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Abstract. Trace class operators for quaternionic Hilbert spaces (QHS) were studied by Moretti and
Oppio [18]. In this paper, we study trace class operators via operator valued frames (OPV-frames). We
introduce OPV-frames in a right quaternionic Hilbert space H with range in a two sided quaternionic
Hilbert space K and obtain various results including several characterizations of OPV-frames. Also, we
obtain a necessary and sufficient condition for a bounded operator on a right QHS to be a trace class operator
which generalizes a similar result by Attal [2]. Moreover, we construct a trace class operator on a two sided
QHS. Finally, we study quaternionic quantum channels as completely positive trace preserving maps and
obtain various Choi-Kraus type representations of quaternionic quantum channels using OPV-frames in
quaternionic Hilbert spaces.

1. Introduction

Duffin and Schaeffer [12] introduced frames in a study of non-harmonic Fourier series. Later,
Daubechies, Grossmann and Meyer [11] reintroduced frames which gather a lot of attention among the
researchers. The main reason for frames to be popular among researchers in recent years is their applications
in digital signal processing [3] and other areas having physical and engineering problems [8].

Frames are integrally connected to time-frequency analysis. It is difficult to find a particular category of
frames that is suitable to most of the physical problems, as there is no comprehensive class of frames that
suits to all types of problems. Keeping this in mind, researchers across the disciplines come together for
finding tools for the theory of frames to tackle various physical problems including solutions of operator
equations in Hilbert spaces with fixed dual pairing [4]. Duffin and Schaeffer [12] defined frames as follows:

Let H be a Hilbert space. A sequence {xn}n∈N ⊆ H is a frame for H, if there exist numbers A,B > 0 such
that

A‖x‖2 ≤
∑
n∈N

|〈x, xn〉|
2
≤ B‖x‖2, x ∈ H. (1)

The scalars A and B are called the lower and upper frame bounds of the frame, respectively. They are not
unique. If A = B, then {xn}n∈N is called an A-tight frame and if A = B = 1, then {xn}n∈N is called a Parseval
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frame. The inequality in (1) is called the frame inequality of the frame. The operator T : `2
→ H defined as

T({ck}k∈N) =
∑

k∈N
ckxk, {ck}k∈N ∈ `2, is called the pre-frame operator (or synthesis operator) and its adjoint operator

T∗ : H→ `2 is called the analysis operator and is given by

T∗(x) = {〈x, xk〉}k∈N, x ∈ H.

Composing T and T∗, we obtain the frame operator S = TT∗ : H→ H given by

S(x) =
∑
k∈N

〈x, xk〉xk, x ∈ H.

The frame operator S is a positive, self-adjoint and invertible operator on H and gives the following
reconstruction formula:

x = SS−1x =
∑
k∈N

〈S−1x, xk〉xk

 =
∑
k∈N

〈x,S−1xk〉xk

 , x ∈ H.

For various details related to frames and applications, one may allude to [5, 8].
In recent years, many generalizations of frames in Hilbert spaces and quaternionic Hilbert spaces

have been introduced and studied. In 2004, Casazza and Kutyniok [6] defined frames of subspaces
which has many applications in sensor networks and packet encoding. Khokulan, Thirulogasanthar and
Srisatkunarajah [17] introduced and studied frames for finite dimensional quaternionic Hilbert spaces.
Sharma and Virender [25] studied some different types of dual frames of a given frame in a finite dimensional
quaternionic Hilbert space and gave various types of reconstructions with the help of dual frames. Sharma
and Goel [23] introduced and studied frames for seperable quaternionic Hilbert spaces. Muraleetharan
and Thirulogasanthar [19] studied the invariance of the Fredholm index under small norm operator and
compact operator perturbations and with the association of the Fredholm operators, developed the theory of
essential S-spectrum. K-frames in quaternionic Hilbert spaces were studied in [13]. Very recently, Sharma,
Jarrah and Kaushik [24] introduced frame of operators in quaternionic Hilbert spaces and proved that they
generalizes various notions like Pseduo frames, bounded quasi-projectors and frame of subspaces (fusion
frames) in separable quaternionic Hilbert spaces.

Overview. We organize the paper as follows: In Section 2, we state some known results and standard
definitions which are necessary for understanding the main content of the paper. In Section 3, we define
and study operator valued frames (OPV-frames) in a quaternionic Hilbert space and give a necessary and
sufficient condition for the existence of an OPV-frame. Also, we obtain conditions under which an OPV-
frame is a Riesz and orthonormal OPV-frame. Further, it is proved that an OPV-frame is a compression of
a Riesz OPV-frame and a Parseval OPV-frame is a compression of an orthonormal OPV-frame. In Section
4, we study trace class operators and quaternionic quantum channels and obtain various results including
the Choi-Kraus type representations of quaternionic quantum channels using OPV-frames in quaternionic
Hilbert spaces.

2. Prerequisites

Throughout this paper, until specified, we will denoteH to be the non-commutative field of quaternions,
N the set of natural numbers, H a separable right quaternionic Hilbert space, K a separable two-sided
quaternionic Hilbert space. By the term “right linear operator”, we mean a “right H-linear operator”,
B(H ,K ) denotes the set of all bounded (rightH-linear) operators fromH toK and the space `2(H) denotes
the set of all sequences {qn}n∈N ⊂H such that

∑
n∈N
|qn|

2 < +∞.

Let D be a division ring and F be the center of D. A unital D-bimodule X is called a D-vector space if X
is a F-vector space( or vector space over F) under the restriction of the scalar multiplication to F.
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Here, we deal with the case when D = H, the set of all real quaternions. One may observe that,H ⊗H
together with the scalar multiplication, α(a ⊗ b)β = αa ⊗ bβ is aH-vector space.

For basic definitions of right quaternionic pre-Hilbert space (or right quaternionic inner product space), right
quaternionic Hilbert space and other terminologies related to quaternionic Hilbert spaces one may refer to
[20, 23].

In [1], Daniel Alpay and H. Turgay Kaptanoǧlu observed that ifH is a right quaternionic Hilbert space
andK is a two-sided quaternionic Hilbert space, thenH ⊗K is also a right quaternionic Hilbert space with
the inner product 〈.|.〉 : (H ⊗K ) × (H ⊗K )→H given by〈

h1 ⊗ k1|h2 ⊗ k2

〉
H⊗K

=
〈
〈h2|h1〉Hk1|k2

〉
K
, h1, h2 ∈ H and k1, k2 ∈ K .

Further, if {hi}i∈N and {ki}i∈N are orthonormal sets in H and K respectively, then {hi ⊗ k j}i, j∈N is an
orthonormal set inH ⊗K .

Definition 2.1. [18] LetH be a right quaternionic Hilbert space. Then, T ∈ B(H) is said to be of trace-class if∑
u∈N

〈u||T|u〉<∞, for some orthonormal basisN ⊂ H , (2)

where |T| = (T∗T)1/2. Let us denote B1(H) ⊂ B(H) as the set of all trace-class operators onH .

Theorem 2.2. [18] The set B1(H) enjoys the following properties:

(a) If T ∈ B1(H), then (2) is valid for every orthonormal basisM ⊂ H and
∑

u∈M
〈u

∣∣∣|T|u〉 does not depend onM.

(b) T ∈ B1(H) if and only if

(i) T is a compact operator, and

(ii) ‖T‖1 =
∑

λ∈σ(|T|)
λdλ<∞, where σ(|T|) ⊂ [0,+∞) is the spherical point spectrum of the self adjoint compact

operator |T| =
√

T∗T and dλ = 1, 2 · · · < ∞ is the dimension of the λ-eigenspace of |T|.

(c) If T ∈ B1(H), then for every orthonormal basisM ⊂ H , ‖T‖1 =
∑

u∈M〈u||T|u〉.

Theorem 2.3. [14] (Polar Decomposition of an Operator) Let T ∈ B(H). Then, there exists a unique operator
W ∈ B(H) such that

(a) T = W|T|.

(b) N(|T|) ⊂ N(W).

(c) ‖W(u)‖ = ‖u‖, u ∈ N(|T|)⊥.

A quaternionic quantum channel is defined as a completely positive trace-preserving map. Matthew A.
Graydon in [15] has given a Choi-Kraus type representation of quaternionic quantum channels as follows:

Definition 2.4. [15] A quaternionic quantum channel is a map φ : B(H) → B(K ) whose action on any T ∈ B(H)
is defined in terms of some bounded operators {Fn}n∈N ⊂ B(H ,K ) such that

φ(T) =
∑
n∈N

FnTF∗n , T ∈ B(H) and
∑
n∈N

F∗nFn = IH.
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3. Operator valued frames

The classical frame inequalities can be expressed in terms of operator inequalities involving sums of rank
one operators. This case, called the multiplicity one case motivated Kaftal et al. [16] in 2009 to introduce
the notion of operator-valued frames (OPV-frames).
In this section, we define and study OPV-frames for quaternionic Hilbert spaces. More precisely, we have

Definition 3.1. Let H be a right quaternionic Hilbert space, K a two-sided quaternionic Hilbert space, and
F = {Fn}n∈N ⊂ B(H ,K ). Then F is said to be an OPV-frame for H with range in K if there exist positive
constants r1 ≤ r2 such that

r1I ≤

∑
n∈N

F∗nFn ≤ r2I. (3)

The positive constants r1 and r2, are called lower and upper frame bounds for the OPV-frame F , respectively and the
inequality (3) is called the OPV-frame inequality. The family F is called an OPV Bessel sequence forH with range
in K with Bessel bound r2, if F satisfies the right hand side of the inequality (3). The family F is said to be an OPV
tight frame forH with range in K if there exist positive constants r1, r2 satisfying inequality (3) with r1 = r2 and is
called an OPV Parseval frame if it is tight and r1 = r2 = 1. Further, F is called exact if it ceases to be an OPV-frame
in case any one of its elements is removed. The multiplicity of an OPV-frame F is defined as sup {rank Fn}n∈N.

For each h ∈ H , define |h〉H : K → H ⊗K as

|h〉H (k) = h ⊗ k, k ∈ K . (4)

Also, define H 〈h| : H ⊗K → K as

H 〈h|(h′ ⊗ k′) = 〈h′|h〉k′, h′ ⊗ k′ ∈ H ⊗K . (5)

One may easily observe that, the operators defined in (4) and (5) are bounded and satisfies
‖ |h〉H ‖ = ‖ H 〈h| ‖ = ‖h‖ and |h〉∗

H
= H 〈h|, h ∈ H .

In particular, given a two-sided quaternionic Hilbert spaceK , we can define the partial isometries with
mutually orthogonal ranges |en〉`2(H) : K → `2(H) ⊗ K , |en〉`2(H)(k) = en ⊗ k for k ∈ K , and the adjoint is
given by `2(H)〈en| : `2(H) ⊗ K → K , `2(H)〈en|(q ⊗ k) = 〈q|en〉k, where q = {qn}n∈N ∈ `2(H), k ∈ K and {en}n∈N is
the standard orthonormal basis of `2(H).

Next, we give a result in the form of a lemma, related to some basic properties of the above defined
partial isometries, which will be used in subsequent results.

Lemma 3.2. Let {en}n∈N be an orthonormal basis of `2(H). Then

(a)
∑

n∈N
|en〉`2(H) `2(H)〈en| = I`2(H)⊗K .

(b) `2(H)〈ei| |e j〉`2(H) = δi jIK .

Proof. (a) Let q ⊗ k ∈ `2(H) ⊗K . Then, we compute∑
n∈N

|en〉`2(H) `2(H)〈en|(q ⊗ k) =
∑
n∈N

|en〉`2(H)(qnk), where q = {qn}n∈N ∈ `2(H)

=
∑
n∈N

en ⊗ (qnk)

=
∑
n∈N

enqn ⊗ k = q ⊗ k.

(b) Let k ∈ K . Then, we have

`2(H)〈ei| |e j〉`2(H)(k) = `2(H)〈ei|(e j ⊗ k) = δi jk.

In the following result, we give a necessary and sufficient condition for the existence of an OPV Bessel
sequence in a right quaternionic Hilbert space.
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Theorem 3.3. Let F = {Fn}n∈N ⊂ B(H ,K ). Then F is an OPV Bessel sequence forH with range inK with Bessel
bound r if and only if there exists a bounded right linear operator Q from `2(H)⊗K intoH with ‖Q‖ ≤

√
r such that

Q(q ⊗ k) =
∑
n∈N

F∗n(qnk) =
∑
n∈N

F∗n `2(H)〈en|(q ⊗ k), q ⊗ k ∈ `2(H) ⊗K ,

where {en}n∈N is an orthonormal basis of `2(H) and q = {qn}n∈N ∈ `2(H).

Proof. Let {Fn}n∈N be an OPV Bessel sequence for H with range in K with Bessel bound r. Define
U : H → `2(H) ⊗K as

U(h) =
∑
n∈N

|en〉`2(H)Fn(h) =
∑
n∈N

en ⊗ Fn(h), h ∈ H .

Then, using hypothesis we have

‖U(h)‖2 =
〈∑

n∈N

en ⊗ Fn(h)
∣∣∣∣∣∑

j∈N

e j ⊗ F j(h)
〉
`2(H)⊗K

=
∑

n, j∈N

〈
〈e j|en〉`2(H)Fn(h)

∣∣∣∣∣F j(h)
〉
K

=
∑
n∈N

‖Fn(h)‖2 ≤ r‖h‖2, h ∈ H .

Therefore, the operator U is well defined and bounded such that ‖U‖ ≤
√

r. Take Q = U∗. For each
q ⊗ k ∈ `2(H) ⊗K , we have

Q(q ⊗ k) =
∑
n∈N

F∗n `2(H)〈en|(q ⊗ k) =
∑
n∈N

F∗n(qnk), q = {qn}n∈N ∈ `2(H).

Since U is bounded, so is Q and ‖Q‖ ≤
√

r .

Conversely, let Q : `2(H)⊗K → H be a well- defined bounded right linear operator with ‖Q‖ ≤
√

r. As
Q∗(h) =

∑
n∈N

en ⊗ Fn(h), we obtain

‖Q∗(h)‖2 =
∑
n∈N

‖Fn(h)‖2, h ∈ H .

This gives∑
n∈N

‖Fn(h)‖2 ≤ r‖h‖2, h ∈ H .

Thus, F is an OPV Bessel sequence forH with range inK .

Given a Bessel sequence {vn}n∈N with Bessel bound r in H . For each n ∈ N, define an operator
Fn ∈ B(H ,H) as

Fn(x) = 〈vn|x〉, x ∈ H .

Then, the family F = {Fn}n∈N is an OPV Bessel sequence for H with range in H with Bessel bound
r. Conversely, by Quaternionic representation Riesz theorem[9, 14], every OPV Bessel sequence F =
{Fn}n∈N ⊂ B(H ,H) can be identified with the vectors {vn}n∈N of H . Then, the sequence {vn}n∈N is a Bessel
sequence inH with the same Bessel bound. Thus, a Bessel sequence in a right quaternionic Hilbert space
H corresponds to an OPV Bessel sequence forH with range inH.

Further, if we consider an OPV-frame F = {Fn}n∈N forH with range inK of multiplicity one, then each
operator Fn can be identified with a vector ofH . Therefore, every OPV-frame of multiplicity one gives rise to
a frame forH with the same bounds. Indeed, let {Fn}n∈N be an OPV-frame of multiplicity one. Then, without
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loss of generality, using Quaternionic representation Riesz theorem, for each n ∈ N, Fn(x) = en〈vn|x〉, for
some unit vector en ∈ K , x ∈ H , and vn ∈ H . So, we get∑

n∈N

‖Fn(x)‖2 =
∑
n∈N

|〈vn|x〉|2, x ∈ H .

Next, we give a characterization of an OPV-frame in a right quaternionic Hilbert space.

Theorem 3.4. Let F = {Fn}n∈N ⊂ B(H ,K ). Then, F is an OPV-frame forH with range in K if and only if there
exists a bounded, right linear operator Q from `2(H) ⊗K ontoH such that

Q(q ⊗ k) =
∑
n∈N

F∗n(qnk) =
∑
n∈N

F∗n `2(H)〈en|(q ⊗ k), q ⊗ k ∈ `2(H) ⊗K , (6)

where {en}n∈N is an orthonormal basis of `2(H) and q = {qn}n∈N ∈ `2(H).

Proof. Let F be an OPV-frame for H with range in K . Since, F is an OPV Bessel sequence, there exists a
bounded, right linear operator Q satisfying (6) and the adjoint U : H → `2(H) ⊗K of Q is given by

U(h) =
∑
n∈N

|en〉`2(H)Fn(h) =
∑
n∈N

en ⊗ Fn(h), h ∈ H .

This gives

QU(h) =
∑
n∈N

F∗nFn(h), h ∈ H .

Therefore, QU is invertible. Hence Q is a surjective operator.
Conversely, since Q is a surjective operator, Q∗ is one-one and hence there exists a positive constant r

such that

r‖h‖2 ≤ ‖Q∗(h)‖2 =
∑
n∈N

‖Fn(h)‖2, h ∈ H .

This gives∑
n∈N

‖Fn(h)‖2 =
∑
n∈N

〈Fn(h)|Fn(h)〉 =
〈
h
∣∣∣∣∣∑

n∈N

F∗nFn(h)
〉
, h ∈ H .

Also by Theorem 3.3, F is a Bessel sequence. Hence F is an OPV-frame forH with range inK .

Let F = {Fn}n∈N be an OPV-frame forH with range in K and {en}n∈N be an orthonormal basis of `2(H).
Then, the analysis operator T : H → `2(H) ⊗K of the OPV-frame F is given by

T (h) =
∑
n∈N

|en〉`2(H)Fn(h) =
∑
n∈N

en ⊗ Fn(h), h ∈ H ,

and the synthesis operator T ∗ : `2(H) ⊗K → H of F is given by

T
∗ =

∑
n∈N

F∗n `2(H)〈en|.

By composing T ∗ with its adjoint T , we obtain the frame operator S given by

S = T ∗T =
∑
n∈N

F∗nFn.

Observe that an OPV-frame F = {Fn}n∈N is a Parseval OPV- frame if and only if T is an isometry. This
is because

‖T (h)‖2 =
∑
n∈N

‖Fn(h)‖2 =
〈
h
∣∣∣∣∣∑

n∈N

F∗nFn(h)
〉

= 〈h|S(h)〉, h ∈ H .
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Remark 3.5. The analysis operator T : H → `2(H) ⊗ K of an OPV-frame F = {Fn}n∈N is a bounded injective
operator.

Next, we observe that the information carried by an OPV-frame can be fully encoded with the help of
its analysis operator. In other words, an OPV-frame can be fully reconstructed from its analysis operator.

Theorem 3.6. Let F = {Fn}n∈N be an OPV- frame forH with range in K and T , T ∗ be the analysis and synthesis
operators of F , respectively. Then, for each n ∈ N, Fn = `2(H)〈en|T and F∗n = T ∗|en〉`2(H), where {en}n∈N is an
orthonormal basis of `2(H).

Proof. For h ∈ H , we compute `2(H)〈en|T (h) =
∑
j∈N
〈e j|en〉F j(h) = Fn(h). Similarly, for k ∈ K , we have

T
∗
|en〉`2(H)(k) =

∑
j∈N

F∗j(〈en|e j〉k) = F∗n(k).

In the following result, we give some properties of the frame operator for an OPV-frame in a right
quaternionic Hilbert space.

Theorem 3.7. Let F = {Fn}n∈N be an OPV-frame forH with range in K having lower and upper frame bounds r1
and r2, respectively with the frame operator S. Then S is a right-linear, positive, self- adjoint, bounded and bijective
operator.

Proof. Clearly, S = T ∗T is self adjoint bounded operator. Also, in view of the frame inequality, we have
r1I ≤ S ≤ r2I and so S is positive. Let S(h) = 0. Then, ‖h‖2 = 〈h|h〉 ≤ 〈S(h)|h〉 = 0. This implies h = 0.
Further, as T ∗ is surjective, for any h ∈ H , there exists q ⊗ k ∈ `2(H) ⊗ K such that T ∗(q ⊗ k) = h. Thus
q ⊗ k ∈ N(T ∗)⊥ = R(T ). Hence S is a bijective operator.

Definition 3.8. Let F = {Fn}n∈N be an OPV-frame forH with range inK . Then, F is said to be

(i) a Riesz OPV-frame forH with range inK if T (H) = `2(H) ⊗K .

(ii) an orthonormal OPV-frame forH with range inK if it is a Parseval Riesz OPV-frame.

Observations (I) Let F = {Fn}n∈N ⊂ B(H ,K ). Then, F is a Riesz OPV frame forH with range in K if and
only if there exists a bounded, bijective and right linear operator Q : `2(H) ⊗K −→ H such that

Q(q ⊗ k) =
∑
n∈N

F∗n(qnk) =
∑
n∈N

F∗n `2(H)〈en|(q ⊗ k), q ⊗ k ∈ `2(H) ⊗K ,

where {en}n∈N is an orthonormal basis of `2(H) and q = {qn}n∈N ∈ `2(H).
(II) Let F = {Fn}n∈N ⊂ B(H ,K ). Then F is an orthonormal OPV-frame forH with range inK if and only if
there exists a unitary operator Q : `2(H) ⊗K −→ H such that

Q(q ⊗ k) =
∑
n∈N

F∗n(qnk) =
∑
n∈N

F∗n `2(H)〈en|(q ⊗ k), q ⊗ k ∈ `2(H) ⊗K ,

where {en}n∈N is an orthonormal basis of `2(H) and q = {qn}n∈N ∈ `2(H).

(III) LetF = {Fn}n∈N be an OPV-frame forH with range inK andSbe its frame operator. WriteP = TS−1
T
∗.

Then, P is a projection from `2(H) ⊗K onto T (H). Further, if F is a Riesz OPV-frame forH with range in
K , then P = I`2(H)⊗K .

In the following result, we characterize Riesz OPV-frames and orthonormal OPV-frames in a right
quaternionic Hilbert space.

Theorem 3.9. Let F = {Fn}n∈N be an OPV- frame forH with range inK with frame operator S. Then

(a) F is Riesz OPV-frame forH with range inK if and only if for each i, j ∈N, FiS
−1F∗j = δi jIK .
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(b) F is orthonormal OPV-frame for H with range in K if and only if FiF∗j = δi jIK and {Fn}n∈N is Parseval
OPV-frame.

Proof. (a) Let F be a Riesz OPV-frame. Then, for each k ∈ K and i, j ∈N, we compute

FiS
−1F∗j(k) = `2(H)〈ei|TS

−1
T
∗
|e j〉`2(H)(k) = `2(H)〈ei|I`2(H)⊗K |e j〉`2(H)(k) = δi jk.

Conversely, for q ⊗ k ∈ `2(H) ⊗K , we have

P(q ⊗ k) = TS
−1
T
∗(q ⊗ k)

= TS
−1

∑
n∈N

F∗n(qnk)

=
∑
n∈N

T (S−1F∗n(qnk))

=
∑
n∈N

∑
j∈N

e j ⊗ F j(S−1F∗n(qnk))

=
∑
n∈N

en ⊗ (qnk) = q ⊗ k.

Therefore, P = I`2(H)⊗K .

(b) Straight forward.

In the next result, we give a characterization of OPV-frame and orthonormal OPV-frame with the help
of frame and orthonormal basis inH , respectively.

Theorem 3.10. Let F = {Fn}n∈N be an OPV-frame for H with range in K and {k j} j∈N be an orthonormal basis of
K . Then

(a) F is an OPV-frame if and only if {F∗n(k j)} j,n∈N is a frame forH .

(b) F is an orthonormal OPV-frame if and only if {F∗n(k j)} j,n∈N is an orthonormal basis ofH .

Proof. (a) Let h ∈ H . Then, for each n ∈N, we have

Fn(h) =
∑
i∈N

ki〈ki|Fn(h)〉 =
∑
i∈N

ki〈F∗n(ki)|h〉.

Also, we compute

‖Fn(h)‖2 =
〈∑

i∈N

ki〈F∗n(ki)|h〉
∣∣∣∣∣∑

j∈N

k j〈F∗n(k j)|h〉
〉

K

=
∑
i∈N

∑
j∈N

〈h|F∗n(ki)〉H 〈ki|k j〉K 〈F∗n(k j)|h〉H

=
∑
j∈N

〈h|F∗n(k j)〉H 〈F∗n(k j)|h〉H

=
∑
j∈N

|〈h|F∗n(k j)〉|2.

This gives∑
n∈N

‖Fn(h)‖2 =
∑
n∈N

∑
j∈N

|〈h|F∗n(k j)〉|2.

Hence F is an OPV-frame if and only if {F∗n(k j)} j,n∈N is a frame forH .
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(b) As F is an orthonormal OPV-frame, FiF∗j = δi jIK and
∑

n∈N
F∗nFn = IH . Also, for each n ∈ N,

Fn(h) =
∑
j∈N

k j〈F∗n(k j)|h〉. This gives

h =
∑
n∈N

F∗nFn(h) =
∑

n, j∈N

F∗n(k j)〈F∗n(k j)|h〉, h ∈ H .

Also, we have

‖F∗n(k j)‖2 = 〈k j|FnF∗n(k j)〉 = ‖k j‖
2 = 1.

and 〈F∗n1
(k j1 )|F∗n2

(k j2 )〉 = 0.

Conversely, let {F∗n(k j)} j,n∈N be an orthonormal basis ofH . Then

h =
∑

n, j∈N

F∗n(k j)〈F∗n(k j)|h〉 =
∑
n∈N

F∗nFn(h), h ∈ H .

Therefore {Fn}n∈N is a Parseval OPV-frame. Also, for each k ∈ K , we compute

FnF∗n(k) =
∑
j∈N

k j〈k j|FnF∗n(k)〉 =
∑
j∈N

k j

〈
F∗n(k j)

∣∣∣∣∣F∗n(∑
i∈N

ki〈ki|k〉
)〉

=
∑
i∈N

ki〈ki|k〉 = k.

and

FnF∗m(k) =
∑
j∈N

k j〈F∗n(k j)|F∗m(k)〉 =
∑
i, j∈N

k j〈F∗n(k j)|F∗m(ki)〉〈ki|k〉 = 0.

Hence, by Theorem 3.9, F is an orthonormal OPV-frame forH with range inK .

In the following result, we show that an OPV-frame is a compression of a Riesz OPV-frame in a right
quaternionic Hilbert space.

Theorem 3.11. Let F = {Fn}n∈N be an OPV- frame forH with range in K with lower and upper frame bounds r1
and r2 respectively, and frame operator S. Then, there exists a right quaternionic Hilbert space G and a sequence of
bounded right linear operators {En : G → K}n∈N such that {En}n∈N is a Riesz OPV-frame for G with range inK and
En|H = Fn, n ∈N.

Proof. Let Q = I`2(H)⊗K − TS
−1
T
∗ and G = H ⊕ kerT ∗, where T is the analysis operator for F . For each

n ∈N, define En : G → K as

En(h ⊕ y) = Fn(h) + `2(H)〈en|Q(y), h ∈ H , y ∈ kerT ∗,

where {en}n∈N is an orthonormal basis of `2(H). Also, define E : G → `2(H) ⊗K as

E(h ⊕ y) =
∑
n∈N

|en〉`2(H)En(h ⊕ y) =
∑
n∈N

en ⊗ En(h ⊕ y), h ⊕ y ∈ G.
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Since y ∈ kerT ∗ we have Q(y) = y. Therefore, we compute

‖E(h ⊕ y)‖2 =
∑
n∈N

‖En(h ⊕ y)‖2

=
∑
n∈N

‖Fn(h) + `2(H)〈en|Q(y)‖2

=
∑
n∈N

‖Fn(h) + `2(H)〈en|(y)‖2

=
∑
n∈N

‖Fn(h)‖2 +
∑
n∈N

‖ `2(H)〈en|(y)‖2 +
∑
n∈N

〈Fn(h)| `2(H)〈en|(y)〉 +
∑
n∈N

〈 `2(H)〈en|(y)|Fn(h)〉

=
∑
n∈N

‖Fn(h)‖2 +

〈∑
n∈N

|en〉`2(H) `2(H)〈en|(y)
∣∣∣∣∣y〉 +

〈∑
n∈N

|en〉`2(H)Fn(h)
∣∣∣∣∣y〉 +

〈
y
∣∣∣∣∣∑

n∈N

|en〉`2(H)Fn(h)
〉

=
∑
n∈N

‖Fn(h)‖2 + ‖y‖2 + 〈T (h)|y〉 + 〈y|T (h)〉

=
∑
n∈N

‖Fn(h)‖2 + ‖y‖2.

Thus, E is a well defined bounded operator. Now, for each n ∈N, E∗n = F∗n+Q|en〉`2(H) and E∗ =
∑

n∈N
E∗n `2(H)〈en|.

Further, for q ⊗ k ∈ `2(H) ⊗K , the adjoint E∗ of E is given by

E∗(q ⊗ k) =
∑
n∈N

E∗n `2(H)〈en|(q ⊗ k)

=
∑
n∈N

(
F∗n + Q|en〉`2(H)

)
`2(H)〈en|(q ⊗ k)

=
∑
n∈N

F∗n `2(H)〈en|(q ⊗ k) ⊕Q
∑
n∈N

|en〉`2(H) `2(H)〈en|(q ⊗ k)

= T
∗(q ⊗ k) ⊕Q(q ⊗ k).

Let q ⊗ k ∈ ker E∗. Then T ∗(q ⊗ k) = 0 and q ⊗ k = TS−1
T
∗(q ⊗ k). Since kerTS−1

T
∗ = kerT ∗,

q ⊗ k = TS−1
T
∗(q ⊗ k) = 0. This shows that E∗ is injective. Now, to show that E∗ is surjective, let

h⊕ y ∈ H⊕kerT ∗. SinceT ∗ is onto, there exists ζ ∈ `2(H)⊗K such that h = T ∗(ζ). LetTS−1
T
∗(ζ)+ y = q⊗k,

for q ⊗ k ∈ `2(H) ⊗K . This gives y = (I`2(H)⊗K − TS
−1
T
∗)(q ⊗ k) = Q(q ⊗ k).

Also, we compute

TS
−1
T
∗(q ⊗ k) = TS−1

T
∗
TS

−1
T
∗(ζ) + TS−1

T
∗(y) = TS−1

T
∗(ζ).

This gives T ∗(ζ) = T ∗(q ⊗ k). Therefore

h = T ∗(ζ) = T ∗(q ⊗ k) and h ⊕ y = T ∗(q ⊗ k) ⊕Q(q ⊗ k) = E∗(q ⊗ k).

This verifies that E∗ is surjective. Hence, {En}n∈N is a Riesz OPV-frame for G with range in K . Further,
En|H = Fn, n ∈N.

Next, we show that a Parseval OPV-frame can also be expressed as a compression of an orthonormal
OPV-frame in a right quaternionic Hilbert space.

Theorem 3.12. Let F = {Fn}n∈N be a Parseval OPV-frame for H with range in K . Then, there exists a right
quaternionic Hilbert space G and a sequence of bounded right linear operators {En : G → K}n∈N such that {En}n∈N
is an orthonormal OPV-frame for G with range inK and En|H = Fn, n ∈N.
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Proof. Let Q = I`2(H)⊗K − TS
−1
T
∗ and G = H ⊕ kerT ∗, where T is the analysis operator of F . For each

n ∈N, define En : G → K by

En(h ⊕ y) = Fn(h) + `2(H)〈en|Q(y), h ∈ H , y ∈ kerT ∗.

Let h ⊕ y ∈ H ⊕ kerT ∗. Define E : G → `2(H) ⊗K as

E(h ⊕ y) =
∑
n∈N

|en〉`2(H)En(h ⊕ y) =
∑
n∈N

en ⊗ En(h ⊕ y).

Proceeding as in Theorem 3.11, we have

‖E(h ⊕ y)‖2 =
∑
n∈N

‖Fn(h)‖2 + ‖y‖2 = ‖h‖2 + ‖y‖2 = ‖h ⊕ y‖2, h ⊕ y ∈ H ⊕ kerT ∗.

Therefore E is an isometry. So, {En}n∈N is a Parseval OPV-frame for G with range in K . Also, it is a Riesz
OPV-frame by Theorem 3.11 and hence {En}n∈N is an orthonormal OPV-frame for Gwith range inK .

4. Trace class operators and their applications in quaternionic Hilbert spaces

In [7], Choi proved that in a Hilbert space H, a linear operator f on B(H) is completely positive and
trace preserving if and only if f(F) =

∑
n∈N

F∗nFFn, where {Fn}n∈N is a collection of operators in B(H) such that∑
n∈N

F∗nFn = I. In [21], Poumai, Kaushik, and Djordjević obtained Choi-Kraus representation in the context

of OPV-frames in Hilbert spaces. In this section, we will prove these result in the context of quaternionic
Hilbert spaces.

In [2], Stéphane Attal gave a necessary and sufficient condition for an operator to be of trace class in a
Hilbert space. The following is an extension of this result for a right quaternionic Hilbert space.

Theorem 4.1. A bounded operator T on a right quaternionic Hilbert space H is trace-class if and only if∑
n∈N
|〈1n|Thn〉| < ∞, for all orthonormal families {1n}n∈N and {hn}n∈N inH . Further, there exist orthonormal families

{1n}n∈N and {hn}n∈N inH such that ‖T‖1 =
∑

n∈N
|〈1n|Thn〉|.

Proof. Let T ∈ B1(H). Then, T is compact and there exist orthonormal sequences {φn}n∈N, {ξn}n∈N inH and
a sequence of positive real numbers {αn}n∈N (see [10, 22]) such that

Tx =
∑
n∈N

ξnαn〈φn|x〉, x ∈ H .

Also, we have∑
n∈N

|〈1n|Thn〉| =
∑
n∈N

∣∣∣∣∣∣∣
〈
1n

∣∣∣∣∣∑
k∈N

ξkαk〈φk|hn〉

〉∣∣∣∣∣∣∣
≤

∑
n∈N

∑
k∈N

αk|〈1n|ξk〉||〈φk|hn〉|

≤

∑
k∈N

αk

∑
n∈N

|〈1n|ξk〉|
2


1/2 ∑

n∈N

|〈φk|hn〉|
2


1/2

=
∑
k∈N

αk‖ξk‖‖φk‖

=
∑
k∈N

αk<∞.
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If we take 1n = ξn and hn = φn, for all n ∈N, then∑
n∈N

|〈1n|T(hn)〉| =
∑
k∈N

αk = ‖T‖1.

Conversely, let T ∈ B(H) be such that
∑

n∈N
|〈1n|Thn〉|<∞, for all orthonormal families {1n}n∈N, {hn}n∈N ⊂ H .

Let T = U|T| be the polar decomposition of T (see Theorem 2.3). Choose an orthonormal basis {hn}n∈N of
Ran(|T|) and put 1n = Uhn, n ∈ N. Since U is an isometry on Ran(|T|), U∗(1n) = hn, n ∈ N. Therefore, we
obtain∑

n∈N

|〈1n|Thn〉| =
∑
n∈N

|〈hn||T|hn〉| =
∑
n∈N

〈hn||T|hn〉.

Further, one may observe that
∑

n∈N
〈hn||T|hn〉<∞. Extending the family {hn}n∈N into an orthonormal basis {h̃n}

ofH by completing with orthonormal vectors in Ran(|T|)
⊥

= N(|T|), we get∑
n∈N

〈h̃n||T|h̃n〉 =
∑
n∈N

〈hn||T|hn〉<∞.

Hence, T is a trace-class operator onH .

In the next result, we obtain a trace class operator on a two-sided quaternionic Hilbert space K using a
trace class operator onH ⊗K .

Theorem 4.2. If T is a trace-class operator onH ⊗K , then the operator H 〈h|T|h〉H is a trace-class operator on K ,
for all h ∈ H . Moreover, for any orthonormal basis {hn}n∈N of H , the series TrH (T) =

∑
n∈N H 〈hn|T|hn〉H is ‖.‖1

convergent.

Proof. Let {kn}n∈N and {un}n∈N be orthonormal families in K . Without loss of generality, let h ∈ H be such
that ‖h‖ = 1. Then∑

n∈N

|〈kn| H 〈h|T|h〉Hun〉| =
∑
n∈N

|〈h ⊗ kn|T(h ⊗ un)〉|.

As T is a trace-class operator onH ⊗K and {h ⊗ kn}n∈N, {h ⊗ un}n∈N are orthonormal families inH ⊗K , we
have ∑

n∈N

|〈kn| H 〈h|T|h〉Hun〉|<∞.

Thus, H 〈h|T|h〉H is a trace-class operator onK .
Moreover, as for each n ∈ N, H 〈hn|T|hn〉H is a trace-class operator on K . Therefore, by Theorem 4.1,

there exist orthonormal families { f n
m}m∈N and {1n

m}m∈N inK such that

‖H 〈hn|T|hn〉H‖1 =
∑
m∈N

|〈 f n
m| H 〈hn|T|hn〉H 1

n
m〉|.

This gives∑
n∈N

‖H 〈hn|T|hn〉H‖1 =
∑
n∈N

∑
m∈N

|〈 f n
m| H 〈hn|T|hn〉H 1

n
m〉| =

∑
n∈N

∑
m∈N

|〈hn ⊗ f n
m |T(hn ⊗ 1

n
m)〉|.

Since {hn ⊗ f n
m}m,n∈N and {hn ⊗ 1

n
m}m,n∈N are orthonormal inH ⊗K , by Theorem 4.1, we obtain∑

n∈N

∑
m∈N

|〈hn ⊗ f n
m |T(hn ⊗ 1

n
m)〉|<∞.
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Therefore, the series
∑

n∈N
H 〈hn|T|hn〉H is ‖.‖1 convergent and hence the operator

TrH (T) =
∑
n∈N

H 〈hn|T|hn〉H

is a well defined, trace-class operator onK .

Definition 4.3. Let {hn}n∈N be an orthonormal basis of a right quaternionic Hilbert spaceH . Then, the partial trace
TrH is a map from B1(H ⊗K ) into B1(K ) defined by

TrH (L) =
∑
n∈N

H 〈hn|L|hn〉H .

Now, we prove three results in the form of lemmas which will be used in the subsequent results.

Lemma 4.4. Let F = {Fn}n∈N be an orthonormal OPV-frame for H with range in K , and {en ⊗ kn}n∈N be an
orthonormal system in `2(H) ⊗K . Then, {T ∗(en ⊗ kn)}n∈N is an orthonormal system inH .

Proof. Since F is an orthonormal OPV-frame, by Observation (II), TT ∗ = I. Therefore

‖T
∗(ei ⊗ ki)‖2 = 〈T ∗(ei ⊗ ki)|T∗(ei ⊗ ki)〉 = 〈ei ⊗ ki|ei ⊗ ki〉 = 1.

and

〈T
∗(ei ⊗ ki)|T ∗(e j ⊗ k j)〉 = 0.

Lemma 4.5. Let F = {Fn}n∈N be a Riesz OPV-frame forH with range inK with frame operator S and {en ⊗ kn}n∈N
be an orthonormal system in `2(H) ⊗K . Then {S−1/2

T
∗(en ⊗ kn)}n∈N is an orthonormal system inH .

Proof. It follows bearing in mind that

‖S
−1/2
T
∗(ei ⊗ ki)‖2 =

〈
S
−1/2
T
∗(ei ⊗ ki)|S−1/2

T
∗(ei ⊗ ki)

〉
= 〈(ei ⊗ ki)|TS−1

T
∗(ei ⊗ ki)〉 = ‖ei ⊗ ki‖

2 = 1

and

〈S
−1/2
T
∗(ei ⊗ ki)|S−1/2

T
∗(e j ⊗ k j)〉 = 0.

In the following result, we construct a trace class operator on `2(H) ⊗K using a trace class operator on
H .

Lemma 4.6. Let F = {Fn}n∈N be an orthonormal OPV-frame forH with range inK and T be a trace class operator
onH . Then TTT ∗ is a trace class operator on `2(H) ⊗K , where T is the analysis operator of the OPV-frame F .

Proof. Let {ei ⊗ ki}i∈N and {vi ⊗ ui}i∈N be orthonormal systems in `2(H) ⊗K . Then∑
i∈N

|〈ei ⊗ ki|TTT ∗(vi ⊗ ui)〉| =
∑
i∈N

|〈T
∗(ei ⊗ ki)|TT ∗(vi ⊗ ui)〉|.

Note that {T ∗(ei ⊗ ki)}i∈N and {T ∗(vi ⊗ ui)}i∈N are orthonormal systems inH and T ∈ B1(H). Then, one can
obtain∑

i∈N

|〈(ei ⊗ ki)|TTT ∗(vi ⊗ ui)〉|<∞.

Hence, TTT ∗ is a trace class operator on `2(H) ⊗K .

Next, we give a Choi-Kraus type representation using orthonormal OPV-frames in a right quaternionic
Hilbert space.
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Theorem 4.7. LetF = {Fn}n∈N be an orthonormal OPV-frame forH with range inK . Then, there exists an operator
φ : B1(H)→ B1(K ) such that

φ(T) =
∑
n∈N

FnTF∗n, T ∈ B1(H).

Proof. As T is a trace-class operator onH , by Lemma 4.6, TTT ∗ is a trace-class operator on `2(H) ⊗K . Let
{en}n∈N be an orthonormal basis of `2(H). Proceeding as in Theorem 4.2,

∑
n∈N

`2(H)〈en|TTT ∗|en〉`2(H) is ‖.‖1

convergent. Therefore,

Tr`2(H)(TTT ∗) =
∑
n∈N

`2(H)〈en|TTT ∗|en〉`2(H) =
∑
n∈N

FnTF∗n.

Now define φ : B1(H)→ B1(K ) as

φ(T) = Tr`2(H)(TTT ∗) =
∑
n∈N

FnTF∗n, T ∈ B1(H).

Next, we give another type of Choi-Kraus type representation using Riesz OPV-frames.

Theorem 4.8. Let F = {Fn}n∈N be a Riesz OPV-frame for H with range in K . Then, there exists an operator
φ : B1(H)→ B1(K ) such that

φ(T) =
∑
n∈N

FnS
−1/2TS−1/2F∗n,

where S is the frame operator for the Riesz OPV-frame F . Further, we have

φ(T) = Tr`2(H)(TS−1/2TS−1/2
T
∗).

Proof. Let {en ⊗ kn}n∈N and {vn ⊗ un}n∈N be orthonormal systems in `2(H) ⊗K . Then∑
n∈N

|〈en ⊗ kn|TS
−1/2TS−1/2

T
∗(vn ⊗ un)〉| =

∑
n∈N

|〈S
−1/2
T
∗(en ⊗ kn)|TS−1/2

T
∗(vn ⊗ un)〉|.

Also, since {S−1/2
T
∗(en ⊗ kn)}n∈N and {S−1/2

T
∗(vn ⊗ un)}n∈N are orthonormal systems in H and T ∈ B1(H),

we have∑
n∈N

|〈S
−1/2
T
∗(en ⊗ kn)|TS−1/2

T
∗(vn ⊗ un)〉|<∞.

This gives∑
n∈N

|〈en ⊗ kn|TS
−1/2TS−1/2

T
∗(vn ⊗ un)〉|<∞.

Thus, TS−1/2TS−1/2
T
∗ is a trace-class operator on `2(H) ⊗K . Further, proceeding as in Theorem 4.7, there

exists an operator φ : B1(H)→ B1(K ) such that

φ(T) = Tr`2(H)(TS−1/2TS−1/2
T
∗) =

∑
n∈N

`2(H)〈en|TS
−1/2TS−1/2

T
∗
|en〉`2(H) =

∑
n∈N

FnS
−1/2TS−1/2F∗n.

The following is another Choi-Kraus type representation using Parseval OPV-frames.

Theorem 4.9. Let F = {Fn}n∈N be a Parseval OPV-frame forH with range in K . Then, there exists a sequence of
operators {En : H ⊕ kerT ∗ → K}n∈N and an operator Φ : B1(H ⊕ kerT ∗)→ B1(K ) such that

Φ(T) =
∑
n∈N

EnTE∗n, T ∈ B1(H ⊕ kerT ∗) and
∑
n∈N

E∗nEn = IH⊕kerT ∗ .

Proof. It can be worked out on the lines of the proof of Theorem 3.12 and Theorem 4.7.



R. Bhardwaj et al. / Filomat 35:13 (2021), 4353–4368 4367

Finally, we show that for any quaternionic quantum channel φ : B(H) → B(K ), there exists a right
quaternionic Hilbert spaceZ and an isometry V : H →Z⊗K such that for any T ∈ B(H),φ(T) = TrZ(VTV∗).

Theorem 4.10. Let {Fn}n∈N be a Parseval OPV-frame for H with range in K . If there exists an operator
Φ : B1(H)→ B1(K ) such that

Φ(T) =
∑
n∈N

FnTF∗n, T ∈ B1(H),

then there exists an isometry T : H → `2(H) ⊗K such that Φ(T) = Tr`2(H)(TTT ∗) and T ∗T = IH .

Proof. Let T be the analysis operator for the Parseval OPV-frame F = {Fn}n∈N. Then, T is an isometry. Let
T ∈ B1(H). Then

TTT ∗ =

∑
n∈N

|en〉`2(H)Fn

 (T)

∑
j∈N

F∗j `2(H)〈e j|

 =
∑

n, j∈N

|en〉`2(H)FnTF∗j `2(H)〈e j|.

Also, we have

Tr`2(H)(TTT ∗) =
∑

i,n, j∈N
`2(H)〈ei||en〉`2(H)FnTF∗j `2(H)〈e j||ei〉`2(H) =

∑
n∈N

FnTF∗n.

Hence Φ(T) = Tr`2(H)(TTT ∗) and T ∗T = IH .

5. Conclusion

OPV-frames can be used in the study of quaternionic quantum mechanics (QQM). Quaternionic quantum
channels are the transformation channels that can transform the initial associated state of any physical
system. These channels act as a path or a pipe used to transmit quantum information. Keeping this
in mind,we made an attempt to find Choi- Kraus type representations in quaternionic Hilbert spaces.
To achieve this goal, we introduced and studied OPV-frames in quaternionic Hilbert spaces and obtained
various results including a characterization for their existence. We also proved that an OPV-frame (Parseval
OPV-frame) is a compression of a Riesz OPV-frame (orthonormal OPV-frame).
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