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Abstract. In this study, we define a generalized hyperbolic secant distribution. Poor fit to heavy tailed data
sets is repeatedly obtained by existing three-parameter distributions. Only three parameters are considered
in the proposed new distribution and it fits a heavy left- and right-tailed data better than various existing
distributions. We study some properties of the new distribution, namely, mode, skewness, kurtosis,
hazard function, moments, mean deviation, and Shannon entropy. Seven different frequentist methods
for estimating the parameters are briefly described. A simulation study is also conducted to compare the
performances of the proposed methods of estimation. The usefulness of the new model is demonstrated
by applying it to fit two real-life data.

1. Introduction

Probability distributions are important in exploring and modeling real-life data in many fields. Thus,
this area has been widely examined by many researchers in recent years. The hyperbolic secant (HS)
distribution was provided and studied by Talacko [26]. A special case of a class of distributions introduced
by Perks [23] was also obtained. Formally, the HS random variable is arising naturally as the logarithm of
ratio of two independent standard normal random variables. Specifically, we suppose X1 and X2 have two
independent standard normal distributions. Then, Y = ln(X1/X2) has an HS distribution. The probability
density function (PDF) of a HS distribution is given by

fHS(x) =
1
π

sech(x), x ∈ (−∞,∞),

and the corresponding cumulative distribution function (CDF) is

FHS(x) =
2
π

tan−1 (
exp(x)

)
, x ∈ (−∞,∞),

where scale and location parameters can be added using the transformation Y = µ+σX. The HS distribution
is similar to a normal distribution. However, it is symmetric with variance equal (π/2)2. The HS distribution
is also leptokurtic; that is, it has a higher peak and heavier tails than the standard normal distribution.
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Therefore, the normal is reasonably replaced by the HS distribution in some cases. In literature, the fit of
the HS distributions has been explored by proposing many generalizations of the HS. These generalized
distributions are indexed by one or more shape parameters. They are established to extend the HS model to
asymmetric probability density curves and improve the fit in the skewed probability areas. Fischer [13] and
the references therein presented a brief contribution on possible generalizations of HS distribution. In this
study, a generalized HS (GHS) distribution is introduced by adding one extra shape parameter. The extra
parameter adds skewness for HS distribution and control the degree of skewness. Section 2 defines the
GHS distribution. We study some properties of the GHS distribution, namely, the shapes of the PDF, hazard
rate function (HRF), and quantile function. Section 3 investigates the mode, existence, and expression for
the moments. The relationship among the mean, variance, skewness, kurtosis, and the shape parameter
is also examined. Shannon’s entropy, mean deviation, and order statistics are studied in Section 4. Seven
different frequentist methods for estimating the parameters are briefly described in Section 5. A simulation
study is also performed to compare the performance of these estimation methods for the presented model.
In Section 6, the flexibility and usefulness of the new distribution are demonstrated by applications to two
real data sets. Summary and conclusions are elaborated in Section 7.

2. GHS Distribution

The T-X framework was proposed by Alzaatreh et al. [5], and it was further expanded by Aljarrah
et al. [4]. The two general methods have been applied to obtain various generalization of distributions.
Recently, Aljarrah et al. [3] defined the exponential-normal{Generalized Weibull} (E-N{GW}) distribution
as a generalization of the normal distribution. The authors also explored various properties of this model.
Following the technique by Aljarrah et al. [3], we define the T-HS{GW} generalized family as follows:
Given a shape parameter ξ > 0, location parameter −∞ < µ < ∞, and scale reflection parameter σ , 0, we
define the generalized family of distribution T-HS{GW} as

FX(x) =
1
2
− s1n(σ)

(1
2
− FT

{[(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))−ξ
− 1

]
/ξ

})
, (2.1)

where s1n(σ) is the sign of the parameter σ. and FT is the CDF of a random variable T ∈ (0, ∞). The
corresponding PDF to (2.1) is given by

fX(x) =
2 exp

( x−µ
σ

) (
1 + exp

(
2 x−µ

σ

))−1

π|σ|
(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))ξ+1
fT


(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))−ξ
− 1

ξ

 . (2.2)

It is noteworthy to mention the method presented in (2.2) is not to develop a single generalized HS
distribution, it can be applied to generate different families of generalized HS distributions. The GHS
distribution can be defined from (2.2) by letting T be the exponential random variable as follows:

Definition 2.1. We respectively define the PDF and CDF of the GHS distribution as

fX(x) =
2 exp( x−µ

σ )
(
1 + exp(2 x−µ

σ )
)−1

π|σ|
(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))ξ+1
exp

{[
1 −

(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))−ξ]
/ξ

}
, (2.3)

and

FX(x) =
1
2
− s1n(σ)

(
exp

{[
1 −

(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))−ξ]
/ξ

}
−

1
2

)
, (2.4)

where, −∞ < x, µ < ∞, σ , 0, ξ > 0.
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Notably, GHS distribution is derived as a generalization of the symmetric HS distribution for fitting
highly skewed data. As a result, good comparison of performance can be conducted when comparing with
various existing three- and four-parameter distributions.

Corollary 2.2. When ξ→ 0, the PDF of GHS(µ, σ, ξ) distribution in (2.3) reduces to HS distribution with location
and scale parameters µ and |σ|.

Proof. lim
ξ→0

fX(x) =
2 exp

( x−µ
σ

)
π|σ|

(
exp

(
2

x−µ
σ

)
+1

) = 1
π|σ| sech

( x−µ
σ

)
, that is X ∼ HSD(µ, |σ|).

Quantile functions can be used to generate pseudo-random numbers from a probability distribution.
We set FX(QX(u)) = u in (2.4) and solve for QX(u) in terms of u. Thus, the following quantile function for
the GHS distribution is obtained:

QX(u) = µ + σ ln
(
tan

[
π
2

{
1 −

{
1 − ξ ln

(
1
2 − s1n(σ)(u − 1

2 )
)}−1/ξ

}])
, u ∈ (0, 1). (2.5)

Proposition 2.3.

(a) If T is a standard exponential random variable, then X = µ + σ ln
(
tan

{
π
2

(
1 − (1 + ξT)−1/ξ

)})
follows the

GHS(µ, σ, ξ) distribution in Equation (2.4).
(b) If X ∼ GHS(µ, σ, ξ), then (2µ − X) ∼ GHS(µ,−σ, ξ).

Proof. The results in (a) and (b) are obtained using the CDF method.

The HRF of the GHS distribution is obtained after using the CDF in (2.4) and PDF in (2.3). The HRF is
given by

h (x) =



2 exp( x−µ
σ )

(
1 + exp(2 x−µ

σ )
)−1

π|σ|
(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))ξ+1
, σ > 0,

2 exp( x−µ
σ )

(
1 + exp(2 x−µ

σ )
)−1(

1 − 2
π tan−1

(
exp

( x−µ
σ

)))−ξ−1

π|σ|
{
exp

{[(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))ξ
− 1

]
/ξ

}
− 1

} , σ < 0.

(2.6)

The plots of PDFs and HRFs for GHS distribution are shown in Figures 1 and 2. The PDF can be symmetric,
positively skewed, or negatively skewed. Meanwhile, increasing or increasing-decreasing shapes are
observed for the HRF. As observed from the graphs in Figure 1, the distribution tends to be symmetric as
ξ→ 0, skewed to the left when σ > 0, and skewed to the right when σ < 0. The curve of the PDF is reflected
about the line x = 0 when the sign of parameter σ is changed. The increase in ξ decreases the mode when
σ > 0 and increases the mode when σ < 0. As observed from the graphs in Figure 2, the HRF in (2.5)
increases when σ > 0. When σ < 0, the HRF first shows an S-shape trend (constant-–increase-–constant).
Then, it increases first and then decreases.
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Figure 1: Plots of PDF of GHS distribution with µ = 0.

Figure 2: Plots of HRF of GHS distribution with µ = 0.

3. Properties of GHS Distribution

Some properties of the GHS distribution, namely, mode, moments, and relation between the moments
and shape parameter ξ, are explored.

3.1. Mode

Theorem 3.1. The mode of GHS distribution is at the point x∗ = µ when ξ = { 0, 1}. Otherwise, the mode is at the
point x∗ = µ + σ ln(u∗), where u∗ is the root of the equation

u−1(1 − u2)
(
π − 2tan−1(u)

)
− 2πξ

(
π − 2tan−1(u)

)−ξ
+ 2(ξ + 1) = 0, u > 0. (3.1)
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Proof. The derivative of fX(x) in (2.3) is given by

f ′X(x) = fX(x)
[
exp

(
2(x − µ)

σ

)
+ 1

]−1[
π − 2tan−1

(
exp

(x − µ
σ

))]−1
w(x),

where

w(x) =
1 − exp

(
2(x − µ)/σ

)
exp

(
(x − µ)/σ

) [
π − 2tan−1

(
exp

(x − µ
σ

))]
− 2

[
1 −

2
π

tan−1
(
exp

(x − µ
σ

))]−ξ
+ 2(ξ + 1).

By setting w(x) = 0 and replacing exp
( x−µ
σ

)
by u, (3.1) is obtained. Clearly, if ξ = { 0, 1}, then the mode is at u = 1

from (3.1); equivalently, x = µ. When ξ , { 0, 1}, the mode is at the point x∗ = µ + σ ln(u∗), where u∗ is the root of
(3.1).

3.2. Moments

The moments can be used to describe and identify distribution properties, such as the center, standard
deviation, skewness, and kurtosis.

Theorem 3.2. The rth absolute moment of the GHS distribution exists for any µ, σ , 0, ξ > 0 and satisfies the
inequality

E(|X|r) ≤ e−1(1 + ξ)1+1/ξ
r∑

i=0

(
r
i

)
|µ|n−i

|σ|iE(|R|i), (3.2)

where E(|R|r) = 4
πΓ(r+1)

∞∑
j=0

(−1) j(2 j + 1)−(r+1) is the rth absolute moment of a standard HS random variable (Johnson

et al., [18]).

Proof. If Z = (X − µ)/σ and binomial expansion is used, then we have

E(|X|r) ≤
r∑

i=0

(
r
i

)
|µ|r−i
|σ|iE|Z|i, (3.3)

where Z is GHS random variable with µ = 0 and σ = 1. By using this definition, we obtain

E(|Z|i) =

∞∫
−∞

|z|i
2 exp(z)

(
1 + exp(2z)

)−1

π
(
1 − 2

π tan−1 (
exp(z)

))ξ+1
exp

{[
1 −

(
1 − 2

π tan−1 (
exp(z)

))−ξ]
/ξ

}
dz,

=
2
π

∞∫
−∞

|z|i
exp(−z)(

1 + exp(−2z)
)1(z)dz, (3.4)

where

1(z) =
(
1 − 2

π tan−1 (
exp(z)

))−ξ−1
exp

{[
1 −

(
1 − 2

π tan−1 (
exp(z)

))−ξ]
/ξ

}
.

By using the elementary calculus, we find that sup
−∞<z<∞

{1(z)} = e−1(1 + ξ)1/ξ+1. From (3.4), we derive

E(|Z|i) ≤ e−1(1 + ξ)1/ξ+1E(|R|i), (3.5)
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where

E(|R|i) =
2
π

∞∫
−∞

|z|i
exp(−z)(

1 + exp(−2z)
)dz,

is the ith absolute moment of standard HS distribution. The result in (3.2) is obtained using (3.5) in (3.3).

The following theorem presents moments of GHS as a series expression.

Theorem 3.3. The rth moment, E(Xr), of the GHS distribution is given by

E(Xr) =

r∑
n=0

n∑
i=0

∞∑
j=0

(
r
n

)(
n
i

)
µr−nσn(−1)n+iξ−i−1(π/2)2 jcn−i, je1/ξΓ(i + 1)Ei

2 j/ξ(1/ξ), (3.6)

where cn,m is given in (3.11), and E j
s(z) = 1

Γ( j+1)

∞∫
1

(ln t) jt−s exp(−zt)dt is the generalized integro-exponential function

by (Milgram, [20]).

Proof. If Z = (X − µ)/σ, then we obtain

E(Xr) =

r∑
n=0

(
r
n

)
µr−nσnE(Zn), (3.7)

where Z is a random variable with PDF in (2.3) with µ = 0 and σ = 1. Therefore, the moments of Z should be
obtained. Using Proposition 2.3(a), we derive

E(Zn) = E
{
ln tan

(
π
2

(
1 − (1 + ξT)−1/ξ

))}n
.

Notably, ln tan(π2 − x) = ln cot(x) = − ln tan(x). Thus, we obtain

E(Zn) = (−1)nE
{
ln tan

(
π
2 (1 + ξT)−1/ξ

)}n
, (3.8)

We use the following series by Gradshteyn and Ryzhik [17](See 1.518-3):

ln tan(x) = ln(x) +

∞∑
k=1

(−1)k+1(22k−1
− 1)22kB2k

k(2k)!︸                        ︷︷                        ︸
ak

x2k, 0 < x <
π
2
. (3.9)

Thus, we have

{
ln tan

(
π
2 (1 + ξT)−1/ξ

)}n
=

(−1/ξ) ln(1 + ξT) +

∞∑
k=0

ak

(
π
2 (1 + ξT)−1/ξ

)2k


n

, (3.10)

where a0 = ln(π/2). Applying binomial series on (3.10) yields

{
ln tan

(
π
2 (1 + ξT)−1/ξ

)}n
=

n∑
i=0

(
n
i

)
(−1/ξ)i(ln(1 + ξT))i

 ∞∑
k=0

ak

(
π
2 (1 + ξT)−1/ξ

)2k


n−i

.
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Then, we use a result by Gradshteyn and Ryzhik [17] (See 0.314) to increase a power series to a natural number n: ∞∑
k=0

akuk


n

=

∞∑
k=0

cn,kxk,

where the coefficient cn,k is calculated from the recurrence equation

cn,0 = an
0 , cn,m =

1
ma0

m∑
k=1

(kn −m + k)akcn,m−k, m ≥ 1. (3.11)

Therefore, we derive

E
{
ln tan

(
π
2 (1 + ξT)−1/ξ

)}n
=

n∑
i=0

∞∑
j=0

(
n
i

)
(−1/ξ)icn−i, j

(
π
2

)2 j
E
{
(ln(1 + ξT))i(1 + ξT)−2 j/ξ

}
. (3.12)

Then, we obtain E
{
(ln(1 + ξT))i(1 + ξT)−2 j/ξ

}
by writing:

E
{
(ln(1 + ξT))i(1 + ξT)−2 j/ξ

}
=

∞∫
0

(ln(1 + ξt))i(1 + ξt)−2 j/ξ exp(−t)dt. (3.13)

If u = 1 + ξt under the integral in (3.13), then we have

E
{
(ln(1 + ξT))i(1 + ξT)−2 j/ξ

}
=

e1/ξ

ξ

∞∫
1

(ln u)iu−2 j/ξ exp(−u/ξ)dt,

= ξ−1e1/ξΓ(i + 1)Ei
2 j/ξ(1/ξ). (3.14)

The result in (3.6) is obtained by substituting (3.14) in (3.12) and then using (3.8) and (3.7).

Figure 3 plots the mean, median, mode, and standard deviation of GHS distribution in terms of the
parameter ξ for µ = 0 and σ = {1,−1}. As shown in Figure 3(a), the mean and median decrease with the
increase ξ when σ > 0. Meanwhile, the mode increases first and then decreases with the increase in ξ, and
mean < median < mode. When σ < 0, the mean and median increase with the increase in ξ. Meanwhile,
the mode decreases first and then increases with the increase in ξ, and mean >median >mode. Figure 3(b)
shows that the standard deviation decreases with the increase in ξ.

Figure 4 plots the skewness and kurtosis of GHS distribution in terms of the parameters ξ when µ = 0
and σ = {1,−1}. As shown in Figure 4(a), the skewness (γ1) decreases with the increase in ξ when σ > 0.
Moreover, the GHS distribution is left skewed in this case. When σ < 0, γ1 increases with the increase in ξ.
The GHS distribution is also right skewed in this case. Figure 4(b) shows that the kurtosis (γ2) decreases
first and then increases with the increase in ξ. The kurtosis is also not affected by σ in this case. The
distribution is symmetric as ξ → 0. Notably, the degree of γ1 of the GHS distribution is measured by ξ.
The parameter σ plays two roles, namely, characterizing the scale property and determining left skewness
(σ > 0) or right skewness (σ < 0).

The flexibility of GHSD is compared with the S-transformed HS (HS-SAS) distribution by Fischer and
Herrmann [14], the beta-HS (BHS) distribution by Fischer and Vaughan [15], the Burr type VIII (BVIII)
distributions by Burr [8], the generalized logistic (GL) distributions of type I and II by Johnson et al. [18],
and the skewed normal (SN) distribution by Azzalini [7]. Table 1 summarizes the ranges of the skewness
and kurtosis of these distributions. GHS fits the widest range of skewness and kurtosis, with the exception
of HS-SAS that can fit platykurtic distributions.
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Figure 3: Graphs of mean, median, mode and standard deviation for GHS distribution for µ = 0, σ = {1,−1},
and various values of ξ.

Figure 4: The skewness(γ1) and kurtosis(γ2) for GHS distribution for µ = 0 and σ = {1,−1} for various
values of ξ.
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Table 1: Comparison of the skewness and kurtosis of GHSD and several competitor distributions

Model Skewness Kurtosis

GHS -3.873↔ 3.873 4.696↔ 35.033
BHS* -2.000↔ 2.000 3.000↔ 9.000
HS-SAS* -2.900↔ 2.900 2.400↔ 16.000
BVIII -1.993↔ 1.187 4.940↔ 8.971
GLI -1.995↔ 1.134 4.148↔ 8.964
GLII -1.134↔ 1.995 4.148↔ 8.964
SN -0.995↔ 0.995 3.000↔ 3.869

* The kurtosis and skewness are obtained from Figure 6.1 in Fischer [13] (p.56).

4. Shannon’s Entropy, Mean Deviations, and Order statistics

4.1. Shannon Entropy

Shannon [24] presented Shannon entropy of any random variable X, which is defined as H(X) =
−E

(
ln fX(x)

)
. This method provides an absolute limit on the best possible average length of lossless encoding

or compression of an information source. We use fY(y) = (1 + ξy)−(1+ξ)/ξ and FY(y) = 1− (1 + ξy)−1/ξ, which
are the PDF and CDF of generalized Weibull (Mudholkar et al. [21]), respectively, and combine it with
Theorem 2 of Aljarrah et al. [4] to obtain the Shannon entropy of T-R{GW} PDF in (2.2) as follows:

H(X) = ln |σ| + H(T) − (1+ξ)
ξ E {ln(1 + ξT)} + E

{
ln Q′R

(
1 − (1 + ξT)−1/ξ

)}
, (4.1)

where T is the standard exponential and R is the HS. The Shannon’s entropy (4.1) is obtained by finding
E
{
ln Q′R

(
1 − (1 + ξT)−1/ξ

)}
, where Q′R(λ) = π csc(πλ) is the derivative of the quantile function of HS

distribution. Thus, we obtain

E
{
ln Q′R

(
1 − (1 + ξT)−1/ξ

)}
= lnπ − E

{
ln sin

[
π

(
1 − (1 + ξT)−1/ξ

)]}
,

= lnπ − E
{
ln sin

[
π(1 + ξT)−1/ξ

]}
. (4.2)

We use the series expansion in Gradshteyn and Ryzhik [17](See 1.518-1),

ln sin(x) = ln x +

∞∑
k=1

(−1)k22k−1B2k

k(2k)!︸          ︷︷          ︸
ωk

x2k, 0 < x < π.

Thus, we have

E
{
ln sin

[
π(1 + ξT)−1/ξ

]}
= lnπ −

1
ξ

E (ln(1 + ξT)) +

∞∑
k=1

ωkπ
2kE

(
(1 + ξT)−2k/ξ

)
. (4.3)

Thus, we derive the following by using (4.3) in (4.2) and substituting it in (4.1):

H(X) = ln |σ| + H(T) − E (ln(1 + ξT)) −
∞∑

k=1

ωkπ
2kE

(
(1 + ξT)−2k/ξ

)
. (4.4)
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T has standard exponential PDF. Thus, we have

H(T) = E
(
− ln fT(T)

)
=

∫
∞

0
te−tdt = Γ(2) = 1. (4.5)

Then, we obtain E ((1 + ξT)v) and E (ln(1 + ξT)) by using Formulas (3.382-4) and (4.337) in Gradshteyn and
Ryzhik [17]. Therefore,

E ((1 + ξT)v) =

∫
∞

0
(1 + ξt)v exp(−t)dt = ξve1/ξΓ(1 + v, 1/ξ), (4.6)

E (ln(1 + ξT)) =

∫
∞

0
ln(1 + ξt) exp(−t)dt = e1/ξE1(1/ξ). (4.7)

where Γ(a, x) =
∫
∞

x ta−1e−tdt is the incomplete gamma function, and E1(x) = x
∫
∞

1 e−xt ln t dt is the exponential
integral (Abramowitz and Stegun, [2]).

We use (4.7), (4.6), and (4.5) in (4.4) to derive the following Shannon entropy of GHS:

H(X) = ln |σ| + 1 − e1/ξE1(1/ξ) −
∞∑

k=1

ωkπ
2kξ−2k/ξe1/ξΓ(1 − 2k/ξ, 1/ξ).

4.2. Mean Deviations
X is assumed to be a GHS random variable with mean µ∗ and median M∗. The mean deviations from

the mean and median are respectively defined as

D(µ∗) = 2µ∗FX(µ∗) − 2Ic(µ∗) and D(M∗) = µ∗ − 2Ic(M∗),

where FX is given by (2.4). The mean µ∗ can be derived from (3.6) with r = 1. The median M∗ can be obtained
from (2.5) by replacing the value of u with 0.5. After the PDF in (2.3) is used, we obtain the first incomplete
moment Ic(w) as

Ic(w) =

w∫
−∞

2x exp( x−µ
σ )

(
1 + exp(2 x−µ

σ )
)−1

π|σ|
(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))ξ+1
exp

{[
1 −

(
1 − 2

π tan−1
(
exp

( x−µ
σ

)))−ξ]
/ξ

}
dx.

If t =
[(

1 − 2
π tan−1

(
exp

( x−µ
σ

)))−ξ
− 1

]
/ξ, then we have

Ic(w) =

[(
1− 2
π tan−1

(
exp

( w−µ
σ

)))−ξ
−1

]
/ξ∫

0

s1n(σ)
{
µ + σ ln tan

(
π
2

[
1 − (1 + ξt)−1/ξ

])}
exp(−t)dt,

= s1n(σ)µFX(w) +

[(
1− 2
π tan−1

(
exp

( w−µ
σ

)))−ξ
−1

]
/ξ∫

0

|σ| ln tan
(
π
2

[
1 − (1 + ξt)−1/ξ

])
exp(−t)dt. (4.8)

Notably, ln tan(π2 − x) = ln cot(x) = − ln tan(x), and the series in (3.10) is used after setting n = 1. Thus,
we derive

ln tan
(
π
2

[
1 − (1 + ξt)−1/ξ

])
= (1/ξ) ln(1 + ξT) −

∞∑
k=0

π2k

22k
ak(1 + ξT)−2k/ξ. (4.9)
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Using (4.9) in (4.8) yields

Ic(w) = s1n(σ)µFT(s) + |σ|

1
ξ

s∫
0

ln(1 + ξT) exp(−t)dt −
∞∑

k=0

π2k

22k
ak

s∫
0

(1 + ξT)−2k/ξ exp(−t)dt

 , (4.10)

where s =
({

1 − 2
π tan−1

(
exp

(w−µ
σ

))}−ξ
− 1

)
/ξ. We let u = 1+ξt over the integral in (4.10) and use the integral

in Gradshteyn and Ryznik [17](See 3.381-3). Thus, we obtain

Ic(w) = s1n(σ)µFT(s) + |σ|

ξ−1δ2(s) −
∞∑

k=0

π2k

22k
akδ1(−2k/ξ, s)

 ,
where δ1(v, τ) =

τ∫
0

(1 + ξt)v exp(−t)dt = e1/ξξv [Γ(v + 1, 1/ξ) − Γ(v + 1, τ + 1/ξ)], and

δ2(τ) =
τ∫

0
ln(1 + ξt) exp(−t)dt = lim

v→0
∂
∂vδ1(v, τ).

4.3. Order Statistics
Researchers in many fields of statistics, such as reliability and life testing, have mainly used order

statistics. We let X(1),X(2), ...,X(n) denote the ordered statistics of a random sample X1,X2, . . . ,Xn from a
continuous population with CDF FX(x) and PDF fX(x). Then, the PDF of kth order statistic X(k) is

fX(k) (x) = k
(
n
k

)
fX(x)[FX(x)]k−1[1 − FX(x)]n−k. (4.11)

The PDF of the kth order statistic for GHS distribution is derived by substituting (2.3) and (2.4) in (4.11).
Then, using binomial theorem yields

fX(k) (x) =

(
n
k

) 2k exp( x−µ
σ )

(
1 + exp(2 x−µ

σ )
)−1

π|σ|
[
1 − 2

π tan−1
(
exp

( x−µ
σ

))]ξ+1

$∑
j=0

(−1) j
(
$
j

)
exp

1 −
[
1 − 2

π tan−1
(
exp

( x−µ
σ

))]−ξ
(n − $ + j)−1ξ

. (4.12)

where $ = 1
2
(
n − 1 − s1n(σ) (n − 2k + 1)

)
.

5. Estimation and simulation

5.1. Estimation
Seven estimation methods of the GHS parameters, including the maximum likelihood (ML) method,

least-square and weighted least-square methods, maximum product of spacing (MPS) method, Cramér-von
Mises (CVM) method, Anderson-Darling (AD) method, and method of moments (MM), are selected in this
study. These methods are described in a general way to save space. Let x1, x2, . . . , xn be an observed random
sample of size n from the GHS distribution in (2.4), and let x(1) ≤ x(2) ≤ . . . ≤ x(n) be the corresponding order
statistics. Moreover, let θ = (µ, σ, ξ)t denote the vector of parameters of the GHS distribution and Θ be the
parameter space. The purpose is to estimate θ by using the different methods of estimation.

5.1.1. Maximum likelihood estimators
The ML estimate for θ, as denoted by θ̂ML, represents the values of the parameters maximizing the

likelihood function or the log-likelihood function over the parameter space. The formulation is

θ̂ML = arg max
θ∈Θ

Ln(θ; x1, x2, ..., xn) or θ̂ML = arg max
θ∈Θ

`n(θ; x1, x2, ..., xn),
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where

Ln(θ; x1, x2, ..., xn) =

n∏
i=1

fX(xi|θ) and `n(θ; x1, x2, ..., xn) =

n∑
i=1

ln fX(xi|θ).

5.1.2. Ordinary and weighted least-square estimators

It is well-known that

E
[
FX(X(i)|θ)

]
=

i
n + 1

and Var
[
FX(X(i)|θ)

]
=

i(n − i + 1)

(n + 1)2(n + 2)
.

The ordinary least-square (OLS) estimates for θ, as denoted by θ̂OLS, are obtained by minimizing the
following sum of squares:

θ̂OLS = arg min
θ∈Θ

n∑
i=1

[
FX(x(i)|θ) −

i
n + 1

]2

.

The weighted least-square (WLS) method differs from the OLS method in terms of the weighted sum of the
squared components by the inverse of their respective variances. The WLS estimate, as denoted by θ̂WLS, is
obtained from

θ̂WLS = arg min
θ∈Θ

n∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
FX(x(i)|θ) −

i
n + 1

]2

.

5.1.3. Maximum product of spacing estimators

Cheng and Amin [9] and Cheng and Amin [10] introduced the MPS method as an alternative to the ML
method when estimating parameters with continuous univariate distributions. The uniform spacings of a
random sample from the GHS distribution is defined as

Di(θ) = FX(x(i)|θ) − FX(x(i−1)|θ), i = 1, 2, ...,n + 1,

where FX(x(0)|θ) = 0 and FX(x(n+1)|θ) = 1. Thus,
n+1∑
i=1

Di(θ) = 1. The MPS estimates, as denoted by θ̂MPS, are

obtained by maximizing the geometric mean of the spacings with respect to θ, that is,

θ̂MPS = arg max
θ∈ Θ

n+1∏
i=1

Di(θ)


1

n+1

or θ̂MPS = arg max
θ∈ Θ

1
n + 1

n+1∑
i=1

ln Di(θ).

5.1.4. Cramér-von Mises estimators

MacDonald [19] provided empirical evidence in which the bias of the CVM estimator is smaller than
those of the other minimum distance estimators. The CVM estimators, as denoted by θ̂CVM, of the parame-
ters vector θ is obtained as

θ̂CVM = arg min
θ∈ Θ

 1
12n

+

n∑
i=1

(
FX(xi|θ) −

2i − 1
2n

)2
 .
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5.1.5. Anderson-Darling estimators
The AD estimates, as denoted by θ̂AD, are obtained by minimizing the Anderson-Darling statistic with

respect to θ, that is,

θ̂AD = arg min
θ∈Θ

−n −
n∑

i=1

2i − 1
n

[
ln FX(x(i)|θ) + ln

(
1 − FX(x(n+1−i)|θ)

)] .
5.1.6. Method of moments estimators

The MM estimates, as denoted by θ̂MM, of the GHS distribution can be obtained by equating the first
three theoretical moments of the random variable with PDF in (2.3) with the corresponding sample moments
as follows:

E (Xr) =
1
n

n∑
i=1

xr
i , r = 1, 2, 3,

where E (Xr) are defined in Theorem 3.3.

5.2. Simulation
In this subsection, we compare the performance of the estimation methods in previous subsection 5.1

for the parameters of the GHS distribution by conducting a simulation study. Many combinations of
the parameters of the GHS model, such as highly and moderately left (or right) skewed, are considered.
They represent several different possible shapes of the model. Table 2 contains the parameter sets and the
corresponding central moments of the GHS distribution. The results of three sample sizes (n = 100, 200,
and 500) are reported.

Table 2: Set of parameter combinations and the corresponding central moments of the GHS distribution

Parameter set Mean Variance Skewness Kurtosis
µ σ ξ

-2 -1 0.5 -1.678 1.498 1.056 5.626
0 -2 1 0.984 4.848 1.428 6.856
2 -3 2 4.121 8.609 1.813 8.677
-1 1 0.5 -1.322 1.498 -1.056 5.626
0 2 1 -0.984 4.848 -1.428 6.856
4 4 2 1.172 15.305 -1.813 8.677

The methods estimators of the parameters µ, σ, and ξ are computed for 1000 repetitions to calculate
the bias, Bias(λ̂) = 1

1000

∑1000
i=1 (λ̂i − λ), and mean square error (MSE), MSE(λ̂) = 1

1000

∑1000
i=1 (λ̂i − λ)

2
, λ =

µ, σ, ξ, and then repeated for each set of parameter combinations and sample sizes. For each parameter
combination, we generate a random sample ui ∼ uniform(0, 1), i = 1, 2, ...,n. Then xi = QX(ui) ∼ GHS(µ, σ, ξ)
distribution. The initial values of µ and σ are taken to be the mean (x̄) and standard deviation (s) of the data,
respectively. The initial value of σ is taken as s (or −s) if the data is skewed left (or right). The initial value
of ξ is taken as 1 or 1.5. All simulations are done in R software (ver. 4.0.2). Also, the estimation processes
proceed until standard convergence criteria are met.

Table 3: Simulation results

Parameters Sample size
(n)

Method Bias MSE Rank
Sum

µ σ ξ µ̂ σ̂ ξ̂ µ̂ σ̂ ξ̂

-2 -1 0.5 100 ML 0.034 5 0.012 2 0.079 3 0.031 1 0.024 1 0.106 1 13 2
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Table 3 continued from previous page
Parameters Sample size

(n)
Method Bias MSE Rank

Sum
µ σ ξ µ̂ σ̂ ξ̂ µ̂ σ̂ ξ̂

OLS 0.053 7 0.036 7 0.144 7 0.075 5 0.046 6 0.529 5 37 7

WLS 0.031 4 0.020 4 0.079 3 0.043 3 0.031 3 0.188 3 20 3

MPS 0.018 2 0.033 6 0.061 2 0.087 6 0.034 4 1.516 6 26 4

CVM 0.048 6 0.019 3 0.136 5 0.067 4 0.042 5 0.413 4 27 5

AD 0.021 3 0.009 1 0.052 1 0.035 2 0.027 2 0.127 2 11 1

MM 0.004 1 0.028 5 0.136 5 0.175 7 0.049 7 4.863 7 32 6

200 ML 0.017 6 0.009 4 0.045 4 0.015 1 0.011 1 0.042 2 18 3

OLS 0.016 5 0.014 6 0.047 5 0.026 6 0.019 6 0.112 6 34 6

WLS 0.012 3 0.010 5 0.034 3 0.018 4 0.013 4 0.062 4 23 4

MPS 0.000 1 0.017 7 0.008 1 0.015 1 0.011 1 0.039 1 12 1

CVM 0.015 4 0.006 3 0.047 5 0.025 5 0.018 5 0.110 5 27 5

AD 0.008 2 0.005 2 0.027 2 0.017 3 0.012 3 0.052 3 15 2

MM 0.033 7 0.004 1 0.756 7 0.360 7 0.048 7 233.041 7 36 7

500 ML 0.008 6 0.006 4 0.021 4 0.006 1 0.005 1 0.016 2 18 3

OLS 0.007 4 0.008 6 0.021 4 0.009 5 0.007 5 0.036 5 29 6

WLS 0.005 3 0.006 4 0.016 3 0.007 3 0.005 1 0.022 4 18 3

MPS 0.002 1 0.008 6 0.001 1 0.006 1 0.005 1 0.015 1 11 1

CVM 0.007 4 0.005 3 0.021 4 0.009 5 0.007 5 0.036 5 26 5

AD 0.004 2 0.004 2 0.013 2 0.007 3 0.005 1 0.021 3 13 2

MM 0.021 7 0.002 1 0.613 7 0.134 7 0.019 7 222.761 7 36 7

0 -2 1 100 ML 0.161 3 0.062 3 0.357 2 0.736 2 0.174 2 7.654 5 17 2

OLS 0.275 7 0.137 7 0.564 5 1.139 5 0.345 6 4.856 4 34 7

WLS 0.196 5 0.097 5 0.410 3 0.865 3 0.252 3 4.063 3 22 3

MPS 0.190 4 0.135 6 0.568 6 1.731 6 0.281 4 32.303 6 32 6

CVM 0.228 6 0.089 4 0.477 4 0.895 4 0.292 5 3.478 2 25 4

AD 0.115 2 0.053 2 0.222 1 0.431 1 0.173 1 1.296 1 8 1

MM 0.099 1 0.035 1 1.207 7 4.591 7 0.429 7 380.586 7 30 5

200 ML 0.055 4 0.025 3 0.092 4 0.098 1 0.057 1 0.159 2 15 2

OLS 0.081 6 0.047 6 0.149 6 0.252 6 0.118 6 0.674 5 35 6

WLS 0.052 3 0.031 5 0.091 3 0.139 4 0.077 4 0.270 4 23 4

MPS 0.028 1 0.050 7 0.049 1 0.099 2 0.064 2 0.155 1 14 1

CVM 0.072 5 0.027 4 0.141 5 0.243 5 0.112 5 0.683 6 30 5

AD 0.039 2 0.020 2 0.071 2 0.118 3 0.069 3 0.202 3 15 2

MM 0.123 7 0.006 1 1.290 7 4.725 7 0.337 7 432.197 7 36 7

500 ML 0.025 4 0.015 3 0.041 4 0.037 1 0.024 1 0.056 2 15 2

OLS 0.033 6 0.024 7 0.056 6 0.071 6 0.043 6 0.132 6 37 7

WLS 0.022 3 0.017 4 0.038 3 0.047 4 0.030 4 0.077 4 22 4

MPS 0.006 1 0.022 6 0.014 1 0.037 1 0.025 2 0.054 1 12 1

CVM 0.030 5 0.017 4 0.053 5 0.070 5 0.042 5 0.130 5 29 5

AD 0.018 2 0.013 2 0.033 2 0.045 3 0.029 3 0.073 3 15 2

MM 0.067 7 0.006 1 0.556 7 1.678 7 0.133 7 176.303 7 36 6

2 -3 2 100 ML 0.556 2 0.163 2 1.347 3 4.903 3 0.71 1 47.066 5 16 2

OLS 0.834 6 0.315 6 1.633 6 5.396 5 1.129 6 18.781 3 32 6

WLS 0.722 5 0.264 5 1.478 5 5.009 4 0.953 3 19.851 4 26 5

MPS 1.287 7 0.482 7 3.566 7 17.341 7 1.912 7 187.114 7 42 7

CVM 0.686 4 0.219 4 1.396 4 4.478 2 0.965 4 15.280 1 19 3

AD 0.575 3 0.198 3 1.184 2 4.113 1 0.811 2 16.330 2 13 1

MM 0.022 1 0.101 1 0.750 1 6.820 6 0.985 5 50.662 6 20 4

200 ML 0.225 3 0.075 2 0.450 2 1.323 2 0.268 1 8.630 5 15 2

OLS 0.399 7 0.157 6 0.733 5 2.265 5 0.544 6 6.664 4 33 6

WLS 0.272 4 0.109 4 0.485 3 1.384 3 0.361 3 3.836 2 19 3

MPS 0.391 6 0.187 7 0.942 6 3.928 6 0.531 5 36.947 6 36 7

CVM 0.335 5 0.111 5 0.633 4 1.956 4 0.491 4 5.489 3 25 4

AD 0.210 2 0.081 3 0.367 1 1.029 1 0.306 2 2.304 1 10 1

MM 0.144 1 0.033 1 1.149 7 8.883 7 0.803 7 221.641 7 30 5

500 ML 0.084 2 0.036 2 0.130 2 0.225 1 0.088 1 0.376 1 9 1

OLS 0.171 7 0.079 7 0.276 6 0.651 6 0.204 6 1.366 6 38 7

WLS 0.102 4 0.049 4 0.160 4 0.340 4 0.122 4 0.618 4 24 4

MPS 0.074 1 0.061 5 0.107 1 0.245 2 0.098 2 0.403 2 13 2

CVM 0.154 6 0.063 6 0.257 5 0.621 5 0.196 5 1.301 5 32 5

AD 0.089 3 0.041 3 0.142 3 0.317 3 0.118 3 0.561 3 18 3

MM 0.133 5 0.008 1 0.707 7 3.695 7 0.366 7 73.579 7 34 6

-1 1 0.5 100 ML 0.034 5 0.012 2 0.079 3 0.031 1 0.024 1 0.106 1 13 2

OLS 0.053 7 0.036 7 0.144 7 0.075 5 0.046 6 0.529 5 37 7

WLS 0.031 4 0.020 4 0.079 3 0.043 3 0.031 3 0.188 3 20 3

MPS 0.018 2 0.033 6 0.061 2 0.087 6 0.034 4 1.516 6 26 4

CVM 0.048 6 0.019 3 0.136 5 0.067 4 0.042 5 0.413 4 27 5

AD 0.021 3 0.009 1 0.052 1 0.035 2 0.027 2 0.127 2 11 1

MM 0.004 1 0.028 5 0.136 5 0.175 7 0.049 7 4.863 7 32 6
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Table 3 continued from previous page
Parameters Sample size

(n)
Method Bias MSE Rank

Sum
µ σ ξ µ̂ σ̂ ξ̂ µ̂ σ̂ ξ̂

200 ML 0.019 5 0.008 2 0.043 4 0.016 2 0.013 1 0.048 2 16 3

OLS 0.026 7 0.019 7 0.065 5 0.026 5 0.021 6 0.120 6 36 7

WLS 0.016 3 0.010 4 0.037 3 0.018 4 0.015 4 0.064 4 22 4

MPS 0.003 1 0.016 6 0.007 1 0.015 1 0.013 1 0.045 1 11 1

CVM 0.025 6 0.011 5 0.065 5 0.026 5 0.020 5 0.116 5 31 5

AD 0.012 2 0.006 1 0.029 2 0.017 3 0.014 3 0.055 3 14 2

MM 0.016 3 0.009 3 0.107 7 0.098 7 0.032 7 1.348 7 34 6

500 ML 0.008 5 0.004 2 0.016 4 0.006 1 0.004 1 0.015 2 15 3

OLS 0.011 7 0.008 7 0.024 5 0.010 5 0.007 5 0.037 5 34 7

WLS 0.007 4 0.005 4 0.015 3 0.007 3 0.005 3 0.021 4 21 4

MPS 0.002 1 0.006 6 0.005 1 0.006 1 0.004 1 0.014 1 11 1

CVM 0.010 6 0.005 4 0.025 6 0.010 5 0.007 5 0.037 5 31 5

AD 0.006 2 0.003 1 0.012 2 0.007 3 0.005 3 0.020 3 14 2

MM 0.006 2 0.004 2 0.032 7 0.028 7 0.012 7 0.149 7 32 6

0 2 1 100 ML 0.124 4 0.038 2 0.247 2 0.506 2 0.155 1 4.319 4 15 2

OLS 0.262 7 0.127 7 0.520 6 1.045 6 0.339 7 4.536 5 38 7

WLS 0.169 5 0.079 4 0.341 4 0.709 3 0.233 4 3.551 3 23 3

MPS 0.116 3 0.100 6 0.248 3 0.763 4 0.211 3 6.265 6 25 4

CVM 0.221 6 0.082 5 0.448 5 0.851 5 0.294 5 3.408 2 28 5

AD 0.093 2 0.037 1 0.162 1 0.314 1 0.165 2 0.744 1 8 1

MM 0.019 1 0.071 3 0.715 7 2.538 7 0.316 6 148.042 7 31 6

200 ML 0.061 4 0.023 3 0.094 3 0.112 1 0.070 1 0.205 1 13 1

OLS 0.109 7 0.061 7 0.185 6 0.276 6 0.132 6 0.756 6 38 7

WLS 0.062 5 0.033 4 0.100 4 0.147 4 0.085 4 0.292 4 25 4

MPS 0.037 1 0.049 6 0.056 1 0.124 2 0.079 2 0.235 2 14 2

CVM 0.099 6 0.041 5 0.173 5 0.257 5 0.125 5 0.689 5 31 5

AD 0.049 2 0.022 1 0.08 2 0.134 3 0.081 3 0.255 3 14 2

MM 0.054 3 0.022 1 0.366 7 1.139 7 0.200 7 15.650 7 32 6

500 ML 0.024 4 0.010 1 0.034 3 0.035 2 0.023 1 0.052 2 13 2

OLS 0.040 7 0.025 7 0.063 6 0.073 6 0.042 5 0.139 6 37 7

WLS 0.025 5 0.014 4 0.037 4 0.045 4 0.028 3 0.073 4 24 4

MPS 0.005 1 0.017 5 0.006 1 0.034 1 0.024 2 0.050 1 11 1

CVM 0.037 6 0.017 5 0.060 5 0.071 5 0.042 5 0.137 5 31 5

AD 0.020 3 0.010 1 0.030 2 0.043 3 0.028 3 0.069 3 15 3

MM 0.019 2 0.011 3 0.102 7 0.282 7 0.075 7 1.117 7 33 6

4 4 2 100 ML 0.616 2 0.158 1 1.070 1 6.973 1 1.155 1 33.747 5 11 1

OLS 1.068 6 0.397 6 1.521 5 9.170 5 2.025 5 17.024 3 30 5

WLS 0.915 5 0.324 5 1.367 4 8.663 4 1.748 3 18.759 4 25 4

MPS 1.550 7 0.567 7 3.277 6 28.337 6 3.159 7 175.497 6 39 7

CVM 0.902 4 0.277 3 1.348 3 7.972 3 1.780 4 15.185 1 18 3

AD 0.712 3 0.229 2 1.076 2 7.123 2 1.499 2 15.641 2 13 2

MM 0.147 1 0.300 4 38.248 7 41.989 7 2.783 6 1138692.451 7 32 6

200 ML 0.338 2 0.100 1 0.507 2 3.102 2 0.607 1 10.430 5 13 2

OLS 0.615 7 0.250 6 0.798 5 3.970 5 1.022 5 6.134 4 32 5

WLS 0.436 4 0.166 3 0.600 3 3.191 3 0.757 3 6.047 3 19 3

MPS 0.605 6 0.260 7 1.139 6 9.416 6 1.194 6 51.943 6 37 7

CVM 0.526 5 0.187 4 0.699 4 3.476 4 0.924 4 5.236 2 23 4

AD 0.341 3 0.122 2 0.454 1 2.488 1 0.668 2 3.994 1 10 1

MM 0.071 1 0.197 5 47.237 7 41.952 7 2.489 7 1040813.433 7 34 6

500 ML 0.100 2 0.034 1 0.112 2 0.376 1 0.150 1 0.353 1 8 1

OLS 0.253 7 0.110 6 0.307 6 1.256 6 0.368 6 1.610 6 37 6

WLS 0.134 5 0.058 3 0.153 4 0.567 4 0.204 4 0.580 4 24 4

MPS 0.086 1 0.067 4 0.089 1 0.413 2 0.167 2 0.387 2 12 2

CVM 0.228 6 0.088 5 0.283 5 1.175 5 0.351 5 1.486 5 31 5

AD 0.118 4 0.048 2 0.137 3 0.550 3 0.200 3 0.564 3 18 3

MM 0.100 2 0.120 7 0.436 7 5.121 7 0.853 7 21.334 7 37 6
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Table 4: Overall performance of the estimation methods

Parameters Sample size
n

Method

µ σ ξ ML OLS WLS MPS CVM AD MM

-2 -1 0.5 100 2 7 3 4 5 1 6
200 3 6 4 1 5 2 7
500 3 6 3 1 5 2 7

Total 8 19 10 6 15 5 20

0 -2 1 100 2 7 3 6 4 1 5
200 2 6 4 1 5 2 7
500 2 7 4 1 5 2 6

Total 6 20 11 8 14 5 18

2 -3 2 100 2 6 5 7 3 1 4
200 2 6 3 7 4 1 5
500 1 7 4 2 5 3 6

Total 5 19 12 16 12 5 15

-1 1 0.5 100 2 7 3 4 5 1 6
200 3 7 4 1 5 2 6
500 3 7 4 1 5 2 6

Total 8 21 11 6 15 5 18

0 2 1 100 2 7 3 4 5 1 6
200 1 7 4 2 5 2 6
500 2 7 4 1 5 3 6

Total 5 21 11 7 15 6 18

4 4 2 100 1 5 4 7 3 2 6
200 2 5 3 7 4 1 6
500 1 6 4 2 5 3 6

Total 4 16 11 16 12 6 18

Overall total 36 2 116 7 66 4 59 3 83 5 32 1 107 6

The performances of the various estimators in terms of biases and MSEs are summarized in Table 3.
The column that indicates rank sum gives the partial sum of the ranks. For each estimator a superscript
is used to show the rank of that estimator among the other estimators for that metric. For example, Table
3 presents the bias of the ML (µ̂) as 0.0345 for n = 100. This shows that the bias of µ̂ calculated using the
method of ML ranks 5th among all other estimators. Table 4 displays the partial and overall rank of the
estimators. This technique was used previously in Dey et al. [12] and Tahir et al. [25]. Using the results
in Tables 3 and 4, we observe that the MSE values for the estimates using MM are worse (higher) than the
results obtained using the other methods, while the MSE values for the estimates by ML are, in general,
better (smaller) than the results obtained using the other methods. Furthermore, under all methods, except
the MM method, the absolute bias and MSE values for the estimates decrease as sample size increases. As
seen in Table 4, the AD method is considered as the best method among methods discussed in the paper to
estimate the GHS parameters (overall score of 32). We further notice that ML method is the second most
effective estimator with an overall score of 36.

6. Applications

We apply the GHS distribution to fit two data. Between the two data sets, the first data set consists
of fracture toughness from the silicon nitride. The data taken from the website https://goo.gl/UMx3h9 were
already studied by Nadarajah and Kotz [22] and Cordeiro et al. [11]. The second data set contains
the breaking times (in hour) for Kevlar 49/Epoxy strands that were studied in stress of 373.9 Ksi and a
temperature of 110◦C. These data were reported by Glaser [16]. The descriptive statistics of the two data
sets are shown in Table 5.
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Table 5: The summary statistics of the data sets.

Data set No. of Obs. Mean Std. Dev. Skewness Kurtosis
The Alumina (Al2O3) 119 4.3254 1.0185 -0.4167 3.0935
The Kevlar-49/epoxy 76 1.9592 1.574 1.9796 8.1608

The shape of an HRF decides whether a particular distribution is suitable for a data set. The empirical
behavior of the HRF can be obtained using the total time on test (TTT) plot of the data. It can also be utilized
to choose a suitable model for describing the data set. Additional details can be found in Aarset [1]. Figures
5(a) and 5(b) display the plot for the two data sets, respectively. The TTT plot for the first data in Figure 5(a)
indicates an increasing HRF, while the TTT plot for the second data in Figure 5(b) indicates an S-shaped
(constant - increase - constant) HRF. Therefore, the appropriateness of the GHS distribution to fit the data
sets is demonstrated by the plots. Specifically, the new model can present increasing and S-shaped HRF.

Figure 5: TTT plot: (a) The Alumina (Al2O3) data set. (b) The Kevlar-49/epoxy data set.

Comparison of the fits of the GHS distribution with those of other generalizations of HS and other
distributions is conducted. The comparison models are as follows: The HS-SAS distribution by Fischer and
Herrmann [14], the BHS distribution by Fischer and Vaughan [15], the BVIII distribution by Burr [8], the
GLI and GLII distributions by Johnson et al. [18], and the SN distribution by Azzalini [7]. The densities of
the compared distributions are defined as follows:
- HS-SAS distribution:

fHS−SAS(x;µ, σ, δ, ε) =
cosh

(
δsinh−1

( x−µ
σ

)
− ε

)
δesinh(δsinh−1( x−µ

σ )−ε)

π
2

√

1 + x2
(
1 +

(
esinh(δsinh−1( x−µ

σ )−ε)
)2
) , −∞ < µ, δ, ε, x < ∞, σ > 0.

- BHS distribution:

fBHS(x;µ, σ, β1, β2) =
B(β1, β2)−1

πσ cosh
( x−µ
σ

) [
2
π tan−1

(
exp

( x−µ
σ

))]β1−1

[
1 − 2

π tan−1
(
exp

( x−µ
σ

))]1−β2
,−∞ < x, µ < ∞, β1, β2, σ > 0,
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where B(a, b) is the beta function.
- BVIII distribution:

fBVIII(x;µ, σ, r) =
r
πσ

sech
( x−µ
σ

) (
2
π tan−1

(
exp

( x−µ
σ

)))r−1
,−∞ < x, µ < ∞, r, σ > 0.

- GLI distribution:

fGLI(x;µ, σ, α) =
αe−(

x−µ
σ )(

1 + e−(
x−µ
σ )

)α+1 , −∞ < x, µ < ∞, σ, α > 0.

- GLII distribution:

fGLII(x;µ, σ, α) =
αe−α(

x−µ
σ )(

1 + e−(
x−µ
σ )

)α+1 , −∞ < x, µ < ∞, σ, α > 0.

- SN distribution:

fSN(x;µ, σ, λ) =
2
σ
φ

( x−µ
σ

)
Φ

(
λ
( x−µ
σ

))
,−∞ < x, µ, λ < ∞, σ > 0.

The model parameters in these applications are estimated using maximum likelihood method. The
Akaike information criterion (AIC) and Kolmogorov-Smirnov (KS) statistic and its p-value are used to
compare the fitted distributions. Small values of AIC and KS and a large p-value of KS correspond to a
good fit of data. We demonstrate the plots of the fitted PDFs of some models for visual comparison.

6.1. Alumina (Al2O3) Data
The Alumina (Al2O3) data set is fitted to the GHS model presented in Section 2 and HS-SAS, BHS,

BVIII, GLI, GLII, and SN distributions. As shown in Table 6, the p-values of KS statistics of the distributions
provide adequate fit to the data. However, GHS provides the best fit to the data set among the other
models. Therefore, the GHS distribution is a better alternate distribution to BVII, BHS, HS-SAS, GLI, GLII,
and SN distributions. The GHS distribution has small AIC and KS values. Thus, it is an appropriate model
to describe the alumina data. Some estimated PDFs of the fitted distributions are shown in Figure 6(a).
Reasonable fits to the data set are observed for GHS, GLI, and GLII distributions. Figure 6(b) presents
QQ plots with simulated envelopes for the GHS distribution. As observed, all observations fall inside
the envelope of the GHS model. The observations approximately lie on a straight diagonal line as well.
Therefore, the GHS model presents an outstanding fit to the data.

6.2. Kevlar-49/epoxy Data
For the Kevlar-49/epoxy data set, we fit GHS, BHS, HS-SAS, BVIII, GLI, GLII, and SN models. As shown

in Table 7, a better fit to the data set is observed for GHS than the other distributions. The reason is that GHS
has the smallest KS value among others. However, all models show adequate fit to the data set according
to the p-values of the KS test statistics. Figure 7(a) presents plots of estimated PDFs to the Kevlar-49/epoxy
data set. Evidently, the models provide an adequate fit to the data. QQ plots with simulated envelopes for
the GHS distribution are shown in Figure 7(b). Notably, no observations fall outside the envelope, and they
fall approximately in a straight line. Therefore, the GHS model represents the data properly as observed
from the plot.
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Table 6: MLEs, their standard errors (SEs) (in parentheses) and goodness of fit measures for the Alumina
(Al2O3) data set.

Distribution MLE AIC K-S P-value

GHS(µ, σ, ξ) 4.494 0.790 0.282 343.218 0.042 0.984
(0.110) (0.099) (0.166)

HS-SAS(µ, σ, δ, ε) 4.663 0.917 1.256 -0.329 345.157 0.050 0.918
(0.195) (0.288) (0.268) (0.198)

BHS(µ, σ, β1, β2) 5.275 1.294 2.064 4.362 345.127 0.052 0.910
(1.168) ( 1.106) ( 2.714) ( 7.598)

BVIII(µ, σ, r) 4.696 0.557 0.666 344.789 0.050 0.922
(0.194) (0.083) (0.170)

GLI(µ, σ, α) 4.811 0.440 0.564 343.236 0.045 0.971
(0.212) (0.071) (0.166)

GLII(µ, σ, α) 5.104 0.691 2.210 343.605 0.049 0.938
(0.502) (0.088) (1.103)

SN(µ, σ, λ) 4.310 1.014 0.018 347.065 0.088 0.310
(1.773) (0.071) (2.188)

Figure 6: The Alumina data set: (a) Fitted GHS, GLI and GLII PDFs. (b) The QQ plots with simulated
envelopes based on GHS.
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Table 7: MLEs, their SEs (in parentheses) and goodness of fit measures for the Kevlar-49/epoxy data set.

Distribution MLE AIC K-S P-value

GHS(µ, σ, ξ) 0.461 -1.724 3.140 248.907 0.075 0.752
(0.959) (0.535) (2.695)

HS-SAS(µ, σ, δ, ε) 0.786 0.716 1.083 1.000 253.635 0.084 0.632
(0.312) ( 0.194) (0.210) (0.396)

BHS(µ, σ, β1, β2) -0.593 0.492 14.735 0.352 251.585 0.086 0.603
(0.940) (0.185) (28.376) (0.174)

BVIII(µ, σ, r) -0.785 1.030 11.658 253.894 0.090 0.532
(1.339) (0.099) (16.081)

GLI(µ, σ, α) -3.085 0.999 83.417 254.750 0.092 0.516
(2.246) (0.094) (179.348)

GLII(µ, σ, α) 0.554 0.237 0.163 250.856 0.082 0.662
(0.173) (0.079) (0.068)

SN(µ, σ, λ) 0.172 2.374 10.878 257.132 0.148 0.064
(0.168) (0.230) (8.562)

Figure 7: The Kevlar-49/epoxy data set: (a) Fitted GHS, GLII and HS-SAS PDFs. (b) The QQ plots with
simulated envelopes based on GHS.



M. A. Aljarrah / Filomat 35:13 (2021), 4305–4326 4325

The various estimation methods examined in Section 5 are utilized to estimate the unknown parameters.
Tables 8 and 9 show the estimates of the unknown parameters obtained using the seven methods and the
K-S values for first and second data set, respectively. The tables show that although most of the methods
performed well, the CVM method is recommended for estimating the parameters of the GHS distribution
for first and second data set.

Table 8: The parameter estimates under various methods and the goodness of fit statistics for Alumina
(Al2O3) data set.

Method Parameters
−` K-S p-value

µ̂ σ̂ ξ̂

ML 4.4940 0.7898 0.2815 168.6089 0.0423 0.9837
OLS 4.4860 0.7956 0.2587 168.6566 0.0440 0.9753
WLS 4.4924 0.8074 0.2775 168.6610 0.0453 0.9676
MPS 4.2871 1.0225 0.2136 175.9975 0.1458 0.0127
CVM 4.4848 0.7840 0.2571 168.6246 0.0418 0.9854
AD 4.5042 0.8150 0.3127 168.6405 0.0446 0.9722
MM 4.3971 0.7053 0.1105 169.3565 0.0622 0.7470

Table 9: The parameter estimates under various methods and the goodness of fit statistics for Kevlar-
49/epoxy data set

Method Parameter estimates
−` K-S p-value

µ̂ σ̂ ξ̂

ML 0.4611 -1.7242 3.1404 121.4533 0.0754 0.7517
OLS 1.1739 -1.2696 1.2196 122.4967 0.0674 0.8574
WLS 0.8345 -1.5174 2.0797 121.6388 0.0742 0.7692
MPS 0.0724 -1.9947 4.1178 121.6821 0.0885 0.5605
CVM 1.2053 -1.2261 1.1565 122.6199 0.0649 0.8850
AD 0.7725 -1.5459 2.2738 121.5450 0.0735 0.7783
MM 0.5840 -1.6879 2.7020 121.5772 0.0787 0.7038

7. Summary and Conclusions

In this study, a new generalization for the HS distribution, which is called the GHS distribution, is
proposed. The structural properties of this new distribution are studied. The relationships between the
parameters and the mean, variance, skewness, and kurtosis are also explored. The GHS distribution can fit
data with a very wide range of skewness (left and right) and kurtosis with only three parameters. Different
estimation techniques can estimate the unknown parameters of a new distribution. Here, simulation is
performed to identify the best performing estimators among a set of selected methods. The simulation
results indicate that the AD estimators are the best performing estimators for the biases and MSEs when
estimating the parameters of the GHS distribution. The usefulness of the new distribution for fitting skewed
data is demonstrated using two real data sets. The proposed GHS can fit highly skewed data sets effectively
as suggested by the applications.
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