

{
(1 + λ) − 2λu

}
du

= λH(V) + H(UT),

as required.

Remark 2.12. It is easily seen that Jensen-Shannon entropy between f and fmax is a special case of TS entropy when
λ ∈ [−1, 0] and using the re-parametrization p = 1 + λ, that is,

TS( f , fmax;λ) = JS( f , fmax; p),

where JS( f , fmax; p) = H
(
p f + (1 − p) fmax

)
−

{
pH( f ) + (1 − p)H( fmax)

}
.

Remark 2.13. From Theorems 2.3 and 2.4 and Lemma 2.7, we see that the TS entropy is free of the underlying
distribution F as well, and the exact value of TS is given by

TS( f , fmax;λ) = (1 + λ)KL( fU, fUT ) − λKL( fV, fUT )

= (1 + λ)
2λ + (1 − λ) log(1 − λ) − (λ + 1) log(λ + 1)

2λ

+
(3λ2

− 2λ − 1) log(1 − λ) − 2λ(2λ + 1) + (1 + λ)2 log(1 + λ)
4λ

−λ log 2 +
λ
2
. (8)

Remark 2.14. The TS entropy is concave with respect to parameter λ.

Proof: We need to show that ∂2TS( f , fmax;λ)
∂λ2 ≤ 0. The second derivative of TS( f , fmax;λ) is obtained from (8)

to be

∂2TS( f , fmax;λ)
∂λ2 =

2λ + log(1 − λ) − log(1 + λ)
2λ3 .

Now, upon using the fact that tanh−1(λ) = 1
2 log

{
1+λ
1−λ

}
in the above equation, we find
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∂2TS( f , fmax;λ)
∂λ2 =

1
λ2 −

tanh−1(λ)
λ3

=
1
λ2

(
1 −

tanh−1(λ)
λ

)
.

Because tanh−1(λ) ≥ λ for λ in (0, 1) and tanh−1(λ) ≤ λ for λ in (−1, 0), we obtain

∂2TS( f , fmax;λ)
∂λ2 =

1
λ2

(
1 −

tanh−1(λ)
λ

)
≤ 0,

as required.
Figure 4 plots the TS entropy as a function of the mixture parameter λ, and from it we observe that

the TS entropy is indeed a concave function, supporting Lemma 2.14.
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Fig 4. Plot of the TS entropy as a function of λ.

3. Connection with Gini information

Let X be a continuous random variable with CDF F. Then, Gini’s mean difference (GMD) associated
with X is defined as

GMD(F) = 2
∫

F(x)F̄(x)dx, (9)
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where F̄(x) = 1−F(x) denotes the survival function of X. It has been argued by Yitzhaki (2003) that GMD,
as a measure of variability, shares many properties of the variance of X, and is suitable for distributions
that are non-normal.

If X and Y are independent random variables on R with CDFs F and G, respectively, then the energy
distance between them is defined as

D(F,G) =

∫
(F(x) − G(x))2 dx. (10)

3.1. Gini’s mean difference of transmuted distribution

In this subsection, we derive an expression for GMD of transmuted distribution function FXT .

Theorem 3.1. Suppose FXT is the transmuted distribution given in (2) based on the components F and Fmax. Then,
the GMD associated with FXT is given by

GMD(FXT ) = (1 + λ)2GMD(F) + λ2GMD(Fmax) − 2λ(1 + λ)
∫ 1

0

u(1 − u)(1 + 2u)
f (F−1(u))du

. (11)

Proof: From the definition of GMD in (9), upon setting u = F(x), we get

1
2

GMD(FXT ) =

∫
F̄XT (x)FXT (x)dx

=

∫ {
(1 + λ)F̄(x) − λ(1 − F2(x))

}{
1 −

(
(1 + λ)F̄(x) − λ(1 − F2(x))

)}
dx

= (1 + λ)
∫

F̄(x)dx − λ
∫

(1 − F2(x))dx − (1 + λ)2
∫

F̄2(x)dx

− 2λ(1 + λ)
∫

F̄(x)(1 − F2(x))dx − λ2
∫

(1 − F2(x))2dx

= (1 + λ)2
∫

F̄(x)F(x)dx + λ2
∫

F2(x)(1 − F2(x))dx

−λ(1 + λ)
∫ 1

0

u(1 − u)(1 + 2u)
f (F−1(u))du

.

A rearrangement of the last equation yields the expression in (11).

Example 3.2. Let X have a Beta(α, 1) distribution with CDF F(x) = xα, 0 < x < 1, α > 0. Then, the GMD of the
transmuted distribution based on X is

GMD(FXT ) = (1 + λ)2 α

2α2 + 3α + 1
+ λ2 2α

8α2 + 6α + 1

−2λ(1 + λ)
{ 1

2α + 1
−

2
3α + 1

+
1

α + 1

}
.

The following theorem gives lower and upper bounds for GMD(FXT ) based on the GMD of the component
distributions.

Theorem 3.3. Suppose F, Fmax and FXT have their GMD measures as GMD(F), GMD(Fmax) and GMD(FXT ),
respectively. Then:

(i) If λ ∈ [−1, 0], then

GMD(FXT ) ≥ (1 + λ)2GMD(F) + λ2GMD(Fmax);
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(i) If λ ∈ [0, 1], then

GMD(FXT ) ≤ (1 + λ)2GMD(F) + λ2GMD(Fmax).

Proof: From Theorem 3.1, the above inequalities are obtained readily.

Example 3.4. For the distribution considered in Example 3.2, we find from Theorem 3.3 the following:

(i) If λ ∈ [−1, 0],

GMD(FXT ) ≥ (1 + λ)2 α

2α2 + 3α + 1
+ λ2 2α

8α2 + 6α + 1
;

(ii) If λ ∈ [0, 1],

GMD(FXT ) ≤ (1 + λ)2 α

2α2 + 3α + 1
+ λ2 2α

8α2 + 6α + 1
.

Figure 5 plots the GMD measure and its corresponding bound based on Examples 3.2 and 3.4, for
α = 2 and λ in [−1, 1].
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Fig 5. Plot of the GMD measure and its corresponding bound for values of λ in [−1, 1] and α = 2.

3.2. Transmuted Gini’s mean difference and its connection with energy distance

In this subsection, we introduce an extension of Gini’s mean difference of transmuted distribution as
well as Jensen-Gini (JG) measure of divergence, and we refer to it as transmuted Gini (TG) measure of
divergence.

Definition 3.5. Let X be a continuous random variable with CDF F, and the corresponding transmuted random
variable XT have its PDF as in (3). Then, the transmuted Gini divergence between components F and Fmax is defined
as

TG(F,Fmax;λ) = GMD(FXT ) − [(1 + λ)GMD(F) − λGMD(Fmax)] , λ ∈ [−1, 1]. (12)

The following theorem provides a connection between TG divergence and energy distance defined in (10).
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Theorem 3.6. The TG divergence can be expressed in terms of energy distance as

TG(F,Fmax;λ) = (1 + λ)D(F,FXT ) − λD(Fmax,FXT ),

where D(H,FXT ) is the energy distance between distribution functions H and FXT , with H being either F or Fmax.

Proof: From the definition of TG divergence in (12), we have

TG(F,Fmax;λ) = GMD(FXT ) − [(1 + λ)GMD(F) − λGMD(Fmax)]

=

∫
F̄XT (x)FXT (x)dx −

[
(1 + λ)

∫
F̄(x)F(x)dx − λ

∫
F̄max(x)Fmax(x)dx

]
= (1 + λ)

∫
F̄2(x)dx − λ

∫ {
1 − F2(x)

}2

dx

−

∫ {
(1 + λ)F̄(x) − λ(1 − F2(x))

}2

dx.

By denoting K = (1 + λ)D(F,FXT ) − λD(Fmax,FXT ), we have

K = (1 + λ)
∫ [

F̄(x) − F̄XT (x)
]2 dx − λ

∫ [
F̄max(x) − F̄XT (x)

]2 dx

= (1 + λ)
∫ [

F̄(x) −
[
(1 + λ)F̄(x) − λ(1 − F2(x))

]]2
dx

−λ

∫ {
(1 − F2(x)) −

[
(1 + λ)F̄(x) − λ(1 − F2(x))

] }
dx

= (1 + λ)
∫

F̄2(x)dx − λ
∫ {

1 − F2(x)
}2

dx

−

∫ {
(1 + λ)F̄(x) − λ(1 − F2(x))

}2

dx,

which is exactly the same expression derived above for TG(F,Fmax;λ). Thus,

TG(F,Fmax;λ) = GMD(FXT ) − [(1 + λ)GMD(F) − λGMD(Fmax)]
= (1 + λ)D(F,FXT ) − λD(Fmax,FXT )

= (1 + λ)
∫

F̄2(x)dx − λ
∫

(1 − F2(x))2dx

−

∫ {
(1 + λ)F̄(x) − λ(1 − F2(x))

}2

dx,

proving the theorem.

4. Chi-square divergence between PDF fXT and its
components f and fmax

Let f1 and f2 be PDFs of random variables X1 and X2, respectively. Then, the chi-square divergence
between f1 and f2 is defined as

χ2( f1, f2) =

∫ [
f1(x) − f2(x)

]2

f2(x)
dx. (13)
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Theorem 4.1. Let X1 and X2 be two independent random variables identically distributed as X with PDF f (x).
Then, the chi-square divergence between fmax and fXT (and f and fXT ) are given by

(i) χ2
(

fmax, fXT

)
= χ2( fV, fUT )= (1 + λ)2 tanh−1(λ)−λ

λ3 ;

(ii) χ2( fXT , f ) = χ2( fUT , fU)= λ3

3 ;

(iii) χ2( f , fXT ) = χ2( fU, fUT )= tanh−1(λ)
λ − 1,

where the random variables U, V and UT are as defined in Lemma 2.7.

Proof: From the definition of χ2 divergence in (13), upon setting u = F(x), we get

χ2( fmax, fXT ) =

∫
∞

−∞

[
fmax(x) − fXT (x)

]2

fXT (x)
dx

=

∫
∞

−∞

{
2 f (x)F(x) − (1 + λ) f (x) + 2λ f (x)F(x)

}2

(1 + λ) f (x) − 2λ f (x)F(x)
dx

= χ2( fV, fUT )

= (1 + λ)2 tanh−1(λ) − λ
λ3 ,

which proves Part (i). Parts (ii) and (iii) can be proved in a similar manner.

Remark 4.2. From Theorem 4.1, we see easily that the chi-square divergence between transmuted PDF fXT and its
component fmax is free of the underlying distribution F.

5. Fisher information and Bayes Fisher information for λ

In this section, we derive some results about Fisher information and Bayes Fisher information for the
parameter λ of the transmuted distribution.

5.1. Fisher information for parameter λ of transmuted distribution
Theorem 5.1. The Fisher information for λ of the transmuted PDF in (3) is given by

I(λ) =

∫ [
f (x) − fmax(x)

]2

fXT (x)
dx =

1
(1 + λ)2χ

2( fmax, fXT ).

Proof: From the definition of Fisher information, we have

I(λ) = E
[
∂
∂λ

log fXT (X)
]2

= E
[

f (X) − 2 f (X)F(X)
fXT (X)

]2

=

∫ (
f (x) − 2 f (x)F(x)

fXT (x)

)2

fXT (x)dx

=
1

(1 + λ)2χ
2( fmax, fXT ),

as required.

Remark 5.2. From Theorem 5.1, we readily obtain

I(λ) =
1

(1 + λ)2χ
2( fV, fUT ) =

tanh−1(λ) − λ
λ3 . (14)
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From this expression, it is clear that I(λ) is symmetric and is free of the underlying distribution F.

Remark 5.3. The Fisher Information I(λ) in (14) can be expressed based on the TS entropy as follows:

I(λ) = −
∂2TS( f , fmax;λ)

∂λ2 .

Proof: From Lemma 2.14, we have

I(λ) = −
∂2TS( f , fmax;λ)

∂λ2 = −
1
λ2

(
1 −

tanh−1(λ)
λ

)
,

as required.

Figure 6 plots the Fisher information for parameter λ, from which we observe that I(λ) is minimized
when λ = 0 with I(0) = 0.5 and gets maximized when λ tends to ±1.
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Fig 6. Fisher information for λ of the transmuted fXT with underlying density f .

5.2. Bayes Fisher information for λ of transmuted distribution
Theorem 5.4. The Bayes Fisher information for parameter λ of the transmuted PDF in (3), under the uniform prior
on [−1, 1], is given by

Ĩ(λ) =
1
2

KL( fmax, fmin)=
1
2
. (15)

Proof: Upon setting u = F(x), we get

Ĩ(λ) = E [I(Λ)] =
1
2

∫ 1

−1
I(λ)dλ =

1
2

∫ 1

−1

∫
∞

−∞

[
f (x) − fmax(x)

]2

fXT (x)
dxdλ

=
1
2

∫ 1

0
log

(1 − u
u

)
du +

∫
∞

−∞

f (x)F(x) log
{2 f (x)F(x)

2 f (x)F̄(x)

}
dx

=
1
2

∫
∞

−∞

fmax(x) log
{ fmax(x)

fmin(x)

}
dx

=
1
2

KL( fmax, fmin)

=
1
2
,
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where the fourth equality holds due to the fact that
∫ 1

0 log
(

1−u
u

)
du = 0.

Suppose we consider the following general triangular prior for the parameter λ:

πα(λ) =

{ 2λ
α , 0 < λ ≤ α,

2(1−λ)
1−α , α ≤ λ < 1.

(16)

Theorem 5.5. The Bayes Fisher information for parameter λ in the transmuted distribution with PDF in (3), under
the general triangular prior with density πα(λ) as in (16), we have

Ĩ(λ) =
2

α(1 − α)
[
αKL( fmin, fα) + (1 − α)KL( f , fα)

]
,

where fα is a transmuted density with PDF

fα(x) = (1 + α) f (x) − α fmax(x).

Proof: From (14) and (16), we have

Ĩ(λ) = E [I(Λ)] =

∫ α

0
I(λ)παdλ +

∫ 1

α
I(λ)παdλ

=
2
α

∫
∞

−∞

( f (x) − fmax(x))
[∫ α

0

λ( f (x) − fmax(x))
fXT (x)

dλ
]

dx

+
2

1 − α

∫
∞

−∞

( f (x) − fmax(x))
[∫ 1

α

(1 − λ)( f (x) − fmax(x))
fXT (x)

dλ
]

dx

=
2
α

∫
∞

−∞

( f (x) − fmax(x))
[
α −

f (x)
f (x) − fmax(x)

log
{ fα(x)

f (x)

}]
dx

=
2

1 − α

∫
∞

−∞

( f (x) − fmax(x))
[
α − 1 −

2 f (x)F̄(x)
f (x) − fmax(x)

log
{ fα(x)
2 f (x)F̄(x)

}]
dx

=
2
α

∫
∞

−∞

f (x) log
{ f (x)

fα(x)

}
dx +

2
1 − α

∫
∞

−∞

fmin(x) log
{ fmin(x)

fα(x)

}
dx

=
2

α(1 − α)
[
αKL( fmin, fα) + (1 − α)KL( f , fα)

]
,

as required.

Corollary 5.6. The Bayes Fisher information for λ under the triangular prior distribution with PDF π(λ) =
1 − |λ|, |λ| ∈ [0, 1], is

Ĩ(λ) = KL( fmax, fmin) −
[
KL( f , fmax) − KL( f , fmin)

]
.

Proof: From Theorem 5.5, this is readily obtained.

6. Conclusions

In this paper, some informational properties of the transmuted distributions, such as Shannon entropy,
Fisher information, Bayes Fisher information and Gini’s mean difference, have been derived. Two new in-
formation measures: transmuted Shannon entropy and transmuted Gini’s mean difference, have also been
proposed. It has been shown that the transmuted Shannon entropy is based on the transmuted structure of
two KL divergences between the general model and its components. A similar result has been provided for
transmuted Gini’s mean difference and it has been shown that it can be given in terms of a quadratic rank
structure of two energy distances between transmuted distribution and its components. Some interesting
results about Fisher information and Bayes Fisher information for parameter λ have been presented under
different prior distributions including uniform, beta and triangular. Finally, the divergence between the
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general transmuted distribution and the densities of its components have been studied with the use of
Kullback-Leibler, chi-square and energy distances. It is of interest to mention that Granzotto et al. (2017)
recently introduced a more general family of transmuted distributions, called cubic rank transmuted dis-
tributions, and we plan to extend the results here to this family. We hope to report these findings in a future
paper.
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