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Abstract. In this work, we give sufficient conditions ensuring that the space SPPAA(R, X, u,v) of (u,v)-
pseudo almost automorphic functions in Stepanov’s sense is invariant by translation and we provide new
composition theorems of (i, v)-pseudo almost automorphic functions in the sense of Stepanov.

1. Introduction

The notion of almost automorphy introduced by Bochner [7] is not restricted just to continuous functions.
One can generalize that notion to measurable functions with some suitable conditions of integrability,
namely, Stepanov almost automorphic functions, see [12]. Details can be found in [2-6, 9, 10, 12, 13]

Now, throughout this work (IH, ||.|[) is a Banach space. The notation C(IR,H) stands for the collection of

all continuous functions from R into H. We denote by BC(IR, H) is the space of all bounded continuous
functions from R into H endowed with the supremum norm defined by

lIxllse 1y = suprer{llx(®I}-

Furthermore, BC(R x H, H) is the space of all bounded continuous functions f : R x IH — H.

Definition 1.1. [8] Let p € [1; +0). The space BS(IR; H) of all bounded functions in Stepanov’s sense, with the

t+1
exponent p, consists of all measurable functions f on R with values in H such that ||f||gsr := sup(

teR Jt
oo. This is a Banach space when it is equipped with the norm || f||psy.

[f(s)Pds)r <

Remark 1.2. f € BS'(R;H) iff f* € L (R, LF([0,1], H)), with f" is is the Bochner transform of f defined by
ff: R — LF([0,1], H), fo(£)(s) = f(t +5),Y(t,5) € Rx[0,1]. And ||fllzsr = Il f*lleo-
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2. Almost automorphic functions

Definition 2.1. [11], [Definition 1.29] A continuous function f : R — H is called almost automorphic if for every
sequence (0n)neN there exists a subsequence (Sy)neN C (On)nen Such that

lim f(t+s,—sm)=f(t) foreachteR.

n,m—+00
Equivalently,
g(t) == lim f(t +s,)
is well defined and
lim g(t - s,) = £(8),
n—-oo
forallt e R

Let AA(R, IH) denote the collection of all almost automorphic functions from R to IH

Definition 2.2. [6] A function f : R X H — H is said to be almost automorphic in t uniformly with respect to x in
H if the following two conditions hold:

(i) forall x e H, f(.,x) € AA(R, H),

(ii) f is uniformly continuous on each compact set K in H with respect to the second variable x, namely, for each
compact set K in H, for all € > 0, there exists 0 > 0 such that for all x;, x, € K, one has

llx; — x2ll < 0 = supllf(t,x1) — f(t, x2)ll < e.
teR

Denote by AAU(R x H, H) the set of all such functions.

Definition 2.3. [12] Let p € [1;+0). A function f € BS'(R; H) is said to be SP-almost automorphic if its Bochner
transform f* € AA(R, LP([0, 1], H)).

Denote by AAP(IR, H) the set of all such functions.

The following remark is immediate.

Remark 2.4. Themap B : (BS'(R, H), ||.llgs’) — L=(R,LP([0,1],H)), f +—> f? is a linear isometry, in particular
it is continuous.

Definition 2.5. [6] A function f : R x IH — H is said to be SP-almost automorphic in t uniformly with respect to x
in IH if the following two conditions hold:

(i) forall x e H, (., x) € AAP(R, H),

(ii) f* : Rx H — LP([0,1], H); f°(t, x)(s) = f(t + s, x) is uniformly continuous on each compact set K in H with
respect to the second variable x, namely, for each compact set K in IH, for all € > 0, there exists 0 > 0 such that for all

x1, Xo € K, one has
1

1 —xall <6 = sup( | [If(t+5,x1) = f(t+5,x2)|Pds)? < e.
teR 0

Denote by AAPU(R x H, H) the set of all such functions.

3. Ergodic functions

Let B denote the Lebesgue o-field of R and let M be the set of all positive measures i on 8 satisfying
U(R) = +o00 and u([a, b]) < oo, for alla,b € R (a < b). From now on, u,v € M.

Definition 3.1. [3] A function f : R — H is said to be (u, v)—ergodic if

. 1 '
fim - = [ 1) =0
We then denote the set of all such functions by &(R, H, p, v).
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Definition 3.2. [13] A function f € BS'(R,H) is said to be S* — (u, v)—ergodic if

. 1 r t+1 J
tim ([ wrerasau =0

Equivalently, f € &R, LP([0,1], H), u, v).
We then denote the collection of all such functions by & (R, H, u, v).

Definition 3.3. A f : RxIH — His said to be SP-(u, v)-ergodic in t uniformly with respect to x € H if the following
conditions are satisfied:
(i) Forallx € H, f(.,x) €e &(R,H, p,v).
(ii) f*: R x H — LF([0, 1], H); fo(t, x)(s) = f(t + s, x) is uniformly continuous on each compact set K in H with
respect to the second variable x € TH.

The set of such function is denoted by EU(R x H, H, p, v).

4. Pseudo almost automorphic functions
Definition 4.1. A continuous function f : R — H is said to be (1, v)-pseudo almost automorphic if it is written in
the form
f=g+h,
where g € AA(R, H) and h € E(R, H, p, v). The set of such functions is denoted by PAA(R, H, u, v).

Definition 4.2. A continuous function f : R x H — H is said to be (u, v)-pseudo almost automorphic in the first
variable uniformly with respect to the second variable if is written in the form

f=g+h,

where g € AAU(R x H,H) and h € EU(R x H,H, u,v). The set of such functions is denoted by PAAU(R x
H,H, u,v).

Definition 4.3. A function f € BS'(R — H) is said to be S — (u, v)-pseudo almost automorphic if it can be written
in the form

f=g+h,
where g € AAP(R,H, u) and h € & (R, H, p,v). The set of such functions will be denoted by PAAP(R, H, u, v).

Definition 4.4. A function f : R x H — H is said to be SP-(u, v)-pseudo almost automorphic in the first variable
uniformly with respect to the second variable if it can be written in the form

f=g+h,

where g € AAPU(R X H,H) and h € &U(R x H,H, u,v). The set of such functions is denoted by PAAPU(R X
H,H, y,v).

We define the following conditions.

(M1):
. p(=rrl)
hfifgp m =M < c0. (1)

(M2): For all 7 € R, there exist § > 0 and a bounded interval I such that

u(fa+7: aeA}) <pu(A) when A € Bsatisfies ANT=0.
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Theorem 4.5. If (M2) and (M1) are satisfied, Then:

1. AAP(R,H) is a translation invariant closed subspace of BS'(R; H).
2. & (R, H, u,v) is a translation invariant closed subspace of BS' (R; H).
3. PAAP(R, H, u,v) = AAP(R, H) GB & (R, H, u,v) is a Banach space for the direct sum norm.

Proof:

1. By [11], [Theorem 2.1.3 ], AA(R, L¥([0, 1], IH)) is a translation invariant subspace of BC(R, L7 ([0, 1], H)).
Let t — fy(t) := f(t + a) define a translation of f. We have ((f,)’(H)(s) = fu(t +5) = f(t +s+a) =
Fo(t +a)(s) = (fP)a(t)(s). That s ()" = (f*). and then for f € AAP(R,H), f* € AA(R, L*([0, 1], H)) then
(f") = (fa)? € AA(R, LF([0, 1], H)) that means f, € AAP(R, H)), then AAP(RR, H) is translation invariant.
By [12], Theorem 2.3 AAP(RR, H) is a closed subspace of 8S"(R; H).

2. Ttis immediate to prove & (R, H, p, v) is a subspace of 85’ (R; H).
Now take f € & (R, H, u,v) and f, its translate

1 7 1 ) L
m[r(jo‘ [fa(t + s)IPds)? dp(t)

1 7 1 , .
m[r(ﬁ [f(t +a+s)Pds)rdu(t)

1 r+a 1 L
= ), v oo
v(Qy) 1 rHel fl D 1k
T N (O ds)rd
< P v Sy |f(y +s)Pds)? du(y)
where Q, = [~ —lal,7 + |al]. The factor ﬁ% is bounded and
. 1 7+al 1 ) h
rh—>I?o v([=r = lal, 7 + lal]) rlal(fo If(y +s)lPds)rdu(y) =0,

then f, € & (R, H, p, v).

For the closedness of (& (R, H, u,v) take a sequence (f,) in it. Assume that it converges in 8BS’ to
f. By Remark 2.4, the ((f,)") of &R, LP([0,1],H)) converges to f¥ in L*(R, LF([0,1], H)). According
to [1], Theorem 3 (&E(R,LF([0, 1], H), 1, v), |l.ll) is closed, then fb € (&(R,LP([0,1],H), u, v) that is
f €@ ®RH,p,v),|Llzs):

3. It is enough to show that AAP(R,H) N & (R, H, u,v) = {0}. Let f € AAY(R,H) N & (R, H, y,v) then
fb € AA(R, L7([0,1], H)) n &R, LP([0, 1], H), 4, v). According to [1], Theorem 5, fb =0then f =0, by
the injectivity of B in Remark 2.4.

Let (f,) € PAAP(R,H, u,v) that converges in 8BS’ to f then (f,)’ € PAA(R,LP([0,1],H), i, v) and
converges in L*(IR, L*([0, 1], H)) to fb. According to [1], Theorem 6, fb € PAA(R, LP([0,1], H), u, v) that
is f € PAAP(R,H, y,v).

Remark 4.6. In the space PAAP(R,H, p,v), the direct sum norm and the ||.||gs» are equivalent.

Theorem 4.7. Let G € AAPU(R x H, H) and h € AAP(IR, H) satisfying the following:
1. (A0): There exists a nonnegative function L € BSP(R) such that

Vx,y € H,t € RIG(t, %) - G(t, | < LE)llx - yll

And there exists £ > 0 such that forallt € R, f € BSP(R, H), we have:

1 1 1 1
([ vesonsers) < [ wers),
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2. K = {h(t),t € R} is compact.

Then [t — G(t, h(t))] € AAP(R, H).

Proof: Let (x,) be a sequence such that lim [|h(t + x, — x +.) = h(t + )llzro,17 = 0.

Take e >0and K C U B(y;, €), for some y; € K.
1<i<r
Fort € R, let Ey :={s € [0,1] : h(t +s) € B(y1,¢)} and for 2 < i < r, we define E; := {s € ([0,1] \ U E]-) :
1<j<i-1
h(t +s) € By, €)).
Here {E;, 1 < i < r}is a partition of [0, 1] and the sum of Lebesgue measures: }; A(E;) = 1.

~
Il

1
(f |G(t + 5+ x, — X, h(t + S+ x, — X)) — G(t + 5, h(t + 5))[Pds)?
0

IA

1
(f |Gt + s+ X — X, B(t + 5 + Xy — X)) — G(E + 5 + X — Xy, B(E + 5))|Pds)?
0
1
+ (f |G(t + s + X, — X, h(t +5)) — G(t + 5, h(t + 5))|Pds)».
0

Denote by I; and I, respectively, the first and the second term of the previous sum.

1
By (A0), I; < (f (L(E+5s+x, —xp)h(t + 5+ x, — x) — h(E + s)I)pds)%
0
1
< cf(f (It + s + xy — xp) — Wt + s)|)Pds)r < €&, for n,m > Ny, since h € AAP(R, H).

0
For I:
.

=) | IG(t+s+x,— X, it +5)) = G(t +5, h(t +5)ds).
T vE

Let

G(t + s+ x, — X, h(t +5)) — G(t + s, h(t + 5))

(G(t + 5+ xy — X, h(t +8)) — G(t + 5 + Xy — X, Vi)
(G(t + 5+ Xy — X, vi) — G(t + 5, 7))

(G(t +s,yi) — G(t +5,h(t + 5))

f1i(8) + f2,i(8) + f3,i(5)

+ o+

Then

I

(i j}; |f1,i(s) + fo,i(s) + fs,i(s)|pds)xlf
(ZI‘[(L |f1,i(S)|pdS)%17 +(jz; |f2,i(s)lpds)% + (j;i |f3/i(s)|p)%]p)%
(2 I pore) (3 |, vsorasy () [ woray

= 51 +52+53.

IA
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By (A0),
S, = (Zr: f |G(t+ s+ x, — Xy, h(t +5)) — G(t + 5+ x5, — X, yi)lpds)’l’
T VE
< (21: fEl(L(t +5 + X = XAt +5) = yi)Pds)
< (Zrl f(L(t +s+x, — xm)s)pds)%
1 VEi
= e(le j;i(L(t +5+x, — xm))”ds)
r 1 1
= s( Z‘ ‘fo (X, (S)L(t + 5+ x, — xm))pds)”
=« ZI][( fo (e OLE+s + 10— )PP
r 1 1
< o Yl [ aerair)
= &Y aE)
1
= Ee.
In the same way S3 < €.
For S, :

Sy = fIG(t+s+x — X, i) — G(t +5,y:)Pds)" .

(; . n Yi Yi )
G(., 1) € AAP(R, H), then there exists a subsequence (o1,) € (x,) and N1 € IN such that
€

1 1
n,m >Ny = (f IG(t + 5 + 010 — 01, 1) — Gt +5,y1)Pds)” <
0

1
P

-

G(., y2) € AAP(R, H), then there exists a subsequence (02,) € (01,) and N» > Nj such that

==

<.

1
n,m> N, = (f |G(t + 5 + 021 — O2m, Y2) — G(t + 5, yz)l”ds)
0

3:\Hl”’)

Since G(., y;) € AAP(R, H), then there exists a subsequence (¢;,) C (0(j-1y») and N; > N;_; such that

1 1
n,m2N; = (f IG(t +5+0ju — 0jm, y;) — G(t +5, y]-)l”ds)” <
0

-
3 |-

Preserving the same notation of S,, for N = rlnaX{N,-}, n,m > N, we have
<i<r

Sy

(Zr‘ fE IG(t + 5 + G — Grm, ) — G(E +5, y]-)l”ds)‘l’
1 i

IA
==

r 1
(Z f (Gt +5 + Tpu = G, yj) — G(t +5, ) ds)
1 0

E)P)% —

IA
_
1
o

4760
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And then, for n,m > max{N, Ny}, I < &(1 + 3¢&). This completes the proof.

Theorem 4.8. Assume i, v satisfy (M1). Let G € &U(R x H, H, y,v) and h : R — H satisfying:
1. (A0): There exists a nonnegative function L € BS"(R) such that

Vx,y € H,t € R, |IG(t, x) = G(t, )l < LOllx = yll-
And there exists & > 0 such that for all t € R, f € BS”(R, H), we have:

( f LP(t +3)lIf(s) II”dS;<é f IIf(S)II”ds%

2. K = {h(t),t € R} is compact.
Then [t — G(t, h(t))] € & (R, H, p, v).

Proof: Take ¢ > 0. Let 1) = 577755 Assume the compact K C U (yi,m).
1<i<m
Fort e R, let Eq :={s € [0, 1]/h(t +s) € B(y1, 1)} and for 2 < i < m, we define E; := {s € ([0, 1] \ U Ej) /h(t +
1<j<i-1
s) € B(yi, n)}-
Here {E;, 1 < i < m} is a partition of [0, 1] and the sum of Lebesgue measures: }.;"; A(E;) = 1.
We aim to find R > 0 such that:

r>R=1:= ;f (f IG(t +s, h(t+s))|7”ds)r’dy(t)<e

v([-r,7])

1

|G(t+s h(t + s)) Ipds F = Zf |G(t +s,h(t +5)) =Gt +5s,y;) + G(t +5, yz)lpds)

==

< Z[( f (G(E+5,h(t +9) = G(t-+5,y)'ds)’ +( f 6t +5,3Pd9) )

ZflG(t+s h(t +5)) — G(t + 5, ;) |Pds ZflG(t+s y)lPds)’
i=1 i=1

Denote by Si(t) the first sum and by S»(f) the second sum of the previous expression. Then

(; j}; LP(t+ s)n”ds)

() aEperpas)
i=1
ne,

m 1 )
(Z; ‘fo IXE(S)G(t + s, yi)l”ds)”
_1 m .

= (j; |;XE,-(S)G(t+5,yi)|pds)ﬂ

1

Z( . IXE()G(t +, yi)lpds)};

i=1

S1(t)

IA

IA

IA

and

Sa(t)

IA

m

1 1
;( fo IG(t +s, yo)lds)’.

IA
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Now, we return to I:

1

- V([—T’, 7’]) [-7,r]

1 m 1 1 %
< 1/—([—1’, ) j[‘_r,r] TIHLHBSP(]R)dM(f) + ; m err] (j(; |G(t +s, ]/i)|pd5) d[.l(t)

Since each G(., y;) is in & (IR, H, u, v), there exists R; > 0 such that

1 ! 1 €
. - NP ds)y -
r>Ri = =) f[‘_m(fo‘ |G(t + s, yi)lPds)rdu(t) < o

Then for r > R := sup R;, I < plr, r])nHLH:gsﬂ(m) + £ <e.
1<i<m 1/([—1’, I’]) 2

I S1(t) + Sa(Ddu(t)

4762

Theorem 4.9. Let i and v satisfy (M1). Assuming that G = G1 + G, € PAAPURXH, H, y,v)and h = hy +h; €

PAAP(R,H, u,v). Assume that the following conditions hold:
1. Gy, G; satisfy (A0): There exists a nonnegative function L; € BS'(R) such that

Vx,y € H,t € R:[|Gi(t, x) — Gi(t, )l < Li(®)llx — yll,

fori=1, 2. And there exists & > 0 such that forall t € R, f € BS'(R)

1 1 1 1
p v v
( fo L+ slferds) < fo IfEIPds)

2. K; = {hi(t), t € R} is compact, fori =1, 2.
Then t — G(t, h(t)) € PAAP(R,H, u,v).

Proof: Put G(t, h(t)) = Gi(t)+Ga(t). Where Gy(t) := Gy(t, hi(t)) and Ga(t) := (G(t, h(£) — G(t, I (1)) +Ga(t, I (1)).

By Theorem 4.7 , we have t — Gi(t, 1 (t)) € AAP(R, H) that is G; € AAP(R, H). For G»:
t+— Ga(t, i (1)) € & (R, H, u,v), by Theorem 4.8.

For t € R, we have

IA

t+1 1 t+1 1
G(s, h(s)) — G(s, h Pds)’ Gi(s, h(s)) — Gi(s, h Pds)’
([ 166 H)-cemewa) < ([ 16161 =it mors)

t+1 1
e ([ 165 ) = Cats n(oIPas)

1 1 1 1
( fo LA (t + 9)llha(t + 9)|Pds)” + ( fo Lh(t + s)llha(t + 5)|Pds)”

<
1 1
= 25([ lIha(t + s)IIPds)”, since hy(t +.) € BS'(R).
0
Then
1 (ftﬂ IG(s, h(s)) — G(s h1(S))I|”ds)’l’d‘u(t) < 2¢ <ft+1 “hz(s)“pds)%dy(t) —50
V([—T’, 1’]) [=r1] t ’ ’ - 1/([_1’, V]) [-7r] t

as ¥ — +oo. This implies that t — G(t, h(t)) — G(t, hi(t)) € & (R, H, u,v). Therefore, 52 e &(R,H, p,v).
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