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Abstract. The Kontorovich-Lebedev-Clifford transform (KLC-transform) as well as its inversion are de-
fined. The useful preliminary results like translation and convolution operators are introduced and their
estimates are obtained. Continuity of translation and convolution operators on function spaces Fα and Gα
are discussed. Further, pseudo-differential operator (p.d.o.) associated with the KLC-transform is defined
and studied its properties on some function spaces.

1. Introduction

The Kontorovich-Lebedev transform (KL-transform) is basically defined in terms of modified Bessel
function of second kind (Macdonald function) of purely imaginary index given as [3, 10]

Kiτ(x) =

∞∫
0

e−x cosh t cos(τt) dt, x > 0, τ > 0, (1)

and generally it is used to solve certain boundary-value problems of mathematical physics in cylindrical
co-ordinate systems. The function Kiτ(x) satisfies the differential equation

(x2D2
x + xDx − (x2

− τ2))y = 0.

The KL-transform was first introduced in 1938 by M. I. Kontorovich and N. N. Lebedev [8, 9], and its
theory has since been developed and continued by various authors like Yakubovich [11, 41, 42], Srivastava
et. al. [33, 34], Prasad and Mandal [22, 23] and many more [1, 5, 15, 16, 30, 40]. Analogue theories and
investigations for different types of KL-transforms, other integral transforms, pseudo-differential operators
as well as wavelet transforms may also be viewed in [15, 17, 21, 23, 31, 32, 37, 39].

The Hankel transform was first introduced by a German mathematician H. Hankel by using the Bessel
function of first kind Jν(x) of order ν and then studied by many authors [14, 19, 38, 43]. After that an English
mathematician W. K. Clifford, slightly modified the Bessel function by replacing x by 2

√
x and obtained a

new function named as Bessel-Clifford function

Cν(x) = x−ν/2 Jν(2
√

x),

2020 Mathematics Subject Classification. Primary 44A20; 35S05.
Keywords. Kontorovich-Lebedev transform; Pseudo-differential operator; Convolution.
Received: 24 November 2020; Revised: 26 June 2021; Accepted: 29 August 2021
Communicated by Hari M. Srivastava
Email addresses: apr bhu@yahoo.com (Akhilesh Prasad), upainmandal@gmail.com (U. K. Mandal)



A. Prasad, U. K. Mandal / Filomat 35:14 (2021), 4811–4824 4812

which is a solution of the differential equation

(xD2
x + (ν + 1)Dx + 1)y = 0.

It leads to another integral transform and known as the Hankel-Clifford transform, for instance see [2, 13, 20].
Subsequently, corresponding to the Mehler-Fock transform [4, 12, 35, 36], Prasad and Verma [25], constructed
the Mehler-Clifford integral transform and studied various theories related to it.
In similar spirit, in this paper we have considered the Macdonald function as

K2i
√
τ(2
√

x) =

∞∫
0

e−2
√

x cosh t cos(2
√
τt) dt, x > 0, τ > 0, (2)

which is a solution of the differential equation

(x2D2
x + xDx − (x − τ))y = 0.

The asymptotic behavior of the Macdonald function Kν(2
√

x) with respect to x [11]

Kν(2
√

x) ≈

√
π

2x
1
4

e−2
√

x
[
1 + O

( 1
√

x

)]
, x→∞,

Kν(2
√

x) ≈ O(x−R(ν)/2), x→ 0,
K0(2

√
x) ≈ O(log x), x→ 0.

Moreover, K2i
√
τ(2
√

x) is an eigenfunction of the operator

Ax = x2 d2

dx2 + x
d
dx
− x, (3)

and

AxK2i
√
τ(2
√

x) = −τK2i
√
τ(2
√

x). (4)

Also, we can write

A
′

x =
d2

dx2 x2
−

d
dx

x − x, (5)

which represents the adjoint operator ofAx. The series representation ofAq
x can be written as:

A
q
x =

2q∑
j=0

x jPq
j (x)D j

x, ∀ q ∈N0, (6)

where the Pq
j are polynomials of degree q − j

2 for even j and q − ( j+1)
2 for odd j respectively.

Thus Pq
2q(x) = 1 and Pq

2q−1(x) = q(2q − 1).

Now, we define here an integral transform by using the Macdonald function K2i
√
τ(2
√

x) on the positive
half line R+ = (0,∞), provided the integral exists, as:

(Kϕ)(τ) =
1
2

∞∫
0

K2i
√
τ(2
√

x)ϕ(x)x−1 dx, τ ∈ R+, (7)

and we named it as the Kontorovich-Lebedev-Clifford transform (KLC-transfrom). The inversion formula
of (7), is given by

ϕ(x) =
4
π2

∞∫
0

K2i
√
τ(2
√

x) sinh(2π
√
τ)(Kϕ)(τ) dτ, x ∈ R+. (8)
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Besides, we define adjoint of the KLC-transform for any function ψ as:

(K′ψ)(x) =
1

2x

∞∫
0

K2i
√
τ(2
√

x)ψ(τ) dτ, x ∈ R+, (9)

and corresponding inversion formula as:

ψ(τ) =
4
π2 sinh(2π

√
τ)

∞∫
0

K2i
√
τ(2
√

x)(K′ψ)(x) dx, τ ∈ R+. (10)

Next, we define the translation and convolution structure for the KLC-transform. From [3], we have

2
π2

∞∫
0

Kiη(p)Kiη(q)Kiη(r)η sinh(πη) dη = T(p, q, r), (11)

where T(p, q, r) is symmetric in p, q, r and defined as:

T(p, q, r) =
1
2

exp
[−(p2q2 + q2r2 + r2p2)

2pqr

]
, p, q, r ∈ R+. (12)

Now, putting p = 2
√

x, q = 2
√

y, r = 2
√

z and η = 2
√
τ in (11) and (12), we get

4
π2

∞∫
0

K2i
√
τ(2
√

x)K2i
√
τ(2
√

y)K2i
√
τ(2
√

z) sinh(2π
√
τ) dτ = D(x, y, z), (13)

where

D(x, y, z) =
1
2

exp
[−(xy + yz + zx)

√
xyz

]
, x, y, z ∈ R+. (14)

Clearly from (14), D(x, y, z) is symmetric in x, y, z. Since√
xy
z

+

√
yz
z

+

√
zx
y
≥
√

x
(√ y

z
+

√
z
y

)
≥ 2
√

x.

Thus

exp
(
−

(√xy
z

+

√
yz
z

+

√
zx
y

))
≤ exp(−2

√
x). (15)

From (14) and (15)

|D(x, y, z)| ≤ exp(−2
√

x). (16)

By using (7), (8) and (13), the product of Macdonald functions can be written as:

K2i
√
τ(2
√

x)K2i
√
τ(2
√

y) =
1
2

∞∫
0

K2i
√
τ(2
√

z)D(x, y, z) z−1 dz =
(
K D(x, y, z)

)
(τ). (17)

The translation operator Tx of function ϕ(x) is defined by

(Txϕ)(y) =
1
2

∞∫
0

D(x, y, z)ϕ(z)z−1 dz, (18)
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and the corresponding convolution operator is defined as:

(ϕ ] ψ)(x) =
1
2

∞∫
0

Txϕ(y) ψ(y) y−1 dy

=
1
4

∞∫
0

∞∫
0

D(x, y, z)ϕ(z)ψ(y)z−1y−1 dz dy. (19)

The Plancherel relation for the KLC-transform can be written as:

1
2

∞∫
0

ϕ(x) ψ(x) x−1 dx =
4
π2

∞∫
0

(Kϕ)(τ)(Kψ)(τ) sinh(2π
√
τ) dτ,

and the Parseval formula is given by

1
2

∞∫
0

|ϕ(x)|2 x−1dx =
4
π2

∞∫
0

|(Kϕ)(τ)|2 sinh(2π
√
τ) dτ.

The paper consists of four Sections, in first Section we introduced KLC-transform and its inversion and
adjoint then translation, convolution structure associated to KLC-transform are also defined. Section 2
deals with some useful results and operational formulas are discussed and estimates for the translation
and convolution operators in Lebesgue space are obtained. In Section 3, we studied the continuity of
the translation and convolution operators in function spaces Fα and Gα. Section 4 is devoted to the
study of pseudo-differential operator (p.d.o.) associated with the KLC-transform, where symbols are in
Sm. Furthermore continuity of p.d.o. is discussed from function space Gα into Fα. Also an integral
representation of p.d.o. is given and its estimate in Lebesgue space is obtained. Finally, a special case for
p.d.o. is discussed.

2. Preliminary results and estimates for convolution operators

In this section, we discuss some relevant results which will be useful in upcoming Sections.
From (3) and (5), we have a relation between the differential operatorsAx andA′x as:

A
′

x(x−1ϕ(x)) = x−1
Axϕ(x). (20)

Further (20) can be extended to n times, where n ∈N0, that is

(A′x)n(x−1ϕ(x)) = x−1
A

n
xϕ(x). (21)

Lemma 2.1. If ϕ and ψ be any real valued functions defined on R+, then

(i) (K(A(·) ϕ))(τ) = −τ(Kϕ)(τ), (22)

(ii) (K′−1(A′(·) ψ))(τ) = −τ(K′−1ψ)(τ),

whereK, K′ andK′−1 are defined as (7), (9) and (10) respectively.

Proof. By using (20) and (4), we can obtain the required results.

Lemma 2.2. If the translation and the convolution operator defined as (18) and (19) respectively, then we have

(i)
(
K(Txϕ)

)
(τ) = K2i

√
τ(2
√

x)
(
Kϕ

)
(τ), (23)

(ii)
(
K(ϕ ] ψ)

)
(τ) = (Kϕ)(τ)(Kψ)(τ). (24)
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Proof. (i) By using (7), (18) and the Fubini’s theorem, we get

(
K(Txϕ)

)
(τ) =

1
2

∞∫
0

( ∞∫
0

K2i
√
τ(2
√

y)D(x, z, y)y−1dy
)
ϕ(z)z−1dz.

Thus by using (17) and then (7), we get(
K(Txϕ)

)
(τ) = K2i

√
τ(2
√

x)(Kϕ)(τ).

(ii) By using (7), (19) and Fubini’s theorem, we have

(K(ϕ ] ψ))(τ) =
1
2

∞∫
0

K2i
√
τ(2
√

x)
(1
2

∞∫
0

Txϕ(y)ψ(y)y−1dy
)
x−1 dx

=
1
2

∞∫
0

(1
2

∞∫
0

K2i
√
τ(2
√

x)Tyϕ(x)x−1 dx
)
ψ(y)y−1dy

=
1
2

∞∫
0

(KTyϕ)(τ)ψ(y)y−1dy.

Thus by using (23), we get

(K(ϕ ] ψ))(τ) = (Kϕ)(τ)
1
2

∞∫
0

K2i
√
τ(2
√

y)ψ(y)y−1dy = (Kϕ)(τ)(Kψ)(τ).

Hence proof is complete.

We now discuss some operational formulas associated with the differential operator, translation and con-
volution operator and function D(x, y, z) defined by (13) and (14).
(i) By using (4) and (13), we have quite obvious result between the differential operator (3) and D(x, y, z)
defined by (13)

A
n
xD(x, y, z) = An

yD(x, y, z) = An
z D(x, y, z), (25)

where n ∈N0.
(ii) If the differential operatorAx and the convolution operator is defined as (3) and (19) respectively, then
we have

Ax(ϕ ] ψ) = Axϕ ] ψ = ϕ ]Axψ. (26)

Proof. By using (7), (22) and (24), we get

(KAx(ϕ ] ψ))(τ) = −τ(Kϕ)(τ)(Kψ)(τ) = (KAxϕ)(τ)(Kψ)(τ) = (K ((Axϕ) ] ψ))(τ).

Similarly

Ax(ϕ ] ψ) = Axϕ ] ψ, Ax(ϕ ] ψ) = ϕ ]Axψ.

Hence the proof is complete.

(iii) If the translation and the convolution operator is defined as (18) and (19) respectively, then

Tx(ϕ ] ψ) = Txϕ ] ψ = ϕ ] Txψ. (27)

Proof. By using (23) and (24) and proceeding as the proof of (26), (27) can be easily obtained.



A. Prasad, U. K. Mandal / Filomat 35:14 (2021), 4811–4824 4816

Next, we find out some estimates and preliminary results that are quite interesting and useful for our
purpose in this paper.

(i) K0(2
√

x + y) ≤ K0(2
√

y) or K0(2
√

x), (28)

(ii)

∞∫
0

D(x, y, z)z−1dz = 2 K0(2
√

x + y), (29)

(iii) | K2i
√
τ(2
√

x) | ≤ C′(b) x
−b
4 [sinh(2π

√
τ)]

−1
2 , 0 < b < 1/2, (30)

(iv) |A
n
xD(x, y, z)| ≤ C (xyz)

−b
4 , 0 < b < 1/2, n ∈N0, (31)

(v) |Dr
xK2i

√
τ(2
√

x)| ≤ C′x−r, ∀ r ∈N, (32)

where C′(b) and C are some positive constants.

Proof. (i) From [42, p. 212], we have an integral representation for Macdonald function of index zero as

K0(x) =
1
2

∞∫
0

e−t− x2
4t t−1dt. (33)

Hence from (33), the inequality is obvious.

(ii) From [26, p. 344], we have

∞∫
0

zα−1e−pz− q
z dz = 2

(q
p

) α
2 Kα(2

√
pq), Re(p), Re(q) > 0, α ∈ R. (34)

Thus by putting α = 0, p = 1
2

x+y
√

xy and q = 2
√

xy in (34) and keeping in view (14), we get the required result.

(iii) To prove the inequality (30), we use another representation of Macdonald function as in [3, p. 97(69)]

[K2i
√
τ(2
√

x)]2 sinh(2π
√
τ) = π

∞∫
0

J0(4
√

x sinh(t)) sin(4
√
τt)dt. (35)

Also from [15, p. 32], we have

|J0(x)|xb
≤ C(b), 0 < b < 1/2, ∀ x ∈ R+. (36)

Thus from (35) and (36), we get

|[K2i
√
τ(2
√

x)]2 sinh(2π
√
τ)| ≤ C(b)π

∞∫
0

[4
√

x sinh(t)]−bdt ≤ C(b)π(4
√

x)−b

∞∫
0

[sinh(t)]−bdt

≤ C(b)π(4
√

x)−b

∞∫
0

u−b

(1 + u2)
1
2

du,

for 0 < b < 1/2, the integral is convergent. Thus

| K2i
√
τ(2
√

x) | ≤ C′(b) x
−b
4 [sinh(2π

√
τ)]

−1
2 .
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(iv) By using (13), (4) and then (30), we get

|A
n
xD(x, y, z)| ≤

4
π2 [C′(b)]3(xyz)

−b
4

∞∫
0

τn[sinh(2π
√
τ)]

−1
2 dτ ≤ C (xyz)

−b
4 .

Hence the estimate (31) is true.
(v) By using (2), we have

Dr
xK2i

√
τ(2
√

x) =

r∑
j=1

C j,r(−1)nx
j−2r

2

∞∫
0

(cosh(t)) je−2
√

x cosh(t) cos(2
√
τt)dt,

where C j,r > 0 is some constant. Thus

|Dr
xK2i

√
τ(2
√

x)| ≤
r∑

j=1

C j,r x
j−2r

2

∞∫
0

et j e−
√

xet
dt =

r∑
j=1

C j,r x
j−2r

2

∞∫
0

u j−1 e−
√

xudu

=

r∑
j=1

C j,r x
j−2r

2
( j − 1)!

x
j
2

≤ C′ x−r,

where C′ > 0 is some constant.

Remark 2.3. From (25) and (31), we can conclude that

A
n
xD(x, y, z) = An

yD(x, y, z) = An
z D(x, y, z) ≤ C (xyz)

−b
4 .

Theorem 2.4. If ϕ, ψ ∈ L1(R+; x−1dx) then the translation and the convolution operator defined as (18) and (19)
respectively, exist and belong to L1(R+; dx). Further, we have the following estimates

(i) ‖Txϕ‖L1(R+; dx) ≤
1
4
‖ϕ‖L1(R+; x−1dx),

(ii) ‖ϕ ] ψ‖L1(R+; dx) ≤
1
8
‖ϕ‖L1(R+; x−1dx) ‖ψ‖L1(R+;x−1dx).

Proof. (i) From (18) and (16), we have

| Txϕ(y) |≤
1
2

e−2
√

y
‖ϕ‖L1(R+; x−1dx).

Thus

‖Txϕ‖L1(R+; dx) ≤
1
4
‖ϕ‖L1(R+; x−1dx).

(ii) Now from (19) and (16), we get

| (ϕ ] ψ)(x) | ≤
1
4

e−2
√

x
( ∞∫

0

∞∫
0

|ϕ(z)| |ψ(y)|z−1y−1 dz dy
)
.

Hence

‖ϕ ] ψ‖L1(R+; dx) ≤
1
8
‖ϕ‖L1(R+; x−1dx) ‖ψ‖L1(R+;x−1dx).

Hence proof is complete.
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Theorem 2.5. If ϕ ∈ Lp(R+; x−1dx), 1 < p < ∞ and ψ ∈ L1(R+; x−1dx), then the convolution operator (19) exists
and belongs to Lp(R+; dx). Moreover

‖ϕ ] ψ‖Lp(R+;dx) ≤ C ‖ϕ‖Lp(R+; x−1dx) ‖ψ‖L1(R+; x−1dx), (37)

where C > 0 is certain constant.

Proof. By using (19) and Hölder’s inequality, we have

|(ϕ ] ψ)(x)| ≤
1
4

( ∞∫
0

∞∫
0

D(x, y, z) |ϕ(z)|p |ψ(y)| y−1z−1 dy dz
) 1

p

×

( ∞∫
0

∞∫
0

D(x, y, z) |ψ(y)| y−1z−1 dy dz
) 1

q
.

Thus from (16), we get

|(ϕ ] ψ)(x)|p ≤

(1
4

)p
e−2
√

x
( ∞∫

0

∞∫
0

|ϕ(z)|p |ψ(y)| y−1z−1 dy dz
)

×

( ∞∫
0

( ∞∫
0

D(x, y, z)z−1 dz
)
|ψ(y)| y−1 dy

) p
q
.

From (28) and (29), we have

‖ϕ ] ψ‖Lp(R+;dx) ≤
1
4

( ∞∫
0

e−2
√

x2
p
q K

p
q

0 (2
√

x)dx
) 1

p
‖ϕ‖Lp(R+; dx

x )‖ψ‖L1(R+; dx
x )

≤ C ‖ϕ‖Lp(R+;x−1dx)‖ψ‖L1(R+;x−1dx),

where C > 0 is certain constant. Hence the proof is complete.

3. Function spaces Fα and Gα and continuity of translation and convolution operator

In this Section we consider the function spaces Fα and Gα analogous to [6, 7] and discuss the continuity
of translation and convolution operators.

Definition 3.1. The space Fα consists of all complex-valued infinitely differentiable functions ϕ defined on R+ with
the topology generated by the collection of seminorms

γn,α(ϕ) = sup
x∈R+

|λ−α (x)x−1
A

n
xϕ(x)| < ∞, (38)

where α > 0, n ∈N0, Ax is the differential operator as (3) and λ−α (x) denotes the continuous function

λ−α (x) =


e
−α
x if 0 < x ≤ 1,

e−αx if 1 ≤ x < ∞.
(39)

Remark 3.2. The differential operatorAx is continuous linear mapping from the space Fα into itself.
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Definition 3.3. The space Gα consists of all complex-valued infinitely differentiable functions ϕ defined on R+ with
the topology generated by the collection of seminorms

Γn,α(ϕ) = sup
x∈R+

|λ+
α (x)x−1

A
n
xϕ(x)| < ∞, (40)

where α > 0, n ∈N0, Ax is the differential operator (3) and λ+
α (x) denotes the continuous function

λ+
α (x) =


e
α
x if 0 < x ≤ 1,

eαx if 1 ≤ x < ∞.
(41)

Remark 3.4. The differential operatorAx is continuous linear mapping from the space Gα into itself.

Remark 3.5. The differential operatorAx is continuous linear mapping from the space Gα into the space Fα .

Theorem 3.6. The translation operator defined as (18), is a continuous linear mapping from Gα into Fα.

Proof. Let ϕ ∈ Gα then from (18), (25) and (21), we have

A
n
y(Txϕ(y)) =

1
2

∞∫
0

(A′z)n(z−1D(x, y, z)) ϕ(z) dz =
1
2

∞∫
0

z−1D(x, y, z)An
zϕ(z) dz.

Now by using (38), (39) and (16), we get

γn,α(Txϕ(y)) ≤ Γn,α(ϕ) sup
y∈R+

|λ−α (y)y−1
|

∞∫
0

e−2
√

z[λ+
α (z)]−1dz,

from (41), it is clear that the integral is convergent. Thus

γn,α(Txϕ(y)) ≤ C Γn,α(ϕ),

where C > 0 is certain constant. Hence our proof is complete.

Theorem 3.7. The convolution operator defined as (19), is a continuous linear mapping from Gα into Fα.

Proof. Let ϕ, ψ ∈ Gα then by using (19), we have

A
n
x(ϕ ] ψ)(x) =

1
2

∞∫
0

A
n
xTyϕ(x) ψ(y) y−1 dy.

Now by using (38), (40) and Theorem 3.6, we get

γn,α(ϕ ] ψ) ≤
1
2
γn,α(Tyϕ(x)) Γ0,α(ψ)

∞∫
0

[λ+
α (y)]−1dy,

from (41), it is clear that the integral is convergent. Thus

γn,α(ϕ ] ψ) ≤ C γn,α(Tyϕ(x)) Γ0,α(ψ),

where C > 0 is some constant. Thus the proof is complete.
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4. Pseudo-differential operator

Definition 4.1. Let us consider the the symbol class Sm as collection of functions a(x, τ) : C∞(R2
+) → C which is

exponentially decreasing in variable τ and its derivative satisfies

(1 + x)−l
| Dp

xDq
τa(x, τ) |≤ C e−mτ, (42)

for all l, p, q ∈N0, m > 0 and constant C = Cl,m,p,q > 0.

Definition 4.2. Let the symbol a(x, τ) ∈ C∞(R2
+) → C satisfies (42). Then the p.d.o. involving KLC-transform is

denoted by Pa and defined by

Paϕ(x) =
4
π2

∞∫
0

K2i
√
τ(2
√

x) sinh(2π
√
τ)a(x, τ)(Kϕ)(τ) dτ, (43)

whereK is as (7).

For p.d.o’s involving Kontorovich-Lebedev transform, Fourier Jacobi transform, Fourier transform, Hankel-
Clifford transform, fractional Fourier transform, linear cannonical transform we refer to [15, 17, 22–24, 27,
28, 32, 37, 39] respectively.

Theorem 4.3. Let a(x, τ) ∈ Sm then the p.d.o. is continuous linear mapping from Gα into Fα.

Proof. By using (43) and (6), we have

A
q
xPaϕ(x) =

4
π2

2q∑
j=0

x jPq
j (x)

∞∫
0

D j
xK2i

√
τ(2
√

x)a(x, τ) sinh(2π
√
τ)(Kϕ)(τ)dτ

=
4
π2

2q∑
j=0

x jPq
j (x)

∞∫
0

j∑
r=0

(
j
r

)
Dr

xK2i
√
τ(2
√

x)D j−r
x a(x, τ) sinh(2π

√
τ)

× (1 + τ)−s
s∑

n=0

(
s
n

)
(−1)n(−τ)n(Kϕ)(τ)dτ. (44)

Now by using (4) and (21), we get

(−τ)n(Kϕ)(τ) =
1
2

∞∫
0

K2i
√
τ(2
√

t)t−1
A

n
t ϕ(t)dt.

Thus from (30) and (40), we obtain

| (−τ)n(Kϕ)(τ) | ≤
1
2

C′(b)[sinh(2π
√
τ)]

−1
2

∞∫
0

t
−b
4 t−1
A

n
t ϕ(t)dt

≤
1
2

C′(b)[sinh(2π
√
τ)]

−1
2 Γn,α(ϕ)

∞∫
0

t
−b
4

λ+
α (t)

dt,

where 0 < b < 1/2. From (41), clearly the integral is convergent, hence

| (−τ)n(Kϕ)(τ) | ≤ C′′[sinh(2π
√
τ)]

−1
2 Γn,α(ϕ), (45)
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where C′′ > 0 is a constant. Now from (44) and (45), we get

| A
q
xPaϕ(x) | ≤

4
π2

2q∑
j=0

x jPq
j (x)

∞∫
0

j∑
r=0

(
j
r

)
|Dr

xK2i
√
τ(2
√

x)| |D j−r
x a(x, τ)|

× sinh(2π
√
τ)(1 + τ)−s

s∑
n=0

(
s
n

)
C′′[sinh(2π

√
τ)]

−1
2 Γn,α(ϕ)dτ

=
4
π2

∞∫
0

|K2i
√
τ(2
√

x)| |a(x, τ)| sinh(2π
√
τ)

× (1 + τ)−s
s∑

n=0

(
s
n

)
C′′[sinh(2π

√
τ)]

−1
2 Γn,α(ϕ)dτ

+
4
π2

2q∑
j=1

x jPq
j (x)

∞∫
0

j∑
r=1

(
j
r

)
|Dr

xK2i
√
τ(2
√

x)| |D j−r
x a(x, τ)|

× sinh(2π
√
τ)(1 + τ)−s

s∑
n=0

(
s
n

)
C′′[sinh(2π

√
τ)]

−1
2 Γn,α(ϕ)dτ.

By using (30), (42) and (32), we get

| A
q
xPaϕ(x) | ≤

4
π2

s∑
n=0

(
s
n

)
Γn,α(ϕ)C′′C′(b)x

−b
4 C(1 + x)−l

∞∫
0

e−mτ(1 + τ)−sdτ

+
4
π2

2q∑
j=1

x jPq
j (x)

j∑
r=1

(
j
r

) s∑
n=0

(
s
n

)
Γn,α(ϕ)C′′C′ x−r

× C(1 + x)−l

∞∫
0

e−mτ(1 + τ)−s[sinh(2π
√
τ)]

1
2 dτ,

for large value of m(> 0) the integrals are convergent. Thus from (38)

γq,α(Paϕ) ≤ C1

s∑
n=0

(
s
n

)
Γn,α(ϕ) sup

x∈R+

| λ−α (x)x−1x
−b
4 (1 + x)−l

|

+ C2

s∑
n=0

(
s
n

)
Γn,α(ϕ) sup

x∈R+

| λ−α (x)x−1(1 + x)−l
2q∑
j=1

x jPq
j (x)

j∑
r=1

(
j
r

)
x−r
|.

Using (39), we have

γq,α(Paϕ) ≤ C3 Γn,α(ϕ),

where C3 > 0 is a constant, from which the theorem follows.

An integral representation of p.d.o.
Let us consider a function ax(y) associated with the symbol a(x, τ) by

ax(y) =
4
π2

∞∫
0

K2i
√
τ(2
√

x)K2i
√
τ(2
√

y) a(x, τ) sinh(2π
√
τ) dτ, (46)
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then from (43), (7) and by using Fubini’s theorem, we have

(Paϕ)(x) =
1
2

∞∫
0

(
4
π2

∞∫
0

K2i
√
τ(2
√

x)K2i
√
τ(2
√

y)a(x, τ) sinh(2π
√
τ) dτ

)
ϕ(y) y−1 dy. (47)

On using (46), (47) reduces to

(Paϕ)(x) =
1
2

∞∫
0

ax(y) ϕ(y) y−1 dy. (48)

Theorem 4.4. If ax(y) is defined as (46), then we have the following estimate

|ax(y)| ≤ C (xy)
−b
4 (1 + x)−l, (49)

where 0 < b < 1/2, l ∈N0 and C > 0 is certain constant.

Proof. By using (46), (30) and (42), we get

|ax(y)| ≤
4
π2 (C′(b))2(xy)

−b
4 (1 + x)−l

∞∫
0

e−mτdτ,

where 0 < b < 1/2, and l ∈N0. Clearly the integral is convergent as m > 0, thus

|ax(y)| ≤ C (xy)
−b
4 (1 + x)−l,

where C > 0 is a constant. Hence the proof is complete.

Now we find out an estimate for p.d.o. defined as (48). From (48) and (49), we have

|(Paϕ)(x)| ≤
C
2

∞∫
0

(xy)
−b
4 (1 + x)−lϕ(y)y−1 dy

≤
C
2

(x)
−b
4 (1 + x)−l

‖(·)
−b
4 ϕ‖L1(R+;x−1 dx).

Thus, for l > 1 − b
4 , 0 < b < 1/2

‖Paϕ‖L1(R+;dx) ≤ C′ ‖(·)
−b
4 ϕ‖L1(R+;x−1 dx).

Special Case:
If we consider symbols a(x, τ) which can be explicitly represented as a(x, τ) = f (x)1(τ), then p.d.o. defined
as (43), we have

(Paϕ)(x) =
4
π2

∞∫
0

K2i
√
τ(2
√

x) sinh(2π
√
τ) f (x)1(τ)(Kϕ)(τ)dτ. (50)

By using (8), (50) reduces to[
K

(Paϕ

f

)]
(τ) = 1(τ)(Kϕ)(τ), f (x) , 0. (51)

Further, if 1(τ) = (Kψ)(τ), then by using (24), (51) can be represented as[
K

(Paϕ

f

)]
(τ) = [K(ψ ] ϕ)](τ).
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Or

(Paϕ)(x) = f (x) (ψ ] ϕ)(x).

Moreover, by using Hölder’s inequality, we have

‖(Paϕ)(x)‖L1(R+;dx) ≤ ‖ψ ] ϕ‖Lp(R+;dx)‖ f ‖Lq(R+;dx), (52)

from (37) and (52), we obtain

‖(Paϕ)(x)‖L1(R+;dx) ≤ ‖ψ‖Lp(R+;dx)‖ϕ‖L1(R+;dx)‖ f ‖Lq(R+;dx),

where p, q > 1.

Remark 4.5. If in (50), we consider f (x) = 1 then the p.d.o. belongs to a special class of operator similar to potential
operator as investigated for Fourier, Jacobi and Bessel transform [18, 29, 39].
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