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Multi-Valued Perturbations to a Couple of Differential Inclusions
Governed by Maximal Monotone Operators

D. Azzam-Laouira, M. Benguessouma

aLAOTI, Université Mohamed Seddik Benyahia de Jijel, Algérie

Abstract. This paper concerns the existence of absolutely continuous solutions for a couple of evolution
problems, governed by time and state dependent maximal monotone operators and sweeping process to
subsmooth sets, with multi-valued perturbations.

1. Introduction

In [8], the authors have proven in a real Hilbert space H, the existence of absolutely continuous solutions
for a couple of evolution differential inclusions governed by time and state dependent maximal monotone
operators and a time and state dependent closed convex sweeping process, with single-valued perturbations
of Carathéodory type.

As a continuation of this work, we study in this paper, the existence of absolutely continuous solutions
to the following differential system

(S1)


−u̇(t) ∈ A(t, v(t))u(t) + F(t,u(t), v(t)), a.e. t ∈ [0,T]
u(t) ∈ D(A(t, v(t))), ∀t ∈ [0,T]
−v̇(t) ∈ NC(t,u(t))(v(t)) + G(t,u(t), v(t)), a.e. t ∈ [0,T]
v(t) ∈ C(t,u(t)), a.e. t ∈ [0,T]
u(0) = u0 ∈ D(A(0, v0)), v(0) = v0 ∈ C(0,u0),

where for all (t, x) ∈ [0,T] × H,A(t, x) is a time and state dependent maximal monotone operator, {C(t, x) :
(t, x) ∈ I × H} is an equi-uniformly subsmooth family of closed sets, NC(t,x)(·) the Fréchet normal cone to
C(t, x), and F,G are set-valued maps with nonempty convex and closed values. So that, our main theorem
generalizes the result in [8] in two directions, since we deal with multi-valued perturbations and the class
of subsmooth sets, which strictly contains that of convex sets.

Such problems find many applications in mechanics, hysteresis systems, traffic equilibria, social and
economic modelings, optimal control; to cite but a few topics. There is a vast related bibliography in the
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literature, we can cite for instance [3–6, 10, 11, 16, 18, 21–23, 25, 29, 31–34] and their references, and for some
contributions to sweeping process with subsmooth sets we refer to [2, 19, 20, 26].

Our paper is organized as follows: In the next section we recall the background materials that we need
in our proof, and in section 3 we state and prove our main result.

2. Notation and Preliminaries

Throughout this paper, I := [0,T] (T > 0) and H is a real separable Hilbert space, with the inner product
〈·, ·〉 and the associated norm ‖ · ‖. We denote by BH(x, r) (resp. BH(x, r)) the closed (resp. open) ball of H of
center x ∈ H and radius r > 0, and by BH its closed unit ball. On I we consider the Lebesgue sigma-algebra
L(I), and on H the Borel sigma-algebra B(H).

For p ∈ [0,+∞[, we denote by Lp(I,H) the quotient Banach space of measurable maps u : I −→ H,

such that t 7→ ‖u(t)‖p is Lebesgue-integrable, equipped with its standard norm ‖u‖Lp =
(∫ T

0 ‖u(t)‖p
) 1

p

, and

by C(I,H) we denote the Banach space of continuous mappings u : I −→ H endowed with the sup-norm
‖ · ‖C. Finally, W1,q(I,H) (q = 1, 2), denotes the space of mappings u ∈ C(I,H) such that their first derivatives
u̇ ∈ Lq(I,H).

For S ⊂ H, we denote by co(S) the convex hull of S and by co(S) its closed convex hull. Recall that if S is
a nonempty subset of H, then

co(S) =
{
x ∈ S : ∀x′ ∈ H, 〈x′, x〉 ≤ δ∗(x′,S)

}
, (1)

where δ∗(·,S) is the support function of S, i.e., δ∗(z,S) := sup
x∈S
〈z, x〉, ∀z ∈ H.

A subset S of H is said to be ball compact, if its intersection with any closed ball of H is compact.
We denote byH(S1,S2) the Hausdorff distance between closed subsets S1 and S2 of H, which is defined

byH(S1,S2) := max
{
sup
x∈S2

d(x,S1), sup
x∈S1

d(x,S2)
}
, where d(x,S) := inf

{
‖x − y‖ : y ∈ S

}
is the distance from x ∈ H

to S ⊂ H, sometimes denoted by dS(x). The projection set of x into S is the set Proj(x,S) :=
{
y ∈ S : d(x,S) =

‖x − y‖
}
, if Proj(x,S) is a singleton, its unique element will be denoted by proj(x,S), in the case x = 0, this

element, which is the element of minimal norm of S, will be denoted by S0, i.e., S0 := proj(0,S).

2.1. Cones and subdifferentials
For more information on these notions and properties we refer the reader to [13–15, 24, 27, 28].
Let f be a proper lower semicontinuous function from H into R ∪ {+∞} and let x be any point where f

is finite. We recall that the Clarke subdifferential of f at x is defined by

∂C f (x) =
{
ξ ∈ H : 〈ξ, h〉 ≤ f ↑(x, h) ∀h ∈ H

}
,

where f ↑(x, ·) is the generalized Rockafellar directional derivative given by

f ↑(x, h) = lim sup
x′−→ f x

t↓0

inf
h′−→h

f (x′ + th′) − f (x′)
t

.

The notation x′ −→ f x means that x′ −→ x and f (x′) −→ f (x).
When f is locally Lipschitz, the Clarke subdifferential has also an other useful description

∂C f (x) =
{
ξ ∈ H : 〈ξ, h〉 ≤ f 0(x, h) ∀h ∈ H

}
,

where

f 0(x, h) = lim sup
(x′,t)−→(x,0)

f (x′ + th) − f (x′)
t

.
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The Fréchet subdifferential of f at x is defined by:

∂F f (x) :=
{
ζ ∈ H : ∀ε > 0,∃δ > 0,∀x̄ ∈ BH(x, δ), 〈ζ, x̄ − x〉 ≤ f (x̄) − f (x) + ε‖x̄ − x‖

}
.

It is known that we always have the inclusion ∂F f (x) ⊂ ∂C f (x) for all x ∈ H. By convention we set
∂C f (x) = ∂F f (x) = ∅, if f (x) is not finite.

Let S be a nonempty and closed subset of H and x ∈ S. Let us recall that the Clarke normal cone (resp.
the Fréchet normal cone) of S at x, NC

S (x) (resp. NF
S(x)) is the subdifferential of the indicator function of S,

i.e., NC
S (x) = ∂CδS(x) (resp. NF

S(x) = ∂FδS(x)), where δS(x) = 0 if x ∈ S and +∞ otherwise, so that we have
always the inclusion NF

S(x) ⊂ NC
S (x) for all x ∈ S. The Fréchet normal cone is also related to the Fréchet

subdifferential of the distance function since for all x ∈ S

∂FdS(x) = NF
S(x) ∩ BH (2)

and observe that if y ∈ Proj(x,S), one has

x − y ∈ NF
S(y) and so x − y ∈ NC

S (y). (3)

We introduce in the following, the definition and some properties of subsmooth sets, and we refer the
reader to [1] for more details. See also [30].

Definition 2.1. We say that a nonempty and closed subset S of H is subsmooth at x0 ∈ S, if for every ε > 0, there
exists δ > 0, such that for all x1, x2 ∈ BH(x0, δ) ∩ S and all ζi ∈ NC

S (xi) ∩ BH (i = 1, 2), we have

〈ζ1 − ζ2, x1 − x2〉 ≥ −ε‖x1 − x2‖. (4)

The set S is subsmooth, if it is subsmooth at each point of S. We further say that S is uniformly subsmooth, if for every
ε > 0, there exists δ > 0, such that (4) holds for all x1, x2 ∈ S satisfying ‖x1 − x2‖ < δ and for all ζi ∈ NC

S (xi) ∩ BH
(i = 1, 2).

Proposition 2.2. Let S be a closed subset of H and x0 ∈ S. If S is subsmooth at x0, then it is normally Fréchet regular
at x0, that is NF

S(x0) = NC
S (x0). Furthermore, ∂CdS(x0) = ∂FdS(x0).

We also introduce the concept of equi-uniform subsmoothness for a family of closed sets.

Definition 2.3. [1] Let (S(q))q∈Q be a family of closed sets of H with parameter q ∈ Q. This family is called equi-
uniformly subsmooth, if for every ε > 0, there exists δ > 0, such that for each q ∈ Q, the inequality (4) holds for all
x1, x2 ∈ S(q) satisfying ‖x1 − x2‖ < δ, and for all ζi ∈ NC

S(q)(xi) ∩ BH (i = 1, 2).

Hereafter, we will denote by NS(·) and ∂dS(·), the Clarke normal cone and subdifferential of the distance
function to S, instead of NC

S (·) and dC
S (·).

We close this subsection by the following proposition, which is crucial for the statement of our main
theorem. We refer the reader to [1] for the proof.

Proposition 2.4. Let {K(t, x) : (t, x) ∈ I × H} be a family of nonempty closed sets of H, which is equi-uniformly
subsmooth and let a real η ≥ 0. Assume that there exist a real constant L ≥ 0 and a continuous function ϑ : I → R
such that, for any x1, x2, y ∈ H and t, s ∈ I

|d(y,K(t, x1)) − d(y,K(s, x2))| ≤ |ϑ(t) − ϑ(s)| + L‖x1 − x2‖.

Then, the following assertions hold.
(i) For all (t, x, y) ∈ 1ph(K) we have η∂dK(t,x)(y) ⊂ ηBH.
(ii) For any sequence (tn)n ⊂ I converging to t, any sequence (xn)n converging to x, any sequence (yn)n converging to
y ∈ K(t, x) with yn ∈ K(tn, xn), and any ξ ∈ H, we have

lim sup
n→+∞

δ∗(ξ, η∂dK(tn,xn)(yn)) ≤ δ∗(ξ, η∂dK(t,x)(y)).
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2.2. Maximal monotone operators

We recall in this subsection, see [7, 9, 35], definition and some properties of maximal monotone operators
that we need after.

A set-valued operator A from H to H is a mapping from H into 2H. Its domain and range are defined by

D(A) =
{
x ∈ H : Ax , ∅

}
, R(A) = ∪

x∈D(A)
Ax,

while its graph is the following set

1ph(A) =
{
(x, y) ∈ H ×H : x ∈ D(A), y ∈ Ax

}
.

The operator A : D(A) −→ 2H is monotone, if 〈y1 − y2, x1 − x2〉 ≥ 0 for all (x1, y1), (x2, y2) ∈ 1ph(A). It is
maximal monotone, if it is monotone and its graph could not be strictly contained in the graph of any other
monotone operator, i.e., from Minty’s Theorem, for all λ > 0, R(IH + λA) = H, where IH stands for the
identity mapping of H.

If A is a maximal monotone operator, then for every x ∈ D(A), Ax is nonempty, closed and convex. So
that, the projection of the origin into Ax, A0(x), exists and is unique.

For λ > 0, the resolvent and the Yosida approximation of A are the single valued operators defined on
all of H by JA

λ = (IH + λA)−1 and Aλ = 1
λ

(
IH − JA

λ

)
, respectively. Furthermore, we have

JA
λ (x) ∈ D(A) ∀x ∈ H. (5)

‖Aλ(x)‖ ≤ ‖A0(x)‖ ∀x ∈ D(A). (6)

‖Aλ(x) − Aλ(y)‖ ≤
1
λ
‖x − y‖ ∀x, y ∈ H. (7)

We close this subsection by the definition of Vladimirov’s pseudo distance (see [34]), and some funda-
mental lemmas crucial for our proof. We refer the reader to [21] for details.

Let A : D(A) −→ 2H and B : D(B) −→ 2H be maximal monotone operators, then we denote by dis(A,B),
the Vladimirov’s pseudo-distance between A and B defined by

dis(A,B) = sup
{ 〈y − y′, x′ − x〉

1 + ‖y‖ + ‖y′‖
: (x, y) ∈ 1ph(A), (x′, y′) ∈ 1ph(B)

}
. (8)

Lemma 2.5. Let A : D(A) −→ 2H be a maximal monotone operator. If x ∈ D(A) and y ∈ H are such that

〈A0(z) − y, z − x〉 ≥ 0 ∀z ∈ D(A),

then x ∈ D(A) and y ∈ Ax.

Lemma 2.6. Let An : D(An) −→ 2H (n ∈ N) and A : D(A) −→ 2H be maximal monotone operators such that
dis(An,A) −→ 0. Suppose also that xn ∈ D(An) with xn −→ x and yn ∈ Anxn with yn −→ y weakly for some
x, y ∈ H. Then x ∈ D(A) and y ∈ Ax.

Lemma 2.7. Let An : D(An) −→ 2H (n ∈ N) and A : D(A) −→ 2H be maximal monotone operators such that
dis(An,A) −→ 0 and for some c > 0, all n ∈N and x ∈ D(An), ‖A0

n(x)‖ ≤ c (1 + ‖x‖). Then for every z ∈ D(A) there
exists a sequence (ζn) such that

ζn ∈ D(An), ζn −→ z and A0
n(ζn) −→ A0(z). (9)
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3. Main result

Let H be a real separable Hilbert space. Let for every (t, x) ∈ I × H, A(t, x) : D(A(t, x)) ⊂ H −→ 2H be a
maximal monotone operator, and let C : I ×H⇒ H be a set-valued map with nonempty closed values and
F,G : I ×H ×H⇒ H be set-valued maps with nonempty, closed and convex values.
We will state our main result under the following assumptions.
(H0

A) D(A(t, x)) = D for all (t, x) ∈ I ×H, that is A(t, x) has fixed domain.
(H1

A) There exist a nonnegative real constantλ and a nonnegative and nondecreasing function β ∈W1,1(I,R),
such that

dis
(
A(t, x),A(s, y)

)
≤ |β(t) − β(s)| + λ‖x − y‖ ∀t, s ∈ I, ∀x, y ∈ H.

(H2
A) There exists a nonnegative real constant c such that

‖A0(t, x)y‖ ≤ c(1 + ‖x‖ + ‖y‖) ∀t ∈ I, ∀x ∈ H, ∀y ∈ D(A(t, x)).

(H3
A) D is relatively ball compact.

(H1
C) The family

{
C(t, x) : (t, x) ∈ I ×H

}
is equi-uniformly subsmooth.

(H2
C) There exist a nonnegative real constant α, satisfying αλ < 1, and a nonnegative and nondecreasing

function η ∈W1,1(I,R), such that∣∣∣dC(t,x)(z) − dC(s,y)(z)
∣∣∣ ≤ |η(t) − η(s)| + α‖x − y‖ ∀t, s ∈ I, ∀x, y, z ∈ H.

(H3
C) For any bounded subset E ⊂ H, the set C(I × E) is ball compact.

(H1
F ) (resp. (H1

G)) F (resp. G) is L(I) ⊗ B(H) ⊗ B(H)-measurable.
(H2

F ) (resp. (H2
G)) For each t ∈ I, F(t, ·, ·) (resp. G(t, ·, ·)) is scalarly upper semi-continuous.

(H3
F ) (resp. (H3

G)) There exists a non negative real constant MF (resp. MG) such that

d(0,F(t, x, y)) ≤MF(1 + ‖x‖ + ‖y‖) ∀(t, x, y) ∈ I ×H ×H

(resp.
d(0,G(t, x, y)) ≤MG(1 + ‖x‖ + ‖y‖) ∀(t, x, y) ∈ I ×H ×H).

Now we present our main theorem. We follow ideas of the proof of Theorem 3.1 in [8]. We stress the fact
that in [8] the functions β and η were taken in W1,2(I,R), in this work we have weaken these hypotheses by
taking β and η in W1,1(I,R), with an additional assumption, that the domain of A(t, x) is fixed (hypothesis
(H0

A)).

Theorem 3.1. Let for every (t, x) ∈ I × H, A(t, x) : D −→ 2H be a maximal monotone operator satisfying (H0
A),

(H1
A), (H2

A) and (H3
A).

Let C : I × H ⇒ H be a set-valued map with nonempty closed values satisfying (H1
C), (H2

C) and (H3
C), and let

F : I × H × H ⇒ H (resp. G : I × H × H ⇒ H) be a set-valued map with nonempty, closed and convex values
satisfying (H1

F ), (H2
F ) and (H3

F ) (resp. (H1
G), (H2

G) and (H3
G)). Then, for any (u0, v0) ∈ D × C(0,u0), there exists an

absolutely continuous solution (u, v) : I −→ H×H of the evolution problem (S1). Furthermore, this solution satisfies,
for almost every t ∈ I and for some nonnegative real constants K and γ, the following estimates:

‖u̇(t)‖ ≤ K(1 + β̇(t) + η̇(t)) and ‖v̇(t)‖ ≤ γ(1 + β̇(t) + η̇(t)).

Proof. For each n ≥ 1, consider the partition {tn
i : i = 0, 1, ..,n} of the interval I, and for i = 0, 1, ...,n − 1, set

δn
i+1 := |tn

i+1 − tn
i |, β

n
i+1 := |β(tn

i+1) − β(tn
i )|, ηn

i+1 := |η(tn
i+1) − η(tn

i )|. (10)

Without loss of generality, we suppose that β(0) = η(0) = 0.
Set b(t) := t + β(t) + η(t) for all t ∈ I. Since β and η are absolutely continuous, the partition {tn

i : i = 0, ...,n}
can be chosen such that for all i = 0, ...,n − 1 and n ≥ 1,

kn
i+1 := δn

i+1 + βn
i+1 + ηn

i+1 ≤
1
n

b(T). (11)
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For each (t, x, y) ∈ I × H × H, let us denote by f (t, x, y) (resp. 1(t, x, y)) the element of minimal norm of
the closed convex set F(t, x, y) (resp. G(t, x, y)) of H, that is

f (t, x, y) = F0(t, x, y) = proj(0,F(t, x, y))

1(t, x, y) = G0(t, x, y) = proj(0,G(t, x, y)).

For each (x, y) ∈ H × H, the map t 7→ f (t, x, y) (resp t 7→ 1(t, x, y)) is L(I)-measurable thanks to (H1
F ) (resp.

(H1
G)) and the separability of H; see Theorem III-41 in [12] for details. Furthermore, by hypotheses (H3

F ),
(H3

G),

‖ f (t, x, y)‖ ≤MF(1 + ‖x‖ + ‖y‖) ∀(t, x, y) ∈ I ×H ×H, (12)

‖1(t, x, y)‖ ≤MG(1 + ‖x‖ + ‖y‖) ∀(t, x, y) ∈ I ×H ×H. (13)

Step 1. Construction of step mappings (un(.))n and (vn(.))n.
For each n ≥ 1, define the mappings un, vn : I −→ H as follows: for t ∈ [tn

i , t
n
i+1[, 0 ≤ i ≤ n − 1,

un(t) = un
i +

t − tn
i

tn
i+1 − tn

i

(
un

i+1 − un
i +

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)
−

∫ t

tn
i

f (s,un
i , v

n
i )ds (14)

vn(t) = vn
i +

b(t) − b(tn
i )

kn
i+1

(
vn

i+1 − vn
i +

∫ tn
i+1

tn
i

1(s,un
i , v

n
i )ds

)
−

∫ t

tn
i

1(s,un
i , v

n
i )ds (15)

and un(T) = un
n, vn(T) = vn

n, where vn
0 = v0, un

0 = u0 and for i = 0, ...,n − 1,

vn
i+1 ∈ Proj

(
vn

i −

∫ tn
i+1

tn
i

1(s,un
i , v

n
i )ds, C(tn

i+1,u
n
i )
)
, (16)

un
i+1 = Jn

i+1

(
un

i −

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)
. (17)

Here, Jn
i+1 := J

A(tn
i+1,v

n
i+1)

δn
i+1

=
(
IH + δn

i+1A(tn
i+1, v

n
i+1)

)−1
.

Observe that relation (16) is well defined since the sets C(t, x) are ball-compact, and clearly, for i =
0, ...,n − 1,

vn
i+1 ∈ C(tn

i+1,u
n
i ), (18)

and from (3) and (16) we have

−(vn
i+1 − vn

i ) ∈ NC(tn
i+1,u

n
i )(vn

i+1) +

∫ tn
i+1

tn
i

1(s,un
i , v

n
i )ds. (19)

On the other hand, using relation (5), we have from (17),

un
i+1 ∈ D

(
A(tn

i+1, v
n
i+1)

)
= D, (20)

and

−
un

i+1 − un
i

δn
i+1

∈ A
(
tn
i+1, v

n
i+1

)
un

i+1 +
1
δn

i+1

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds. (21)



D. Azzam-Laouir, M. Benguessoum / Filomat 35:13 (2021), 4369–4380 4375

Obviously, the mappings un and vn are absolutely continuous, un(tn
i ) = un

i , vn(tn
i ) = vn

i , and for t ∈]tn
i , t

n
i+1[,

u̇n(t) =
1
δn

i+1

(
un

i+1 − un
i +

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)
− f (t,un

i , v
n
i ), (22)

v̇n(t) =
ḃ(t)
kn

i+1

(
vn

i+1 − vn
i +

∫ tn
i+1

tn
i

1(s,un
i , v

n
i )ds

)
− 1(t,un

i , v
n
i ). (23)

From (21) and (22) we have

−u̇n(t) − f (t,un
i , v

n
i ) ∈ A

(
tn
i+1, v

n
i+1

)
un

i+1, (24)

and from (19) and (23)

−v̇n(t) ∈ NC(tn
i+1,u

n
i )(vn

i+1) + 1(t,un
i , v

n
i ). (25)

To be able to continue the proof, we need the following estimates. We refer to the proof of Theorem 3.1
in [8].

Lemma 3.2. Under the hypotheses (H1
A), (H2

A), (H2
C), (H3

F ) and (H3
G), there exist nonnegative real constants K, γ

such that, for n ≥ 1 and i = 0, ...,n,

‖un
i ‖ ≤ K and ‖vn

i ‖ ≤ γ. (26)

Now, observe that from (22) we have for all t ∈]tn
i , t

n
i+1[,

‖u̇n(t)‖ ≤
∥∥∥ 1
δn

i+1

(
un

i+1 − un
i +

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)∥∥∥ + ‖ f (t,un
i , v

n
i )‖

=
∥∥∥ 1
δn

i+1

(
Jn
i+1

(
un

i −

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)
− un

i +

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)∥∥∥ + ‖ f (t,un
i , v

n
i )‖

=
∥∥∥Aδn

i+1
(tn

i+1, v
n
i+1)

(
un

i −

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)∥∥∥ + ‖ f (t,un
i , v

n
i )‖

≤

∥∥∥Aδn
i+1

(tn
i+1, v

n
i+1)

(
un

i −

∫ tn
i+1

tn
i

f (s,un
i , v

n
i )ds

)
− Aδn

i+1
(tn

i+1, v
n
i+1)(un

i )
∥∥∥

+ ‖Aδn
i+1

(tn
i+1, v

n
i+1)(un

i )‖ + ‖ f (t,un
i , v

n
i )‖,

here, Aδn
i+1

(tn
i+1, v

n
i+1) is the Yosida approximation of A(tn

i+1, v
n
i+1), i.e., Aδn

i+1
(tn

i+1, v
n
i+1)(x) = 1

δn
i+1

(x − Jn
i+1(x)).

Since un
i ∈ D(A(tn

i , v
n
i )) = D(A(tn

i+1, v
n
i+1)) = D, using (6) and (7) together with (H3

F ), (H2
A) and (26), we get

‖u̇n(t)‖ ≤
1
δn

i+1

∫ tn
i+1

tn
i

‖ f (s,un
i , v

n
i )‖ds + ‖A0(tn

i+1, v
n
i+1)(un

i )‖ + ‖ f (t,un
i , v

n
i )‖

≤ 2MF(1 + ‖un
i ‖ + ‖vn

i ‖) + c(1 + ‖un
i ‖ + ‖vn

i+1‖)
≤ (2MF + c)(1 + K + γ) =: R,

so that, there is a negligible subset N′ of I such that for all n ≥ 1,

‖u̇n(t)‖ ≤ R ∀t ∈ I \N′. (27)

On the other hand, by (H3
G), (23) and (26), for all t ∈]tn

i , t
n
i+1[,

‖v̇n(t)‖ ≤
ḃ(t)
kn

i+1
‖vn

i+1 − vn
i ‖ + (ḃ(t) + 1)MG(1 + K + γ)

≤ γḃ(t) + (ḃ(t) + 1)MG(1 + K + γ) =: ψ(t),
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that is, there is a negligible subset N′′ of I such that for all n ≥ 1,

‖v̇n(t)‖ ≤ ψ(t) ∀t ∈ I \N′′, (28)

and this shows that (v̇n) is integrably bounded since ψ ∈ L1(I,R).
Now, consider the step functions θn, ϕn : I −→ I defined by θn(t) = tn

i+1 and ϕn(t) = tn
i if t ∈]tn

i , t
n
i+1] and

θn(0) = ϕn(0) = 0. Clearly,

|θn(t) − t| → 0 and |ϕn(t) − t| → 0 as n→ +∞. (29)

For all t ∈ I, set fn(t) = f (t,un(ϕn(t)), vn(ϕn(t))) and 1n(t) = 1(t,un(ϕn(t)), vn(ϕn(t))).
From (18), (20), (24) and (25), it follows that for each n ≥ 1, there exists a negligible subset Nn of I such that

−u̇n(t) ∈ A (θn(t), vn(θn(t))) un(θn(t)) + fn(t) ∀t ∈ I \Nn. (30)

un(θn(t)) ∈ D (A(θn(t), vn(θn(t)))) = D ∀t ∈ I. (31)

fn(t) ∈ F(t,un(ϕn(t)), vn(ϕn(t))) ∀t ∈ I. (32)

−v̇n(t) ∈ NC(θn(t),un(ϕn(t)))(vn(θn(t))) + 1n(t) ∀t ∈ I \Nn. (33)

vn(θn(t)) ∈ C
(
θn(t),un(ϕn(t))

)
∀t ∈ I. (34)

1n(t) ∈ G(t,un(ϕn(t)), vn(ϕn(t))) ∀t ∈ I. (35)

Step 2. Convergence of the sequences.
For every t, s ∈ I (s ≤ t), we have by (27),

‖un(t) − un(s)‖ ≤
∫ t

s
‖u̇n(τ)‖ dτ ≤ R|t − s| ∀n ≥ 1. (36)

This shows that the sequence (un) is equicontinuous. On the other hand, from (26) and (31), we have for
every t ∈ I,

(un(θn(t)))n ⊂ D ∩ KBH,

but, by (H3
A), we know that the set in the right hand side of this inclusion is relatively compact. Then, the

sequence (un(θn(t)))n is relatively compact. Since from (36) and (29) we have for all t ∈ I, ‖un(θn(t))−un(t)‖ −→
0 as n −→ ∞, we conclude that, for all t ∈ I, {un(t),n ≥ 1} is also relatively compact. By Arzelà-Ascoli
Theorem, up to a subsequence, (un) converges uniformly and strongly to some mapping u ∈ C(I,H).
Moreover, we have for all t ∈ I,

‖un(θn(t)) − u(t)‖ ≤ ‖un(t) − u(t)‖ + ‖un(t) − un(θn(t))‖.

Then,

‖un(θn(t)) − u(t)‖ −→ 0 as n −→ ∞, (37)

and similarly

‖un(ϕn(t)) − u(t)‖ −→ 0 as n −→ ∞. (38)

As regards the convergence of (vn), for every t, s ∈ I (s ≤ t), we have by (28),

‖vn(t) − vn(s)‖ ≤
∫ t

s
‖v̇n(τ)‖ dτ ≤

∫ t

s
ψ(τ)dτ ∀n ≥ 1. (39)

This shows that the sequence (vn) is equicontinuous. On the other hand, from (26) and (34), we have for all
t ∈ I,

(vn(θn(t)))n ⊂ C(I × KBH) ∩ γBH.
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Whence, by (H3
C), the sequence (vn(θn(t))n is relatively compact, and since from (39) and (29), for all t ∈ I,

‖vn(θn(t)) − vn(t)‖ −→ 0 as n −→ ∞, we conclude that for all t ∈ I, {vn(t),n ≥ 1} is relatively compact in H.
Then, (vn)n is relatively compact inC(I,H), by extracting a subsequence, that we do not relabel, we conclude
that it converges uniformly and strongly to some mapping v ∈ C(I,H). Moreover, for all t ∈ I, we have

‖vn(θn(t)) − v(t)‖ ≤ ‖vn(t) − v(t)‖ + ‖vn(θn(t)) − vn(t)‖ −→
n−→∞

0, (40)

and similarly

‖vn(ϕn(t)) − v(t)‖ −→ 0 as n −→ ∞. (41)

Now, from (27) and (28), we know that the sequences (u̇n) and (v̇n) are integrably bounded so, by
extracting subsequences, not relabeled, we may assume that they converge weakly in L1(I,H) to u̇ and v̇,
respectively (see [17]).

Step 3. Existence of a solution.
We start by proving that u(t) ∈ D(A(t, v(t))) = D and v(t) ∈ C(t,u(t)) for all t ∈ I. Indeed, if we put for any
fixed t ∈ I and each n ≥ 1, An := A(θn(t), vn(θn(t))), A := A(t, v(t)), xn := un(θn(t)) −→ u(t) and yn := A0

n(xn),
we get by (H1

A), (10), (11) and (40),

dis
(
An,A

)
≤ |β(θn(t)) − β(t)| + λ‖vn(θn(t)) − v(t)‖ −→

n→+∞
0, (42)

and by (31), xn ∈ D(An), and by (H2
A), (26), the sequence (yn) is bounded, hence, up to a subsequence, it is

weakly convergent in H. So that, by virtu of Lemma 2.6, we conclude that u(t) ∈ D for all t ∈ I.
On the other hand, by (H2

C), (11), (34), (38) and (40), for all t ∈ I,

d (v(t),C(t,u(t))) ≤ ‖vn(θn(t)) − v(t)‖ + d (vn(θn(t)),C(t,u(t)))
≤ ‖vn(θn(t)) − v(t)‖ + |η(θn(t)) − η(t)| + α‖un(ϕn(t)) − u(t)‖ −→

n→+∞
0,

which means that v(t) ∈ C(t,u(t)) since C(t,u(t)) is closed.
Next, since for all t ∈ I and each n ≥ 1,

‖ fn(t)‖ ≤ MF(1 + ‖un(ϕn(t))‖ + ‖vn(ϕn(t))‖)
≤ MF(1 + K + γ)

and

‖1n(t)‖ ≤MG(1 + K + γ), (43)

we may suppose (taking subsequences if necessary) that ( fn) (resp. (1n)) converges weakly in L1(I,H) to
some mapping f (resp. 1).

Now, since the sequence (u̇n + fn) (resp. ( fn)) converges weakly in L1(I,H) to u̇ + f (resp. to f ), by
Mazur’s Theorem, there is a sequence (z j) (resp. (z j)) such that for each j ∈ N, z j ∈ co

{
u̇k + fk, k ≥ j

}
(resp.

z j ∈ co
{
fk, k ≥ j

}
and (z j) (resp. (z j)) converges strongly in L1(I,H) to u̇ + f (resp. to f ). Hence, there exists

a subset I0 (resp. I1) of I with null Lebesgue-measure and a subsequence ( jp) (resp. ( jp̄)) ofN such that for
all t ∈ I \ I0 (resp. t ∈ I \ I1) (z jp (t)) (resp. (z jp̄ (t))) converges to u̇(t) + f (t) (resp. to f (t)). So that, for t ∈ I \ I0
(resp. t ∈ I \ I1)

u̇(t) + f (t) ∈
⋂
p∈N

co
{
u̇k(t) + fk(t), k ≥ jp

}
,

(resp.

f (t) ∈
⋂
p̄∈N

co
{

fk(t), k ≥ jp̄
}
, )



D. Azzam-Laouir, M. Benguessoum / Filomat 35:13 (2021), 4369–4380 4378

which means that for t ∈ I \ I0 (resp. t ∈ I \ I1) and for any ζ ∈ H〈
ζ, u̇(t) + f (t)

〉
≤ lim sup

n→∞

〈
ζ, u̇n(t) + fn(t)

〉
. (44)

(resp.〈
ζ, f (t)

〉
≤ lim sup

n→∞

〈
ζ, fn(t)

〉
.) (45)

Repeating the same arguments on the sequence (v̇n + 1n) (resp. (1n)), we infer the existence of a subset I′0
(resp. I′1) of I with null Lebesgue-measure such that for t ∈ I \ I′0 (resp. t ∈ I \ I′1) and for any ζ ∈ H

〈ζ, v̇(t) + 1(t)〉 ≤ lim sup
n→∞

〈ζ, v̇n(t) + 1n(t)〉 (46)

(resp.

〈ζ, 1(t)〉 ≤ lim sup
n→∞

〈ζ, 1n(t)〉.) (47)

We finish par showing that u and v satisfy the system (S1).
Using (H2

A), we may apply Lemma 2.7, to the maximal monotone operators An and A, which verify (42), to
ensure, for all ξ ∈ D(A) = D, the existence of a sequence (ξn) such that

ξn ∈ D (An) = D, ξn −→ ξ and A0
n(ξn) −→ A0(ξ). (48)

Since for every (t, x) ∈ I ×H, A(t, x) is monotone, by (30), we have for t ∈ I \Nn,〈
u̇n(t) + fn(t),un(θn(t)) − ξn

〉
≤

〈
A0

n(ξn), ξn − un(θn(t))
〉
. (49)

Whence, from (27), (49) and (H2
F ) together with (26), we obtain for all t ∈ I \ (

⋃
n≥1 Nn

⋃
N′

⋃
I0),〈

u̇n(t) + fn(t),u(t) − ξ
〉

=
〈
u̇n(t) + fn(t),un(θn(t)) − ξn

〉
+

〈
u̇n(t) + fn(t), (u(t) − un(θn(t))) − (ξ − ξn)

〉
≤

〈
A0

n(ξn), ξn − un(θn(t))
〉

+ (R + MF(1 + K + γ))
(
‖un(θn(t)) − u(t)‖ + ‖ξn − ξ‖

)
.

Relations (37) and (48) then give

lim sup
n−→∞

〈
u̇n(t) + fn(t),u(t) − ξ

〉
≤

〈
A0(ξ), ξ − u(t)

〉
,

which implies, by (44),〈
u̇(t) + f (t),u(t) − ξ

〉
≤

〈
A0(ξ), ξ − u(t)

〉
.

Since for all t ∈ I, u(t) ∈ D (A(t, v(t))) = D, by Lemma 2.5, we conclude that

−u̇(t) − f (t) ∈ A (t, v(t)) u(t) a.e. t ∈ I.

Now, from (28) and (43), we have for almost every t ∈ I,
(v̇n(t) − 1n(t)) ⊂ ψ̄(t)BH, where ψ̄(t) := ψ(t) + MG(1 + K + γ), then from (33), (2) and Proposition 2.2, we have
for almost every t ∈ I,

−v̇n(t) − 1n(t) ∈ NC(θn(t),un(ϕn(t)))(vn(θn(t))) ∩ ψ̄(t)BH

= ψ̄(t)∂dC(θn(t),un(ϕn(t)))(vn(θn(t))). (50)
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Fix any t ∈ I \
(
( ∪
n≥1

Nn) ∪ N′′ ∪ I′0
)

and any ζ ∈ H, this last relation and (46) give us, by the use of (ii) of

Proposition 2.4 taking into account relations (29), (38) and (40)

〈ζ, v̇(t) + 1(t)〉 ≤ lim sup
n→∞

δ∗
(
ζ,−ψ̄(t)∂dC(θn(t),un(ϕn(t)))(vn(θn(t)))

)
≤ δ∗

(
ζ,−ψ̄(t)∂dC(t,u(t))(v(t))

)
.

Since −ψ̄(t)∂dC(t,u(t))(v(t)) is a convex closed set, we deduce from (1) that −v̇(t) − 1(t) ∈ ψ̄(t)∂dC(t,u(t))(v(t)) ⊂
NC(t,u(t))(v(t)).

It remains to check that for almost every t ∈ I, f (t) ∈ F(t,u(t), v(t)) (resp. 1(t) ∈ G(t,u(t), v(t))). From (32)
and (45) we have by the use of hypothesis (H2

F ),

〈ζ, f (t)〉 ≤ lim sup
n→∞

δ∗
(
ζ,F(t,un(θn(t)), vn(θn(t)))

)
≤ δ∗

(
ζ,F(t,u(t), v(t))

)
.

Since F has closed and convex values, we conclude, by the use of relation (1), that f (t) ∈ F(t,u(t), v(t)) a.e.
t ∈ I. Using similar arguments, we also get 1(t) ∈ G(t,u(t), v(t)) a.e. t ∈ I. Consequently, (u, v) is a solution
of (S1). Furthermore, from (36) and (39) this solution satisfies

‖u(t) − u(s)‖ ≤ K|b(t) − b(s)|, ‖v(t) − v(s)‖ ≤ γ|b(t) − b(s)| ∀t, s ∈ I,

that is, u and v are absolutely continuous. This completes the proof. �

Remark 3.3. The statement of our Theorem 3.1 is also valid with no fixed domain D(A(t, x)) of the operator A(t, x),
if we take β, η ∈W1,2(I,H). The proof will be similar to the proof of Theorem 3.1 in [8].

We close the paper by the following corollaries.

Corollary 3.4. LetA be a nonempty, convex and ball compact subset of H. Let C, F and G as in Theorem 3.1. Then,
for any (u0, v0) ∈ A × C(0,u0), there exists a pair (u, v) of W1,1(I,H)-mappings satisfying the evolution problem

−u̇(t) ∈ NA(u(t)) + F(t,u(t), v(t)) a.e. t ∈ I
−v̇(t) ∈ NC(t,u(t))(v(t)) + G(t,u(t), v(t)) a.e. t ∈ I
u(t) ∈ A ∀t ∈ I
v(t) ∈ C(t,u(t)) ∀t ∈ I
(u(0), v(0)) = (u0, v0).

Proof. It is known that if for all (t, x) ∈ I×H, B(t, x) is a closed convex subset of H, then the subdifferential
of its indicator function, ∂δB(t,x) = NB(t,x), is a maximal monotone operator, furthermore,

dis(NB(t,x),NB(s,y)) = H(B(t, x),B(s, y)) ∀(t, x), (s, y) ∈ I ×H,

and D(NB(t,x)) = B(t, x). So that, our corollary is a direct consequence of Theorem 3.1 by taking for all
(t, x, y) ∈ I ×H ×H, A(t, x)y = ∂δA(y) = NA(y). �

Corollary 3.5. Assume that for every (t, x) ∈ I×H, A(t, x) : D(A(t, x)) ⊂ H −→ 2H is a maximal monotone operator
satisfying (H0

A), (H1
A), (H2

A) and (H3
A). Let h : H −→ H be a linear continuous and compact operator such that

λ‖h‖ < 1. Then, for any u0 ∈ D(A(0, h(u0))), there is a W1,1(I,H)-mapping u satisfying the evolution problem{
−u̇(t) ∈ A(t, h(u(t)))u(t) a.e. t ∈ I
u(0) = u0.

Proof. Apply Theorem 3.1 by taking for all (t, x, y) ∈ I×H×H, F(t, x, y) = G(t, x, y) = {0} and C(t, x) = {h(x)}.
�
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