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Abstract. We apply the concept of a m-convex b-metric space by introducing of m-convex structure on
b-metric spaces. We obtain fixed point theorems in this structure. Recent results are concluded in our
targets, as well. Some illustrated examples are presented to confirm our main results. As an application, we
apply our main result to finding existence and uniqueness the solution of the Fredholm non-linear integral
equation.

1. Introduction

Toader introduced the m-convexity in [27], as an intermediate among the general convexity and star
shaped property. The concept of m-convex function play basic role in the theory of discrete convex analysis
which has been used to mathematical economics.

We generalize m-convex structure on b-metric spaces. And we get some of very famous Theorems by
this way. Some illustrated examples are presented to confirm our main results. As an application, we
apply our main result to finding existence and uniqueness the solution of the Fredholm non-linear integral
equation. For more detail refer to [1–4, 14, 16–18]

Definition 1.1 ([26]). Let m ∈ [0, 1]. Then the real number set C ⊆ R is said to be

1. convex if tx + (1 − t)y ∈ C;
2. m-convex if tx + (1 − t)my ∈ C;

for all x, y ∈ C and t,m ∈ [0, 1].

Definition 1.2 ([12, 23, 24, 26]). Let m ∈ [0, 1] and C ⊆ R. A function f : C ⊂ R→ R is said to be an

1. convex, if C be a convex set and

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y);
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2. m-convex, if C be a m-convex set and

f (tx + (1 − t)my) ≤ t f (x) + (1 − t)m f (y);

for all x, y ∈ C and t,m ∈ [0, 1].

Geometrically m-convex set C contains the line segment between the points x and my for every x, y ∈ C.
Obviously see that a function f : C→ R is m-convex if for any x, y ∈ C ,say x ≤ y, the segment between the
points (x, f (x)) and (my,m f (y)) is above the graph of f in [x,my] see Figure 1.

Definition 1.3 ([6]). Under the hypotheses of Definition 1.2,

1. f is concave if − f is convex;
2. f is m-concave if − f is m-convex.

Example 1.4. f (x) = x2 and f (x) = ‖x‖ (on normed space) are m-convex set. f (x) =
√

x is m-concave set.

Example 1.5 ([24]). Let f (x) = 2 ln x on (0,∞) defines for any m ∈ [0, 1].
The set of (0,∞) it isn’t m-convex set for t = 1 and m = 0, and contradicts Definition (1.2). If we choose f : [0,∞)
wouldn’t be defined. Therefore Example (1.5) of [24], isn’t correct.

Example 1.6. Take the closed unit disk of the Euclidean space R2. It is convex set but it isn’t m-convex set. Put:
f (x, y) = −‖x − y‖2. Then it is clear that f (x, ·) is concave for any fixed x ∈ X.

Remark 1.7. ([20, 24])

1. Definition 1.2 is equivalent to f (m(1 − t)x + ty) ≤ m(1 − t) f (x) + t f (y).
2. If f is a m-convex function and x = y = 0 in Definition 1.2, then f (0) ≤ 0.
3. From Definition 1.2 we clearly see that the 1-convex function is a convex function in the ordinary sense and

the 0-convex function is the star shaped function. If we take m = 1, then we recapture the concept of convex
functions. If we take t = 1, then we get f (my) ≤ m f (y) for all x, y ∈ I, which implies that the function f is
sub-homogeneous.

4. If f was convex function and m = 1, it would be m-convex function.

Lemma 1.8. ([11, 20])

1. If f : C→ R is m-convex and 0 ≤ n < m ≤ 1, then f is n-convex.
2. Let f , 1 : [a, b] → R, a ≥ 0. If f is n-convex and 1 is m-convex, with n ≤ m, then f + 1 and α f , α ≥ 0 a

constant, are n-convex.
3. Let f : [0, a] → R, 1 : [0, b] → R, with renge( f ) ⊆ [0, b]. If f and 1 are m-convex and 1 is increasing, then
1 ◦ f is m-convex on [0, a].

4. If f , 1 : [0, a]→ R are both nonnegative, increasing and m-convex, then f1 is m-convex.

Definition 1.9 ([24]). f : [a, b]→ R is said to be star shaped if

f (tx) ≤ t f (x)

for all t ∈ [0, 1] and x ∈ [a, b].

For the concept of generalized convexity sets, let

co = { f : f is convex},
com = { f : f is m − convex}.

We have com $ co, since

f ∈ co \ com, where f (x) =

{
1 − x, 0 ≤ x ≤ 1;
−x+1

2 , 1 ≤ x ≤ 3,

just enough we put t = 0.2 and m = 0, see Figure 2.
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Figure 1: Illustration for Definition 1.2
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Figure 2: Illustration for Section 3:“Concept of Generalized Convexity Sets”

Example 1.10. Let B1 = {λ = (λ1, . . . , λn, . . .) ∈ l1; ‖λ‖1 ≤ 1}.

L = {λ = (λ1, . . . , λn, . . .) ∈ l1 : λi ≥ 0, ∀ i ∈N and ‖λ‖1 =
∞∑

i=1
λi = 1}.

Obviously ∂B1 = L is convex set but it isn’t m-convex set. It is easily seen that B1 is m-convex set.

Now we present some notations and definitions which will be used in sequel. For more details refer to
[5, 7, 8, 10, 13, 15, 21, 22].

Definition 1.11. Let X be a non-empty set and db : X × X → [0,∞) be a mapping such that for all x, y, z ∈ X and
for some real number s ≥ 1,

(i) db(x, y) = 0 ⇐⇒ x = y;

(ii) db(x, y) = db(y, x);

(iii) db(x, y) ≤ s[db(x, z) + db(z, y)].

Then (X, db) is called a b-metric space with parameter s ≥ 1.

When s = 1 the definition of metric space is attained.

Definition 1.12. Let (X, db) be a b-Branciari metric space and {xn} be a sequence in X and x ∈ X.

(a) A sequence {xn} in X is said to converge to x ∈ X if

∀ε > 0 ∃N ∈N such that db(xn, x) < ε, ∀n > N.

Show
lim
n→∞

xn = x or xn → x as n→∞.

(b) A sequence {xn} in X is said to be a Cauchy sequence if

∀ε > 0 ∃N ∈N such that db(xn, xn+p) < ε ∀n > N, p > 0

or equivalently, if limn→∞ db(xn, xn+p) = 0 for all p > 0.

(c) (X, db) is complete if and only if every Cauchy sequence in X converges to some element in X.

It should be noted some warnings about b-Branciari metric spaces:

(1) The limit of the sequence in a b-Branciari metric spaces is not necessarily unique.
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(2) A convergent sequence in a b-Branciari metric spaces may not be a Cauchy sequence.

(3) A Branciari b-metric may not be continuous.

Definition 1.13. Let X , ∅ and I = [0, 1]. Define the mapping db : X × X → [0,∞) and a continuous function
w : X × X × J × I→ X. Then w is said to be the m-convex structure on X if the following holds:

db(z,w(x, y; t,m)) ≤ tdb(z, x) + (1 − t)mdb(z, y) (1)

for each z ∈ X and (x, y; t,m) ∈ X × X × J × I, where J ⊆ I.

We note that db(z,w(x, y; 0,m)) ≤ mdb(z, y) for every x, y, z ∈ X and m ∈ [0, 1].

2. Main Results

In this section, we begin with the definition of a m-convex b-metric space.

Definition 2.1. Let the mapping w : X × X × J × I → X be a m-convex structure on a b-metric space (X, db) with
constant s ≥ 1 and J ⊆ I = [0, 1]. Then (X, db,w) is said to be a m-convex b-metric space.

Proposition 2.2. [19] Let {xn} be a Cauchy sequence in a Branciari metric space (X, db) such that limn→∞ d(xn, x) = 0,
where x ∈ X. Then limn→∞ db(xn, y) = db(x, y), for all y ∈ X. In particular, the sequence {xn} dose not converge to y
if y , x.

Remark 2.3. If we replace Branciari metric by b-Branciari metric in proposition (2.2) , the proposition is still valid.

Example 2.4. Let X := {1, 2, 3}. Define db by

db(x, x) = 0
db(1, 2) = db(2, 1) = 1
db(1, 3) = db(3, 1) = 0
db(3, 2) = db(2, 3) = 6.

db is a b-metric with s = 6.

1 = db(1, 2) ≤ 6(db(1, 3) + db(3, 2)) = 6(0 + 6)
0 = db(1, 3) ≤ 6(db(1, 2) + db(2, 3)) = 6(1 + 6)
6 = db(2, 3) ≤ 6(db(2, 1) + db(1, 3)) = 6(1 + 0).

But it isn’t ordinary metric, because

6 = db(3, 2) > db(3, 1) + db(1, 2) = 0 + 1.

b-metric db has 1
3 -convex structure. Also, if we put x ∈ X and y

3 ∈ X which means y = 3, then

db(x,my) = db

(
x,

y
3

)
≤

1
3

db(x, y).

Also, we take t = 1
2

w(x, y;
1
2
,

1
3

) := tx + (1 − t)my =
3x + y

3

db(z,w(x, y;
1
2
,

1
3

)) = db(z, tx + (1 − t)my) ≤ tdb(z, x) + (1 − t)mdb(z, y)

db(z,
3x + y

3
) ≤

1
2

db(z, x) +
1
6

db(z, y),
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0 = db(1, 1) = db(1,
3 × 1 + 3

3
) ≤

1
2

db(1, 1) +
1
6

db(1, 3) = 0,

1 = db(2, 1) = db(2,
3 × 1 + 3

3
) ≤

1
2

db(2, 1) +
1
6

db(2, 3) = 1,

0 = db(3, 1) = db(1,
3 × 1 + 3

3
) ≤

1
2

db(3, 1) +
1
6

db(3, 3) = 0,

Example 2.5. Let db : R ×R→ [0,∞) by

db(x, y) = |x − y|p p > 1

and
w(x, y;

1
2
, 1) =

x + y
2

.

Then, (R, db,w) is a 1-convex b-metric space with s = 2p−1. However, (R, db,w) is not a metric space in the usual
sense.

Now we shall prove Banach’s contraction principle for complete m-convex b-metric spaces by means of
Mann’s iteration algorithm.

Theorem 2.6. Let (X, db,w) be a complete m-convex b-metric space with constant s > 1. If T be a self mapping on X
satisfying in the following conditions:

• there exists k ∈ [0, 1) such that

db(Tx,Ty) ≤ kdb(x, y), ∀x, y ∈ X. (2)

• x0 ∈ X with db(x0,Tx0) = M < ∞

• xn := w(xn−1,Txn−1; tn−1,m), where 0 ≤ tn−1 < 1 and n ∈N.

• kms4 < 1 and 0 < tn−1 <
1
s4 −km
1−km for each n ∈N.

Then, T has a unique fixed point in X.

Proof.

db(xn, xn+1) = db(xn,w(xn,Txn; tn,m))
≤ (1 − tn)mdb(xn,Txn)

and

db(xn,Txn) ≤ sdb(xn,Txn−1) + sdb(Txn−1,Txn)
≤ sdb(w(xn−1,Txn−1; tn−1,m),Txn−1) + skdb(xn−1, xn)
≤ stn−1db(xn−1,Txn−1) + skdb(xn−1,w(xn−1,Txn−1; tn−1,m))
≤ stn−1db(xn−1,Txn−1) + sk(1 − tn−1)mdb(xn−1,Txn−1)
≤ s(tn−1 + k(1 − tn−1)m)db(xn−1,Txn−1).

Put µn−1 = s(tn−1 + k(1 − tn−1)m). By kms4 < 1 and 0 < tn−1 <
1
s4 −km
1−km we have

db(xn,Txn) ≤ µn−1db(xn−1,Txn−1) ≤
1
s3 db(xn−1,Txn−1). (3)

So {db(xn,Txn)} is convergent to β. By takeing limit from (3) we find β = 0, because

β ≤
1
s3 β < β.
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Also limn→∞ db(xn, xn+1) = 0 since

db(xn, xn+1) ≤ (1 − tn)mdb(xn,Txn).

It is time to show that {xn} is a Cauchy sequence. If not, let nl be the smallest natural index with that
nl > ml > k,

∃ε0 > 0 ∃{xnl }, {xml } ⊆ {xn} db(xnl , xml ) ≥ ε0, db(xnl−1, xml ) < ε0.

So

ε0 ≤ db(xnl , xml ) ≤ s(db(xnl , xml+1) + db(xml+1, xml ))

⇒
ε0

s
≤ lim sup

l→∞
db(xnl , xml+1).

On the other hand

db(xnl , xml+1) = db(w(xnl−1,Txnl−1; tnl−1,m), xml+1)
≤ tnl−1db(xnl−1, xml+1) + (1 − tnl−1)mdb(Txnl−1, xml+1)
≤ tnl−1db(xnl−1, xml+1) + (1 − tnl−1)ms(db(Txnl−1,Txml+1) + db(Txml+1, xml+1))
≤ tnl−1db(xnl−1, xml+1) + (1 − tnl−1)ms(kdb(xnl−1, xml+1) + db(Txml+1, xml+1))
≤ (tnl−1 + (1 − tnl−1)msk)db(xnl−1, xml+1) + (1 − tnl−1)msdb(Txml+1, xml+1)
≤ (tnl−1 + (1 − tnl−1)msk)s(db(xnl−1, xml ) + db(xml , xml+1)) + (1 − tnl−1)msdb(Txml+1, xml+1)
≤ (tnl−1s + (1 − tnl−1)msk)s(db(xnl−1, xml ) + db(xml , xml+1)) + (1 − tnl−1)msdb(Txml+1, xml+1)

≤
1
s2 (db(xnl−1, xml ) + db(xml , xml+1)) + (1 − tnl−1)msdb(Txml+1, xml+1)

therefore
ε0

s
≤ lim sup

l→∞
db(xnl , xml+1) ≤

1
s2 ε0 < ε0,

which means {xn} is a Cauchy sequence in X. Thus xn → x∗ for some x∗ ∈ X.

db(x∗,Tx∗) ≤ s(db(x∗, xn) + db(xn,Tx∗))

≤ sdb(x∗, xn) + s2db(xn,Txn) + s2db(Txn,Tx∗)

≤ sdb(x∗, xn) + s2db(xn,Txn) + s2kdb(xn, x∗)

which implies that x∗ = Tx∗. Uniqueness is clear.

As a corollary, [9, Theorem 1] is one of our results.

Example 2.7. Let all hypothesis of Example 2.4 are hold. define T : X→ X by

T(1) = 3,T(2) = 1 and T(3) = 3,

so T satisfies in (2) for every k < 3
64 . We notice that 3 is a unique fixed point of T in X.

Next theorem is the Kannan type fixed point theorem for a complete m-convex b-metric space.

Theorem 2.8. Let (X, db,w) be a complete m-convex b-metric space with constant s > 1 and T : X → X be a
contraction mapping; that is, there exists k ∈ [0, 1) such that

∃k ∈ [0,
1
2

) db(Tx,Ty) ≤ k[db(x,Tx) + db(y,Ty)], ∀x, y ∈ X. (4)

Choose x0 ∈ X with db(x0,Tx0) = M < ∞ and define xn := w(xn−1,Txn−1; tn−1,m), where 0 ≤ tn−1 < 1 and n ∈ N.
If 0 ≤ k ≤ 1

4s2+(1−m) and 0 < tn−1 ≤
1

4s2+(1−m) for each n ∈N. Then, T has a unique fixed point in X.
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Proof.

db(xn, xn+1) = db(xn,w(xn,Txn; tn,m)) ≤ (1 − tn)mdb(xn,Txn) (5)

and

db(xn,Txn) = db(w(xn−1,Txn−1; tn−1,m),Txn)
≤ tn−1db(xn−1,Txn) + (1 − tn−1)mdb(Txn−1,Txn)
≤ tn−1s(db(xn−1,Txn−1) + db(Txn−1,Txn)) + (1 − tn−1)mdb(Txn−1,Txn)
≤ tn−1sdb(xn−1,Txn−1) + (tn−1s + (1 − tn−1)m)db(Txn−1,Txn)
≤ tn−1sdb(xn−1,Txn−1) + (tn−1s + (1 − tn−1)m)k(db(xn−1,Txn−1) + db(xn,Txn))

so

(1 − (tn−1s + (1 − tn−1)m)k)db(xn,Txn) ≤ (tn−1s + (tn−1s + (1 − tn−1)m)k)db(xn−1,Txn−1) (6)

hence

L := (tn−1s + (1 − tn−1)m)k
= (tn−1(s −m) + m)k

< (
s −m

4s2 + (1 −m)
+ 1)

1
4s2 + (1 −m)

< (
s

4s2 + 1)
1

4s2

< (
1
4

+ 1)
1
4

<
5

16
< 1.

Put

µn−1 :=
tn−1s + (tn−1s + (1 − tn−1)m)k
(1 − (tn−1s + (1 − tn−1)m)k)

=
tn−1s + L

1 − L
< 1,

since
tn−1s + L < 1 − L ⇐⇒ tn−1s + 2L < 1

so

tn−1s + 2L ≤
s

4s2 + 1 −m
+ 2

5
16

<
1
4

+ 2
5

16
=

14
16

< 1.

We deduce that

db(xn,Txn) ≤ µn−1db(xn−1,Txn−1). (7)

So {db(xn,Txn)} is convergent to β. By (7) we get β = 0. Also by (5) db(xn, xn+1) → 0 as n → ∞. If {xn} does
not be a Cauchy sequence, then, choose nl be the smallest natural index that nl > ml > k,

∃ε0 > 0 ∃{xnl }, {xml } ⊆ {xn} db(xnl , xml ) ≥ ε0, db(xnl−1, xml ) < ε0.
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So

ε0 ≤ db(xnl , xml ) ≤ s(db(xnl , xml+1) + db(xml+1, xml ))

⇒
ε0

s
≤ lim sup

l→∞
db(xnl , xml+1).

On the other hand

db(xnl , xml+1) = db(w(xnl−1,Txnl−1; tnl−1,m), xml+1)
≤ tnl−1db(xnl−1, xml+1) + (1 − tnl−1)mdb(Txnl−1, xml+1)
≤ tnl−1db(xnl−1, xml+1) + (1 − tnl−1)ms(db(Txnl−1,Txml+1) + db(Txml+1, xml+1))
≤ tnl−1db(xnl−1, xml+1) + (1 − tnl−1)ms(kdb(xnl−1,Txnl−1) + (k + 1)db(Txml+1, xml+1))
≤ tnl−1s(db(xnl−1, xml ) + db(xml , xml+1))
+ (1 − tnl−1)ms(kdb(xnl−1,Txnl−1) + (k + 1)db(Txml+1, xml+1))

we obtain
lim sup

l→∞
db(xnl , xml+1) ≤

1
4s2 + 1 −m

sε0 <
ε0

4s
<
ε0

s
.

So xn → x∗ for some x∗ ∈ X. We shall show that u∗ is a fixed point of T.

db(x∗,Tx∗) ≤ s(db(x∗, xn) + db(xn,Tx∗))

≤ sdb(x∗, xn) + s2(db(xn,Txn) + db(Txn,Tx∗))

≤ sdb(x∗, xn) + s2db(xn,Txn) + s2k(db(xn,Txn) + db(x∗,Tx∗))

we conclude
(1 − s2k)db(x∗,Tx∗) ≤ sdb(x∗, xn) + (s2 + s2k)db(xn,Txn).

The uniqueness of the fixed point is clear.
If put m = 1. Then as a corollary, [9, Theorem 2] is especial case of Theorem 2.8.

3. Applications

In order to show the existence and uniqueness of the solution integral equation, consider:

u(t) = f (t) + λ

∫ b

a
K(t,u(τ))dτ, (8)

on X := C[a, b] with sup norm, and define db as follows:

dp(u, v) = ‖u − v‖2 = max
t∈[a,b]

|u(t) − v(t)|2.

in this case db is a b-metric with s = 2. Let

Tu(t) = f (t) + λ

∫ b

a
K(t,u(τ))dτ (9)

and for m ∈ [0, 1]

Mm :=
{
( f , 1) ∈ X × X| f =

2m
m + 1

1

}
.

We note (0, 0), ( f , f ), ( 2m
m+1 , 1) ∈Mm , ∅. When ( f , 1) ∈Mm, then

| f (t) −m1(t)| = m| f (t) − 1(t)|,



G. Amirbostaghi et al. / Filomat 35:14 (2021), 4765–4776 4774

for t ∈ [a, b].
Therefore db has a m-convex structure if we consider

w : X × X × {
1
2
} × [0, 1]→ X,

w( f , 1;
1
2
,m) =

1
2

f + (1 −
1
2

)m1.

Because

db(h,w( f , 1;
1
2
,m)) = db(h,

1
2

f + (1 −
1
2

)m1)

= ‖h − (
1
2

f + (1 −
1
2

)m1‖2

= ‖
1
2

h + (1 −
1
2

)h − (
1
2

f + (1 −
1
2

)m1‖2

≤ 2(
1
4
‖h − f ‖2 + (1 −

1
2

)2
‖h −m1‖2)

≤
1
2
‖h − f ‖2 +

1
2

m2
‖h − 1‖2

≤
1
2
‖h − f ‖2 +

1
2

m‖h − 1‖2

≤
1
2

db(h, f ) + (1 −
1
2

)mdb(h, 1)

Theorem 3.1. Consider the integral Equation (9) with

1. K(t, s) is a continuous function;
2. |K(t, s1) − K(t, s2)| ≤ L(t)|s1 − s2|;
3. f ∈ C[a, b];
4. N := maxt∈[a,b] L(t);
5. λ2(b − a)3N2 < 1.

Then the linear integral Equation (9) has a unique solution on the interval [a, b].

Proof.

db(Tu,Tv) = ‖Tu − Tv‖2

= max
t∈[a,b]

|Tu(t) − Tv(t)|2

= max
t∈[a,b]

∣∣∣∣∣∣λ
∫ b

a
K(t,u(τ))dτ − λ

∫ b

a
K(t, v(τ))dτ

∣∣∣∣∣∣
2

= max
t∈[a,b]

λ2

∣∣∣∣∣∣
∫ b

a
(K(t,u(τ)) − K(t, v(τ)))dτ

∣∣∣∣∣∣
2

≤ max
t∈[a,b]

λ2

(∫ b

a
dτ

)2 (∫ b

a
|K(t,u(τ)) − K(t, v(τ))|dτ

)2
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≤ max
t∈[a,b]

λ2(b − a)2N2

(∫ b

a
|u(τ) − v(τ)|dτ

)2

≤ max
t∈[a,b]

λ2(b − a)3N2 (|u(t) − v(t)|)2

≤ max
t∈[a,b]

λ2(b − a)3N2
‖u(t) − v(t)‖2

≤ λ2(b − a)3N2db(u, v)
≤ µdb(u, v),

where µ = λ2(b − a)3N2 < 1. Meanwhile, by Theorem 2.6, T has a unique fixed point u ∈ X.

Conclusion

In this paper, by applying the concept of a m-convex b-metric space and introducing of m-convex
structure on b-metric spaces, we obtain fixed point theorems in this structure. Recent recognized results
are obtained as our corollaries, as well. Example 1.4 states that the example [? ] i.e., the set of (0,∞) it isn’t
m-convex set. Many illustrated examples and an application are presented. Our result applied to finding
existence and uniqueness the solution of the Fredholm non-linear integral equation.
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