

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Composition Results of Stepanov (μ, ν) -Pseudo Almost Automorphic Functions

Amor Rebey^{a,b}, Mosbah Eljeri^c

^aDepartment of Mathematics, College of Science and Human Studies at Hotat Sudair, Majmaah University, AL-Majmaah, 11952, Saudi Arabia.

^bISMAIK, Kairouan University, Tunisia.

^cDepartment of Mathematics, College Of Science Al-Zulfi, Majmaah University, Majmaah, 11952, Saudi Arabia.

Abstract. In this work, we give sufficient conditions ensuring that the space $S^pPAA(\mathbb{R}, X, \mu, \nu)$ of (μ, ν) -pseudo almost automorphic functions in Stepanov's sense is invariant by translation and we provide new composition theorems of (μ, ν) -pseudo almost automorphic functions in the sense of Stepanov.

1. Introduction

The notion of almost automorphy introduced by Bochner [7] is not restricted just to continuous functions. One can generalize that notion to measurable functions with some suitable conditions of integrability, namely, Stepanov almost automorphic functions, see [12]. Details can be found in [2–6, 9, 10, 12, 13] Now, throughout this work (\mathbb{H} , $\|.\|$) is a Banach space. The notation $C(\mathbb{R}, \mathbb{H})$ stands for the collection of all continuous functions from \mathbb{R} into \mathbb{H} . We denote by $BC(\mathbb{R}, \mathbb{H})$ is the space of all bounded continuous functions from \mathbb{R} into \mathbb{H} endowed with the supremum norm defined by

$$||x||_{BC(\mathbb{R}.\mathbb{H})} := \sup_{t \in \mathbb{R}} \{||x(t)||\}.$$

Furthermore, $BC(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ is the space of all bounded continuous functions $f : \mathbb{R} \times \mathbb{H} \to \mathbb{H}$.

Definition 1.1. [8] Let $p \in [1; +\infty)$. The space $\mathcal{BS}^p(\mathbb{R}; \mathbb{H})$ of all bounded functions in Stepanov's sense, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in \mathbb{H} such that $||f||_{BS^p} := \sup_{t \in \mathbb{R}} (\int_t^{t+1} |f(s)|^p ds)^{\frac{1}{p}} < \infty$. This is a Banach space when it is equipped with the norm $||f||_{BS^p}$.

Remark 1.2. $f \in \mathcal{BS}^p(\mathbb{R}; \mathbb{H})$ iff $f^b \in L^\infty(\mathbb{R}, L^p([0,1], \mathbb{H}))$, with f^b is is the Bochner transform of f defined by $f^b : \mathbb{R} \longrightarrow L^p([0,1], \mathbb{H}), f^b(t)(s) = f(t+s), \forall (t,s) \in \mathbb{R} \times [0,1]$. And $||f||_{BS^p} = ||f^b||_{\infty}$.

2020 Mathematics Subject Classification. 26A42, 43A60

Keywords. Measure theory; Almost automorphic functions in the sense of Stepanov; Ergodic functions in the sense of Stepanov Received: 14 November 2020; Accepted: 30 December 2020

Communicated by Dragan S. Djordjević

Research supported by Deanship of Scientific Research at Majmaah University.

Email addresses: a.rebey@mu.edu.sa (Amor Rebey), m.eljeri@mu.edu.sa (Mosbah Eljeri)

2. Almost automorphic functions

Definition 2.1. [11], [Definition 1.29] A continuous function $f : \mathbb{R} \to \mathbb{H}$ is called almost automorphic if for every sequence $(\sigma_n)_{n \in \mathbb{N}}$ there exists a subsequence $(s_n)_{n \in \mathbb{N}} \subset (\sigma_n)_{n \in \mathbb{N}}$ such that

$$\lim_{n,m\to+\infty} f(t+s_n-s_m) = f(t) \quad \text{for each } t \in \mathbb{R}.$$

Equivalently,

$$g(t) := \lim_{n \to \infty} f(t + s_n)$$

is well defined and

$$\lim_{n\to\infty}g(t-s_n)=f(t),$$

for all $t \in \mathbb{R}$.

Let $AA(\mathbb{R}, \mathbb{H})$ denote the collection of all almost automorphic functions from \mathbb{R} to \mathbb{H}

Definition 2.2. [6] A function $f : \mathbb{R} \times \mathbb{H} \to \mathbb{H}$ is said to be almost automorphic in t uniformly with respect to x in \mathbb{H} if the following two conditions hold:

(i) for all $x \in \mathbb{H}$, $f(.,x) \in AA(\mathbb{R},\mathbb{H})$,

(ii) f is uniformly continuous on each compact set K in \mathbb{H} with respect to the second variable x, namely, for each compact set K in \mathbb{H} , for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x_1, x_2 \in K$, one has

$$||x_1 - x_2|| \le \delta \Rightarrow \sup_{t \in \mathbb{R}} ||f(t, x_1) - f(t, x_2)|| \le \varepsilon.$$

Denote by AAU($\mathbb{R} \times \mathbb{H}$, \mathbb{H}) *the set of all such functions.*

Definition 2.3. [12] Let $p \in [1; +\infty)$. A function $f \in \mathcal{BS}^p(\mathbb{R}; \mathbb{H})$ is said to be S^p -almost automorphic if its Bochner transform $f^b \in AA(\mathbb{R}, L^p([0,1], \mathbb{H}))$.

Denote by $AA^p(\mathbb{R}, \mathbb{H})$ the set of all such functions.

The following remark is immediate.

Remark 2.4. The map $B: (\mathcal{BS}^p(\mathbb{R}, \mathbb{H}), \|.\|_{\mathcal{BS}^p}) \longrightarrow L^{\infty}(\mathbb{R}, L^p([0, 1], \mathbb{H})), f \longmapsto f^b$ is a linear isometry, in particular it is continuous.

Definition 2.5. [6] A function $f : \mathbb{R} \times \mathbb{H} \to \mathbb{H}$ is said to be S^p -almost automorphic in t uniformly with respect to x in \mathbb{H} if the following two conditions hold:

(i) for all $x \in \mathbb{H}$, $f(.,x) \in AA^p(\mathbb{R},\mathbb{H})$,

(ii) $f^b: \mathbb{R} \times \mathbb{H} \longrightarrow L^p([0,1],\mathbb{H}); f^b(t,x)(s) = f(t+s,x)$ is uniformly continuous on each compact set K in \mathbb{H} with respect to the second variable x, namely, for each compact set K in \mathbb{H} , for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x_1, x_2 \in K$, one has

$$||x_1 - x_2|| \le \delta \Rightarrow \sup_{t \in \mathbb{R}} (\int_0^1 ||f(t+s, x_1) - f(t+s, x_2)||^p ds)^{\frac{1}{p}} \le \varepsilon.$$

Denote by AA^p $U(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ *the set of all such functions.*

3. Ergodic functions

Let \mathcal{B} denote the Lebesgue σ -field of \mathbb{R} and let \mathcal{M} be the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R}) = +\infty$ and $\mu([a,b]) < \infty$, for all $a,b \in \mathbb{R}$ ($a \le b$). From now on, $\mu, \nu \in \mathcal{M}$.

Definition 3.1. [3] A function $f : \mathbb{R} \longrightarrow \mathbb{H}$ is said to be (μ, ν) -ergodic if

$$\lim_{r \to \infty} \frac{1}{\nu([-r, r])} \int_{-r}^{r} ||f(s)|| d\mu(t) = 0.$$

We then denote the set of all such functions by $\mathcal{E}(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

Definition 3.2. [13] A function $f \in \mathcal{BS}^p(\mathbb{R}, \mathbb{H})$ is said to be $S^p - (\mu, \nu)$ –ergodic if

$$\lim_{r \to \infty} \frac{1}{\nu([-r,r])} \int_{-r}^{r} (\int_{t}^{t+1} ||f(s)||^{p} ds)^{\frac{1}{p}} d\mu(t) = 0$$

Equivalently, $f^b \in \mathcal{E}(\mathbb{R}, L^p([0,1], \mathbb{H}), \mu, \nu)$.

We then denote the collection of all such functions by $\mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

Definition 3.3. A $f : \mathbb{R} \times \mathbb{H} \to \mathbb{H}$ is said to be S^p - (μ, ν) -ergodic in t uniformly with respect to $x \in \mathbb{H}$ if the following conditions are satisfied:

(i) For all $x \in \mathbb{H}$, $f(.,x) \in \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

(ii) $f^b: \mathbb{R} \times \mathbb{H} \longrightarrow L^p([0,1],\mathbb{H}); f^b(t,x)(s) = f(t+s,x)$ is uniformly continuous on each compact set K in \mathbb{H} with respect to the second variable $x \in \mathbb{H}$.

The set of such function is denoted by $\mathcal{E}^pU(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, \nu)$ *.*

4. Pseudo almost automorphic functions

Definition 4.1. A continuous function $f : \mathbb{R} \to \mathbb{H}$ is said to be (μ, ν) -pseudo almost automorphic if it is written in the form

$$f = g + h$$
,

where $g \in AA(\mathbb{R}, \mathbb{H})$ and $h \in \mathcal{E}(\mathbb{R}, \mathbb{H}, \mu, \nu)$. The set of such functions is denoted by $PAA(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

Definition 4.2. A continuous function $f : \mathbb{R} \times \mathbb{H} \to \mathbb{H}$ is said to be (μ, ν) -pseudo almost automorphic in the first variable uniformly with respect to the second variable if is written in the form

$$f = q + h$$
,

where $g \in AAU(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ and $h \in \mathcal{E}U(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, \nu)$. The set of such functions is denoted by $PAAU(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, \nu)$.

Definition 4.3. A function $f \in \mathcal{BS}^p(\mathbb{R} \to \mathbb{H})$ is said to be $S^p - (\mu, \nu)$ -pseudo almost automorphic if it can be written in the form

$$f = g + h$$
,

where $q \in AA^p(\mathbb{R}, \mathbb{H}, \mu)$ and $h \in \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$. The set of such functions will be denoted by $PAA^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

Definition 4.4. A function $f : \mathbb{R} \times \mathbb{H} \to \mathbb{H}$ is said to be S^p - (μ, ν) -pseudo almost automorphic in the first variable uniformly with respect to the second variable if it can be written in the form

$$f = g + h$$
,

where $g \in AA^pU(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ and $h \in \mathcal{E}^pU(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, \nu)$. The set of such functions is denoted by $PAA^pU(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, \nu)$.

We define the following conditions.

(M1):

$$\limsup_{r \to +\infty} \frac{\mu([-r,r])}{\nu([-r,r])} := M < \infty. \tag{1}$$

(M2): For all $\tau \in \mathbb{R}$, there exist $\beta > 0$ and a bounded interval I such that

$$\mu(\{a+\tau:\ a\in A\}) \leq \beta\mu(A)$$
 when $A\in\mathcal{B}$ satisfies $A\cap I=\emptyset$.

Theorem 4.5. If (M2) and (M1) are satisfied, Then:

- 1. $AA^p(\mathbb{R}, \mathbb{H})$ is a translation invariant closed subspace of $\mathcal{BS}^p(\mathbb{R}; \mathbb{H})$.
- 2. $\mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$ is a translation invariant closed subspace of $\mathcal{BS}^p(\mathbb{R}; \mathbb{H})$.
- 3. $PAA^{p}(\mathbb{R}, \mathbb{H}, \mu, \nu) = AA^{p}(\mathbb{R}, \mathbb{H}) \bigoplus \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, \nu)$ is a Banach space for the direct sum norm.

Proof:

- 1. By [11], [Theorem 2.1.3], $AA(\mathbb{R}, L^p([0,1], \mathbb{H}))$ is a translation invariant subspace of $BC(\mathbb{R}, L^p([0,1], \mathbb{H}))$. Let $t \mapsto f_a(t) := f(t+a)$ define a translation of f. We have $((f_a)^b(t)(s) = f_a(t+s) = f(t+s+a) = f^b(t+a)(s) = (f^b)_a(t)(s)$. That is $(f_a)^b = (f^b)_a$ and then for $f \in AA^p(\mathbb{R}, \mathbb{H})$, $f^b \in AA(\mathbb{R}, L^p([0,1], \mathbb{H}))$ then $(f^b)_a = (f_a)^b \in AA(\mathbb{R}, L^p([0,1], \mathbb{H}))$ that means $f_a \in AA^p(\mathbb{R}, \mathbb{H})$, then $AA^p(\mathbb{R}, \mathbb{H})$ is translation invariant. By [12], Theorem 2.3 $AA^p(\mathbb{R}, \mathbb{H})$ is a closed subspace of $\mathcal{BS}^p(\mathbb{R}; \mathbb{H})$.
- 2. It is immediate to prove $\mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$ is a subspace of $\mathcal{BS}^p(\mathbb{R}; \mathbb{H})$. Now take $f \in \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$ and f_a its translate

$$\frac{1}{\nu([-r,r])} \int_{-r}^{r} (\int_{0}^{1} |f_{a}(t+s)|^{p} ds)^{\frac{1}{p}} d\mu(t) = \frac{1}{\nu([-r,r])} \int_{-r}^{r} (\int_{0}^{1} |f(t+a+s)|^{p} ds)^{\frac{1}{p}} d\mu(t) \\
= \frac{1}{\nu([-r,r])} \int_{-r+a}^{r+a} (\int_{0}^{1} |f(y+s)|^{p} ds)^{\frac{1}{p}} d\mu(y-a) \\
\leq \beta \frac{\nu(Q_{r})}{\nu([-r,r])} \frac{1}{\nu(Q_{r})} \int_{-r-|a|}^{r+|a|} (\int_{0}^{1} |f(y+s)|^{p} ds)^{\frac{1}{p}} d\mu(y)$$

where $Q_r = [-r - |a|, r + |a|]$. The factor $\beta \frac{\nu([-r-|a|,r+|a|])}{\nu([-r,r])}$ is bounded and

$$\lim_{r\to\infty} \frac{1}{\nu([-r-|a|,r+|a|])} \int_{-r-|a|}^{r+|a|} (\int_{0}^{1} |f(y+s)|^{p} ds)^{\frac{1}{p}} d\mu(y) = 0,$$

then $f_a \in \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

For the closedness of $(\mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu))$ take a sequence (f_n) in it. Assume that it converges in \mathcal{BS}^p to f. By Remark 2.4, the $((f_n)^b)$ of $\mathcal{E}(\mathbb{R}, L^p([0,1], \mathbb{H}))$ converges to f^b in $L^\infty(\mathbb{R}, L^p([0,1], \mathbb{H}))$. According to [1], Theorem 3 $(\mathcal{E}(\mathbb{R}, L^p([0,1], \mathbb{H}), \mu, \nu), \|.\|_{\infty})$ is closed, then $f^b \in (\mathcal{E}(\mathbb{R}, L^p([0,1], \mathbb{H}), \mu, \nu))$ that is $f \in (\mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu), \|.\|_{\mathcal{BS}^p})$.

3. It is enough to show that $AA^p(\mathbb{R}, \mathbb{H}) \cap \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu) = \{0\}$. Let $f \in AA^p(\mathbb{R}, \mathbb{H}) \cap \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$ then $f^b \in AA(\mathbb{R}, L^p([0,1], \mathbb{H})) \cap \mathcal{E}(\mathbb{R}, L^p([0,1], \mathbb{H}), \mu, \nu)$. According to [1], Theorem 5, $f^b = 0$ then f = 0, by the injectivity of B in Remark 2.4.

Let $(f_n) \in PAA^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$ that converges in \mathcal{BS}^p to f then $(f_n)^b \in PAA(\mathbb{R}, L^p([0,1], \mathbb{H}), \mu, \nu)$ and converges in $L^{\infty}(\mathbb{R}, L^p([0,1], \mathbb{H}))$ to f^b . According to [1], Theorem 6, $f^b \in PAA(\mathbb{R}, L^p([0,1], \mathbb{H}), \mu, \nu)$ that is $f \in PAA^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

Remark 4.6. In the space $PAA^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$, the direct sum norm and the $\|.\|_{\mathcal{BS}^p}$ are equivalent.

Theorem 4.7. Let $G \in AA^pU(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ and $h \in AA^p(\mathbb{R}, \mathbb{H})$ satisfying the following:

1. **(A0):** There exists a nonnegative function $L \in \mathcal{BS}^p(\mathbb{R})$ such that

$$\forall x, y \in \mathbb{H}, t \in \mathbb{R} ||G(t, x) - G(t, y)|| \le L(t) ||x - y||.$$

And there exists $\xi > 0$ such that for all $t \in \mathbb{R}$, $f \in \mathcal{BS}^p(\mathbb{R}, \mathbb{H})$, we have:

$$\left(\int_0^1 L^p(t+s) ||f(s)||^p ds\right)^{\frac{1}{p}} \le \xi \left(\int_0^1 ||f(s)||^p ds\right)^{\frac{1}{p}},$$

2. $K = \overline{\{h(t), t \in \mathbb{R}\}}$ is compact.

Then $[t \longmapsto G(t, h(t))] \in AA^p(\mathbb{R}, \mathbb{H}).$

Proof: Let (x_n) be a sequence such that $\lim_{n,m\to\infty} ||h(t+x_n-x_m+.)-h(t+.)||_{L^p[0,1]}=0$.

Take $\varepsilon > 0$ and $K \subset \bigcup_{1 \le i \le r} B(y_i, \varepsilon)$, for some $y_i \in K$.

For $t \in \mathbb{R}$, let $E_1 := \{s \in [0,1]: h(t+s) \in B(y_1,\varepsilon)\}$ and for $2 \le i \le r$, we define $E_i := \{s \in ([0,1] \setminus \bigcup_{1 \le j \le i-1} E_j): h(t+s) \in B(y_i,\varepsilon)\}$.

Here $\{E_i, 1 \le i \le r\}$ is a partition of [0,1] and the sum of Lebesgue measures: $\sum_i \lambda(E_i) = 1$.

$$I: = \left(\int_{0}^{1} |G(t+s+x_{n}-x_{m},h(t+s+x_{n}-x_{m})) - G(t+s,h(t+s))|^{p}ds\right)^{\frac{1}{p}}$$

$$\leq \left(\int_{0}^{1} |G(t+s+x_{n}-x_{m},h(t+s+x_{n}-x_{m})) - G(t+s+x_{n}-x_{m},h(t+s))|^{p}ds\right)^{\frac{1}{p}}$$

$$+ \left(\int_{0}^{1} |G(t+s+x_{n}-x_{m},h(t+s)) - G(t+s,h(t+s))|^{p}ds\right)^{\frac{1}{p}}.$$

Denote by I_1 and I_2 , respectively, the first and the second term of the previous sum.

By **(A0)**,
$$I_1 \leq \left(\int_0^1 (L(t+s+x_n-x_m)|h(t+s+x_n-x_m)-h(t+s)|)^p ds\right)^{\frac{1}{p}}$$

 $\leq \xi \left(\int_0^1 (||h(t+s+x_n-x_m)-h(t+s)|)^p ds\right)^{\frac{1}{p}} \leq \varepsilon \xi$, for $n, m \geq N_0$, since $h \in AA^p(\mathbb{R}, \mathbb{H})$. For I_2 :

$$I_2 = \left(\sum_{1}^{r} \int_{E_i} |G(t+s+x_n-x_m,h(t+s)) - G(t+s,h(t+s))|^p ds\right)^{\frac{1}{p}}.$$

Let

$$G(t+s+x_n-x_m,h(t+s)) - G(t+s,h(t+s)) = (G(t+s+x_n-x_m,h(t+s)) - G(t+s+x_n-x_m,y_i)) + (G(t+s+x_n-x_m,y_i) - G(t+s,y_i)) + (G(t+s,y_i) - G(t+s,h(t+s))) = f_{1,i}(s) + f_{2,i}(s) + f_{3,i}(s)$$

Then

$$I_{2} = \left(\sum_{1}^{r} \int_{E_{i}} |f_{1,i}(s) + f_{2,i}(s) + f_{3,i}(s)|^{p} ds\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{1}^{r} \left[\left(\int_{E_{i}} |f_{1,i}(s)|^{p} ds\right)^{\frac{1}{p}} + \left(\int_{E_{i}} |f_{2,i}(s)|^{p} ds\right)^{\frac{1}{p}} + \left(\int_{E_{i}} |f_{3,i}(s)|^{p}\right)^{\frac{1}{p}} \right]^{p} \right]^{\frac{1}{p}}$$

$$= \left(\sum_{1}^{r} \int_{E_{i}} |f_{1,i}(s)|^{p} ds\right)^{\frac{1}{p}} + \left(\sum_{1}^{r} \int_{E_{i}} |f_{2,i}(s)|^{p} ds\right)^{\frac{1}{p}} + \left(\sum_{1}^{r} \int_{E_{i}} |f_{3,i}(s)|^{p} ds\right)^{\frac{1}{p}}$$

$$:= S_{1} + S_{2} + S_{3}.$$

By (A0),

$$S_{1} = \left(\sum_{1}^{r} \int_{E_{i}} |G(t+s+x_{n}-x_{m},h(t+s)) - G(t+s+x_{n}-x_{m},y_{i})|^{p}ds\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{1}^{r} \int_{E_{i}} (L(t+s+x_{n}-x_{m})|h(t+s)-y_{i}|)^{p}ds\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{1}^{r} \int_{E_{i}} (L(t+s+x_{n}-x_{m})e)^{p}ds\right)^{\frac{1}{p}}$$

$$= \varepsilon \left(\sum_{1}^{r} \int_{E_{i}} (L(t+s+x_{n}-x_{m}))^{p}ds\right)^{\frac{1}{p}}$$

$$= \varepsilon \left(\sum_{1}^{r} \int_{0}^{1} (\chi_{E_{i}}(s)L(t+s+x_{n}-x_{m}))^{p}ds\right)^{\frac{1}{p}}$$

$$= \varepsilon \left(\sum_{1}^{r} [(\int_{0}^{1} (\chi_{E_{i}}(s)L(t+s+x_{n}-x_{m}))^{p}ds\right)^{\frac{1}{p}}]^{p}\right)^{\frac{1}{p}}$$

$$\leq \varepsilon \left(\sum_{1}^{r} [\xi (\int_{0}^{1} (\chi_{E_{i}}(s))^{p}ds\right)^{\frac{1}{p}}]^{p}\right)^{\frac{1}{p}}$$

$$= \xi \varepsilon \left(\sum_{1}^{r} \lambda(E_{i})\right)^{\frac{1}{p}}$$

$$= \xi \varepsilon$$

In the same way $S_3 \le \varepsilon \xi$.

For S_2 :

$$S_2 = \left(\sum_{t=1}^r \int_{E_i} |G(t+s+x_n-x_m,y_i) - G(t+s,y_i)|^p ds\right)^{\frac{1}{p}}.$$

 $G(., y_1) \in AA^p(\mathbb{R}, \mathbb{H})$, then there exists a subsequence $(\sigma_{1n}) \subseteq (x_n)$ and $N_1 \in \mathbb{N}$ such that

$$n, m \ge N_1 \Rightarrow \left(\int_0^1 |G(t+s+\sigma_{1n}-\sigma_{1m},y_1)-G(t+s,y_1)|^p ds\right)^{\frac{1}{p}} \le \frac{\varepsilon}{r^{\frac{1}{p}}}.$$

 $G(.,y_2) \in AA^p(\mathbb{R},\mathbb{H})$, then there exists a subsequence $(\sigma_{2n}) \subseteq (\sigma_{1n})$ and $N_2 \ge N_1$ such that

$$n, m \ge N_2 \Rightarrow \left(\int_0^1 |G(t+s+\sigma_{2n}-\sigma_{2m},y_2)-G(t+s,y_2)|^p ds\right)^{\frac{1}{p}} \le \frac{\varepsilon}{r^{\frac{1}{p}}}.$$

Since $G(., y_j) \in AA^p(\mathbb{R}, \mathbb{H})$, then there exists a subsequence $(\sigma_{jn}) \subseteq (\sigma_{(j-1)n})$ and $N_j \ge N_{j-1}$ such that

$$n, m \ge N_j \Rightarrow \left(\int_0^1 |G(t+s+\sigma_{jn}-\sigma_{jm},y_j)-G(t+s,y_j)|^p ds\right)^{\frac{1}{p}} \le \frac{\varepsilon}{r^{\frac{1}{p}}}.$$

Preserving the same notation of S_2 , for $N = \max_{1 \le i \le r} \{N_i\}$, $n, m \ge N$, we have

$$S_{2} = \left(\sum_{1}^{r} \int_{E_{i}} |G(t+s+\sigma_{rn}-\sigma_{rm},y_{j})-G(t+s,y_{j})|^{p} ds\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{1}^{r} \int_{0}^{1} |G(t+s+\sigma_{rn}-\sigma_{rm},y_{j})-G(t+s,y_{j})|^{p} ds\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{1}^{r} \left(\frac{\varepsilon}{r_{p}^{1}}\right)^{p}\right)^{\frac{1}{p}} = \varepsilon.$$

And then, for $n, m \ge \max\{N, N_0\}$, $I \le \varepsilon(1 + 3\xi)$. This completes the proof.

Theorem 4.8. Assume μ, ν satisfy (M1). Let $G \in \mathcal{E}^p U(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, \nu)$ and $h : \mathbb{R} \longrightarrow \mathbb{H}$ satisfying:

1. **(A0):** There exists a nonnegative function $L \in \mathcal{BS}^p(\mathbb{R})$ such that

$$\forall x,y \in \mathbb{H}, t \in \mathbb{R}, ||G(t,x) - G(t,y)|| \le L(t)||x - y||.$$

And there exists $\xi > 0$ such that for all $t \in \mathbb{R}$, $f \in \mathcal{BS}^p(\mathbb{R}, \mathbb{H})$, we have:

$$\left(\int_{0}^{1} L^{p}(t+s) ||f(s)||^{p} ds\right)^{\frac{1}{p}} \leq \xi \left(\int_{0}^{1} ||f(s)||^{p} ds\right)^{\frac{1}{p}},$$

2. $K = \overline{\{h(t), t \in \mathbb{R}\}}$ is compact.

Then $[t \mapsto G(t, h(t))] \in \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$.

Proof: Take $\varepsilon > 0$. Let $\eta = \frac{\varepsilon}{2(M+1)\xi}$. Assume the compact $K \subset \bigcup_{1 \le i \le m} B(y_i, \eta)$.

For $t \in \mathbb{R}$, let $E_1 := \{s \in [0,1]/h(t+s) \in B(y_1,\eta)\}$ and for $2 \le i \le m$, we define $E_i := \{s \in ([0,1] \setminus \bigcup_{1 \le j \le i-1} E_j)/h(t+s) \in B(y_i,\eta)\}$.

Here $\{E_i, 1 \le i \le m\}$ is a partition of [0, 1] and the sum of Lebesgue measures: $\sum_{i=1}^{m} \lambda(E_i) = 1$. We aim to find R > 0 such that:

$$r \geq R \Longrightarrow I := \frac{1}{\nu([-r,r])} \int_{[-r,r]} \left(\int_{0}^{1} |G(t+s,h(t+s))|^{p} ds \right)^{\frac{1}{p}} d\mu(t) \leq \varepsilon.$$

$$\left(\int_{0}^{1} |G(t+s,h(t+s))|^{p} ds \right)^{\frac{1}{p}} = \left(\sum_{i=1}^{m} \int_{E_{i}} |G(t+s,h(t+s)) - G(t+s,y_{i}) + G(t+s,y_{i})|^{p} ds \right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{i=1}^{m} \left[\left(\int_{E_{i}} |G(t+s,h(t+s)) - G(t+s,y_{i})|^{p} ds \right)^{\frac{1}{p}} + \left(\int_{E_{i}} |G(t+s,y_{i})|^{p} ds \right)^{\frac{1}{p}} \right]^{p} \right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{i=1}^{m} \int_{E_{i}} |G(t+s,h(t+s)) - G(t+s,y_{i})|^{p} ds \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{m} \int_{E_{i}} |G(t+s,y_{i})|^{p} ds \right)^{\frac{1}{p}}.$$

Denote by $S_1(t)$ the first sum and by $S_2(t)$ the second sum of the previous expression. Then

$$S_{1}(t) \leq \left(\sum_{i=1}^{m} \int_{E_{i}} L^{p}(t+s) \eta^{p} ds\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{i=1}^{m} \lambda(E_{i}) \xi^{p} \eta^{p} ds\right)^{\frac{1}{p}}$$

$$\leq \eta \xi,$$

and

$$S_{2}(t) = \left(\sum_{i=1}^{m} \int_{0}^{1} |\chi_{E_{i}}(s)G(t+s,y_{i})|^{p}ds\right)^{\frac{1}{p}}$$

$$= \left(\int_{0}^{1} |\sum_{i=1}^{m} \chi_{E_{i}}(s)G(t+s,y_{i})|^{p}ds\right)^{\frac{1}{p}}$$

$$\leq \sum_{i=1}^{m} \left(\int_{0}^{1} |\chi_{E_{i}}(s)G(t+s,y_{i})|^{p}ds\right)^{\frac{1}{p}}$$

$$\leq \sum_{i=1}^{m} \left(\int_{0}^{1} |G(t+s,y_{i})|^{p}ds\right)^{\frac{1}{p}}.$$

Now, we return to *I*:

$$I \leq \frac{1}{\nu([-r,r])} \int_{[-r,r]} S_1(t) + S_2(t) d\mu(t)$$

$$\leq \frac{1}{\nu([-r,r])} \int_{[-r,r]} \eta ||L||_{\mathcal{BS}^p(\mathbb{R})} d\mu(t) + \sum_{i=1}^m \frac{1}{\nu([-r,r])} \int_{[-r,r]} \left(\int_0^1 |G(t+s,y_i)|^p ds \right)^{\frac{1}{p}} d\mu(t)$$

Since each $G(., y_i)$ is in $\mathcal{E}^{\nu}(\mathbb{R}, \mathbb{H}, \mu, \nu)$, there exists $R_i > 0$ such that

$$r \ge R_i \Longrightarrow \frac{1}{\nu([-r,r])} \int_{[-r,r]} \left(\int_0^1 |G(t+s,y_i)|^p ds \right)^{\frac{1}{p}} d\mu(t) \le \frac{\varepsilon}{2m}.$$

Then for $r \ge R := \sup_{1 \le i \le m} R_i, I \le \frac{\mu([-r,r])}{\nu([-r,r])} \eta ||L||_{\mathcal{BS}^p(\mathbb{R})} + \frac{\varepsilon}{2} \le \varepsilon.$

Theorem 4.9. Let μ and ν satisfy (M1). Assuming that $G = G_1 + G_2 \in PAA^pU(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, \nu)$ and $h = h_1 + h_2 \in PAA^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$. Assume that the following conditions hold:

1. G_1, G_2 satisfy (A0): There exists a nonnegative function $L_i \in \mathcal{BS}^p(\mathbb{R})$ such that

$$\forall x, y \in \mathbb{H}, t \in \mathbb{R} : ||G_i(t, x) - G_i(t, y)|| \le L_i(t)||x - y||,$$

for i = 1, 2. And there exists $\xi > 0$ such that for all $t \in \mathbb{R}$, $f \in \mathcal{BS}^p(\mathbb{R})$

$$\left(\int_{0}^{1} L_{i}^{p}(t+s)||f(s)||^{p}ds\right)^{\frac{1}{p}} \leq \xi \left(\int_{0}^{1} ||f(s)||^{p}ds\right)^{\frac{1}{p}}.$$

2. $K_i = \overline{\{h_i(t), t \in \mathbb{R}\}}$ is compact, for i = 1, 2.

Then $t \mapsto G(t, h(t)) \in PAA^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$

Proof: Put $G(t, h(t)) = \widetilde{G}_1(t) + \widetilde{G}_2(t)$. Where $\widetilde{G}_1(t) := G_1(t, h_1(t))$ and $\widetilde{G}_2(t) := (G(t, h(t)) - G(t, h_1(t))) + G_2(t, h_1(t))$. By Theorem 4.7, we have $t \mapsto G_1(t, h_1(t)) \in AA^p(\mathbb{R}, \mathbb{H})$ that is $\widetilde{G}_1 \in AA^p(\mathbb{R}, \mathbb{H})$. For \widetilde{G}_2 : $t \mapsto G_2(t, h_1(t)) \in \mathcal{E}^p(\mathbb{R}, \mathbb{H}, \mu, \nu)$, by Theorem 4.8.

For $t \in \mathbb{R}$, we have

$$\begin{split} \Big(\int_{t}^{t+1} \|G(s,h(s)) - G(s,h_{1}(s))\|^{p} ds\Big)^{\frac{1}{p}} & \leq & \Big(\int_{t}^{t+1} \|G_{1}(s,h(s)) - G_{1}(s,h_{1}(s))\|^{p} ds\Big)^{\frac{1}{p}} \\ & + & \Big(\int_{t}^{t+1} \|G_{2}(s,h(s)) - G_{2}(s,h_{1}(s))\|^{p} ds\Big)^{\frac{1}{p}} \\ & \leq & \Big(\int_{0}^{1} L_{1}^{p} (t+s)\|h_{2}(t+s)\|^{p} ds\Big)^{\frac{1}{p}} + \Big(\int_{0}^{1} L_{2}^{p} (t+s)\|h_{2}(t+s)\|^{p} ds\Big)^{\frac{1}{p}} \\ & \leq & 2\xi \Big(\int_{0}^{1} \|h_{2}(t+s)\|^{p} ds\Big)^{\frac{1}{p}}, \ since \ h_{2}(t+s) \in \mathcal{BS}^{p}(\mathbb{R}). \end{split}$$

Then

$$\frac{1}{\nu([-r,r])} \int_{[-r,r]} \left(\int_{t}^{t+1} ||G(s,h(s)) - G(s,h_{1}(s))||^{p} ds \right)^{\frac{1}{p}} d\mu(t) \leq \frac{2\xi}{\nu([-r,r])} \int_{[-r,r]} \left(\int_{t}^{t+1} ||h_{2}(s)||^{p} ds \right)^{\frac{1}{p}} d\mu(t) \longrightarrow 0$$

as $r \to +\infty$. This implies that $t \mapsto G(t,h(t)) - G(t,h_1(t)) \in \mathcal{E}^p(\mathbb{R},\mathbb{H},\mu,\nu)$. Therefore, $\widetilde{G}_2 \in \mathcal{E}^p(\mathbb{R},\mathbb{H},\mu,\nu)$.

Acknowledgments

The first author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under the project number No. R-2021-35.

References

- [1] E. Ait Dads, K. Ezzinbi and M. Miraoui, (μ, ν) -Pseudo almost automorphic solutions for some nonautonomous differential equations, Int. J. Math. 26 (2015) 1–21.
- [2] M.Ben Salah, K. Ezzinbi and A. Rebey, Pseudo almost Periodic and Pseudo almost Automorphic Solutions to Evolution Equations in Hilbert Spaces, Mediterranean Journal of Mathematics 13 (2016) 703–717.
- [3] M. Ben Salah, M. Miraoui and A. Rebey, New results for some neutral partial functional differential equations, Results in Mathematics 74 181 (2019).
- [4] J. Blot, G. M. Mophou, G. M. N'Guérékata, and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal 71 (2009) 903–909.
- [5] J. Blot, P. Cieutat and K. Ezzinbi, New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis 92 (2013) 493–526.
- [6] J. Blot, P. Cieutat and K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Analysis 75 (2012) 2426–2447.
- [7] S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proceedings of the National Academy of Sciences of the United States of America 52 (1964) 907-910.
- [8] T. Diagana, Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008) 4277-4285.
- [9] T. Diagana, K. Ezzinbi, M. Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory, Cubo, 16 (2) (2014) 1–31.
- [10] M. Miraoui, K. Ezzinbi and A. Rebey, μ–Pseudo Almost periodic solutions in α–norm to some neutral partial differential equations with finite delay, Dynamics of Continuous Discrete and Impulsive Systems, Canada (2017) 83–96.
- [11] N'Guérékata GM., Almost automorphic and almost periodic functions in abstract spaces, Kluwer Academic Publishers, New-York, 2001.
- [12] G. M. N'Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Analysis 68 (2008) 2658–2667.
- [13] A. Rebey, H. Elmonser, M. Eljeri, M. Miraoui, New results for doubly mesured pseudo almost periodic functions in Stepanov's sense, Ukrainian Mathematical Journal, Accepted.