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Symmetries in Yetter-Drinfel’d-Long Categories

Dongdong Yan?, Shuanhong Wang?

#School of Mathematics, Southeast University, Nanjing 210096, Jiangsu, China.

Abstract. Let H be a Hopf algebra and LR(H) the category of Yetter-Drinfel’d-Long bimodules over
H. We first give sufficient and necessary conditions for LR(H) to be symmetry and pseudosymmetry,
respectively. We then introduce the definition of the u-condition in LR(H) and discuss the relation between

the u-condition and the symmetry of LR(H). Finally, we show that LR(H) over a triangular (cotriangular,
resp.) Hopf algebra contains a rich symmetric subcategory.

1. Introduction

The notion of symmetric category is a classical concept in category theory. Cohen and Westreich [1] tested
symmetries and the u-condition in the Yetter-Drinfel’d category YD over Hopf algebra H. Pareigis [7]
found the necessary and sufficient condition for 2YD to be symmetric. Later, Panaite etal. [8] proposed the
definition of pseudosymmetric braided categories which can be viewed as a kind of weakened symmetric
braided categories, and showed that the categoryz Y D" is pseudosymmetric if and only if H is commutative
and cocommutative. The generalization of those classical structures and results have been introduced and
discussed by many authors [5, 12, 13].

It is known that the Radford biproduct has a categorical interpretation (due to Majid): (H, A) is an
admissible pair (see [11]) if and only if A is a bialgebra in the Yetter-Drinfel’d category2YD. Panaite and
Van Oystaeyen [9] described a similar interpretation for L-R-admissible pairs and defined a prebraided
category LR(H) (which is braided if H has a bijective antipode) which contains#Y D and V. D} as braided
subcategories. They then showed that (H, B) is an L-R-admissible pair with an extra condition

b(()) < bE—l] ® b(l) > bEO] =bxl, fOT any b,b' €B

is equivalent to B is a bialgebra in LR(H), where the L-R-admissible pair is the sufficient condition for L-R
smash biproduct B =« H to be a bialgebra. The Radford biproduct is a particular case. Lu and Zhang in [4]
discussed the equivalence on Hom-Hopf algebra.

The aim of the present paper is to discuss the symmetries, the pseudosymmetries and the u-condition
in Yetter-Drinfel'd-Long categories.
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This paper is organized as follows: In section 2, we recall some basic definitions and results related
to Yetter-Drinfel’d-Long bimodules. Then we give some examples of Yetter-Drinfel’d-Long bimodules.
In section 3, we show that the Yetter-Drinfel’d-Long category LR(H) is symmetric if and only if H is
trivial in four different methods, and that LR(H) is pseudosymmetric if and only if H is commutative and
cocommutative. In section 4, we introduce the definition of the u-condition in LR(H) and give a necessary
and sufficient condition for H; (i = 1,2, 3, 4) to satisfy the u-condition, where H; is defined in Example 2.4.
Then we study the relation between the u-condition and the symmetry of LR(H). In section 5, we prove that
the subcategory y My of LR(H) over triangular Hopf algebra H is symmetric. If we consider M = H® H, we
prove the converse. That is, assume that the braiding {'Hen Her is Symmetric forces H to be triangular. In
section 6, we give the dual cases of section 5. he total integral introduced by Chen and Wang in T-coalgebras
setting.

2. Preliminaries

Throughout this paper, all algebraic systems are over a field k. For a coalgebra C, the comultiplication
will be denoted by A. We follow the Sweedler’s notation A(c) = ¢1 ® ¢z, for any ¢ € C, in which we often
omit the summation symbols for convenience. For any vector spaces M and N, weuse 7 : M®N - N®M
for the flip map.

Let A be a algebra, A right A-module is a pair (M, <), in which M is a vector space and <: M® A — Misa
linear map, called the action of A on M, with notation <(m ®a) = m <a, such that, foranya,b € Aand m € M:

m<ab = (m<a)<b,
m<l=m.

Similarly, we can define the left A-module. A right A-linear is a linear map f : M — N such that
f(m)<a= f(m<a), foranya € Aand m e M.

Let C be a coalgebra, A right C-comodule is a pair (M, p), in which M is a vector spaceand p : M — M ®C
is a linear map, called the coaction of C on M, with notation p(m) = m) ® m), such that, for any m € M:

M) 0) @ M) @ M) = M) @ M) @ M)z,
111(0)8(711(1)) =m.

Similarly, we can define the left C-comodule. A right C-colinear is a linear map f : M — N such that
pno f=(f®id)opm.

Let A be a algebra, and assume that M are both left A-module viar: A®M — M,a®m + av>m and
right A-modulevia<: M® A - M,m ®b + m <b, then M is called an A-bimodule if

(apm)<b=avr(m<b), (2.1)

for any a,b € Aand m € M.
Let C be a coalgebra, and assume that M are both left C-comodule via p' : M — C ® M, m > mj_1) ® myq
and right C-comodule via p" : M — M ® C,m + m) ® mq), then M is called a C-bicomodule if

mp-11 ® Moj0) @ Moy1) = M)[-1] @ M(o)[0] & M(1), (22)

for any m € M.
Let H be a Hopf algebra, we can denote those categories by y My and " M. Take y My whose objects
are all H-bimodules, the morphisms in the category are morphisms of H-bilinear.

Definition 2.1. ([9]) Let H be a Hopf algebra. A Yetter-Drinfel’d-Long bimodule over H is a vector space M endowed
with H-bimodule and H-bicomodule structures (denoted by h®@ m v h>m,m@h v+ m <h,m v+ mi_1; ® myg), m
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my ® mq), for any h € H and m € M), such that M is a left-left Yetter-Drinfel’d module, a left-right Long module, a
right-right Yetter-Drinfel’d module and a right-left Long module, i.e.

(h1 > m)—11hp ® (h1 > m)[o] = him—1) ® hy > myg), (2.3)
(h>m)) ® (h>m)qy = h>me) ®mq), 24)
(m <hy)) ® h1(m <hy)qy = m) <hy ® mayha, (2.5)
(m <h)—11 ® (m <h)jo) = mi_1] ® mygy < h. (2.6)

We denote by LR(H) the category whose objects are all Yetter-Drinfel’d-Long bimodules M over H, the
morphisms in the category are morphisms of H-bilinear and H-bicolinear.

If H has a bijective antipode S, LR(H) becomes a strict braided monoidal category with the following
structures: for any M, N € LR(H),andhe H,me Mandn € N,

he(m®n)=hi>m®hy>n, (2.7)

(m®n)<h=m<h;®n<hy, (2.8)

(m @ n)[-1] ® (m @ n)g) = M—111[-1] ® M) ® N0, (2.9)

(m ®n) ) ® (Mm@ n)qy = mp) ® ny ® muynga, (2.10)
the braiding

YN :MON > NOM : m®n > m_q) > 1) ® mjg) <1

and the inverse
ll}gle INOM > M@N :n®@mm mp < 5_1(1”1(1)) ® 5_1(71’1[_1]) > 10)-

Definition 2.2. ([6]) A quasitriangular (QT) Hopf algebra is a pair (H, R), where H is a Hopf algebra over k and
R = R'® R* € H® H is invertible, such that the following conditions hold (r = R):

(QT1) AR")® R? = R' ® ' ® R*%;

(QT2) R'® A(R?) = R'r' @ » @ R%;

(QT3) A“P(MR = RA(h);

(QT4) ¢(RHR? =1 = Rle(R?);

(QT5) IfR™! = R*®R!, then (H, R) is called a triangular Hopf algebra.

Definition 2.3. ([6]) A coquasitriangular (CQT) Hopf algebra is a pair (H, C), where H is a Hopf algebra over k and

C: H®H — kis a k-bilinear form (braiding) which is convolution invertible in Homy(H ® H, k) such that the
following conditions hold:

(CQT1) L(h, gl) = C(h1, 9)C(ha, 1);

(CQT2) C(hyg,l) = C(h,1)C(g, Ih);

(CQT3) Ch1,g91)92h2 = h1g1C(h2, g2);

(CQT4) C(h,1) =e(h) = (1, h);

(CQT5) If C(h1, 91)C(g2, h2) = €(g)e(h), then (H, C) is called a cotriangular Hopf algebra.

The following are some examples of objects in LR(H).

Example 2.4. Let H be a Hopf algebra. Then
(1) H1 = H® H is a Yetter-Drinfel’d-Long bimodule with the following structures, for any h,k,1 € H:

he(k®l) =hk®l, Pk = (k® )y ® (k® Do = k1S(ks) @ (k2 ® 1),
(k®1)<h = k® S(h1)lhy, Pkl = kg ke )y = (koh)dh.

(2) H, = H ® H is a Yetter-Drinfel’d-Long bimodule with the following structures, for any h,k,1 € H:

he (k®1) = hikS(hy) ® 1, Pk = (k@ )y ® (k® oy = k1 ® (kp @ 1),



D. D. Yan, S. H. Wang / Filomat 35:14 (2021), 48794895 4882
ko) <h=k®Ih, p'kel) =k ®k®Da = (kL) ®S()s.
(3) Hs = H ® H is a Yetter-Drinfel’d-Long bimodule with the following structures, for any h,k,1 € H:

he(k®l) =hk®]l, Pl k1) = (k@)1 ® (k® o) = k1S(ks) ® (ky ® 1),
(ko) <h=kalh, pk®1) = (k@) ® ke = (k&) S,

(4) Hy = H ® H is a Yetter-Drinfel’d-Long bimodule with the following structures, for any h,k,1 € H:

he (k®1) = mkS(hy) ®1, pl(k QD =k D@ Kk =k1 @ (k2 ®1)),
(k1) <h = k@ S(un)lh, koD = (k& o ® ke Dy = (koh)®b.

Note that H ® H is also a Hopf algebra with usual tensor product and usual tensor coproduct.

3. Symmetric Yetter-Drinfel’d-Long categories

In this section, we give necessary and sufficient conditions for Yetter-Drinfel’d-Long category LR(H) to
be symmetric and pseudosymmetric, respectively.

Let C be a monoidal category and 1p a braiding on C. The braiding v is called a symmetry if Yy oy =
idygw for any V, W € C. In this case, C is called a symmetric braided category (see [2]). The braiding 1 is
called a pseudosymmetry if the following condition holds, for any U, V, W € C:

(idw ® Yuv) Wy @ idy)(idu @ Yvw) = Py @ idu)(idy ® Yy Wuy @ idw).

In this case, C is called a pseudosymmetric braided category (see [8]).
Note that if 1 is a symmetry, that is, 3}, = v, then obviously ¢ is a pseudosymmetry.

Theorem 3.1. Let H be a Hopf algebra such that the canonical braiding of the Yetter-Drinfel’d-Long category LR(H)
is a symmetry if and only if H = k.

Proof. By Example 2.4, Hy and H; are two Yetter-Drinfel’d-Long bimodules. If the canonical braiding ¢ is
a symmetry, that is, Y, 5, © Ym0, = idmeH,. APPLY YH,H, © PH, H, to theelement 1®k®1®1 € H; ® Hy,
we have

Uk by © Pry (19K ®1® 1) = Yy i, (L@ K) 211> (1 ®@ 1)0) ® (1 @ k)jg) < (1 ®@ 1))
=Ymu (1101 ek)<1)
=Vmn(1©1018k)
=1Ly >(1®k) o ®(1® 1) <(1®k)q)
=1>(10k)®(1®1) <k
=10k ®1&®k.

Thus we have 1®k®1®1 =1®k; ® 1®k,. Apply ¢ ® ¢ ® ¢ ® id to both sides of the equation, we have
e(k)1g =k. SoH = k.
The converse is straightforward, This completes the proof. [

Here, we will give three other proofs of Theorem 3.1, and they are different from each other.

e By Example 2.4, H; and Hj3 are two Yetter-Drinfel’d-Long bimodules. If canonical braiding is a
symmetry, that is, Y, n, © Yu, H, = idHeH,. Forany 1®k®1® 1 € H; ® H3, we easily get that
Hng,,H] o ¢H1,H3(1 ®k® 1 ® 1) =1 ®k1 ® 1 ®k2.

Thuswehave 19k®1®1 =180k ®1®k,. Apply ¢ ® ¢ ® ¢ ® id to both sides of the equation, we have
e(k)1y = k. So H = k.
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e By Example 2.4, H, and Hy are two Yetter-Drinfel’d-Long bimodules. If canonical braiding is a
symmetry, that is, Ym, 5, © YH,H, = idH,eH,. Forany 1®k®1® 1 € Hy ® Hy, we easily get that
I/JHZ,H4 o ¢H4,H2(1 k®1® 1) =10k ®1®k,.

Thuswehave19k®1®1 =180k ®1®k,. Apply ¢ ® ¢ ® ¢ ® id to both sides of the equation, we have
e(k)lg =k. SoH = k.

e By Example 2.4, H3 and Hj are two Yetter-Drinfel’d-Long bimodules. If canonical braiding is a
symmetry, that is, Yy, 5, © Y, H, = idH,eH,. Forany 1®k®1® 1 € Hy ® H3, we easily get that
¢H3,H4 o l,DH4,H3(1 ®k® 1® 1) =1 ®k1 ®1 ®k2.

Thuswehave19k®1®1 =10k ®1®k,. Apply € ® ¢ ® ¢ ® id to both sides of the equation, we have
e(k)1g = k. So H = k.

If Hi = k®H and H, = k® H, then H; and H, are two right-right Yetter-Drinfel’d modules. Hence using
Theorem 3.1, we can improve the main result in [7].

Corollary 3.2. Let H be a Hopf algebra such that the canonical braiding of right-right Yetter-Drinfel’d category
YD} is a symmetry. Then H = k.

In the following, we will introduce the pseudosymmetry on LR(H) over a Hopf algebra H. For this purpose,
we need the following Lemma.

Lemma 3.3. Let H be a cocommutative Hopf algebra. Then the canonical braiding Y, m, of the category LR(H) is
the usual flip map.

Proof. Forany g®h®k®I € H; ® Hy, we have

V(g @h®k®1) = (9@ h)-11> (k® D)) ® (9@ h)jo) < (k® I)()
= 15(g3) > (k® ) ® (92 ® h) <115(15)
=715(g2) > (k®13) ® (g3 ® h) «[1S(lz) by cocommutative
=1>-k®)®(gh)«1
=k®I®g®h.

This completes the proof. [J

We now give necessary and sufficient conditions for the canonical braiding of the category LR(H) to be a
pseudosymmetry, we prove the necessary condition by a new method which is different from Proposition
2.5in [10].

Theorem 3.4. Let H be a Hopf algebra. Then the canonical braiding of the category LR(H) is pseudosymmetric if
and only if H is commutative and cocommutative.

Proof. Assume that the canonical braiding ¢ of the category LR(H) is pseudosymmetric. We first check
that H is cocommutative. Forany 1®1®k®1®1®1 € H; ® H, ® H;, we have
(id ® Y, p,) © (Yifh py, ®d) 0 (id ® Ppy )1 1kR1®1®1)

= (id ® Yrr, 11,) © (Y77 gy, @ id)(1®1® (k® 11> (1® 1)) @ (k® Djoy < (1@ 1))

= (id ® Y, 1,) © (W, ®i)(1@ 10k > (10 1) ® (k, ®1) < 1)

= (id ® Pr,m,) © (Vi ®id)(1010k @10k ®1)

= (id ® Pr, 1) (k1 ® Doy < S (1@ 1)) @ S (k1 ® )j-1)) > (1® 1)0) @ k2 ® 1)

= ({d® Y m)(ka®1) <105 (k1S(ks)) » (1@ 1) @ ks ® 1)

= (([d® Y )k ®1®kS (k) ®1® ks ®1)

=k ®1® (k35" (k1) ® 1)1 > (ks ® 1) (o) ® (k3S ™" (k1) ® )jo) < (ks ® 1))
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=k ®1® (ksS™(k1))1S((ksS ™' (k1))3) > (ks ® 1) ® ((k3S ™' (k1))2 ® 1) < 1
=k ® 1@ [(ksS™ " (k1))1S((k3S ™ (k1))3)11kaS([(k3 S~ (k1)1 S((ks S~ (Kk1))3)]2) ® 1
® (kS (k)2 ® 1

and

Y, ®id) o (id® %f,Hl) o (WH,m®d)(1910k®10111)
= (Y, ®@id) o ([ Y 1)
(1@ D> k@1 @1 < (k® 1)) ®1®1)
= H,n, ®id) o (@ Y (1> (k®1)©(181)<18111)
= Prm, ®id) o (Y )(k®18181811®1)
= Upm ®@id)ke1®110111)
=kd)r 1)@k <(10l)n®1lel
=k>(101)®(k®1)<101e1
=®10khe1e1e®l.

By assumption, LR(H) is pseudosymmetric, it follows that

®10k®18181 =k &1 (kS (ki)1S(k:S™" (k1))3)]iks
X S([(ksS™ (k) S((ksS ™" (k1))3)]2) ® 1 @ (ks S~ (k1)) ® 1
Apply id® ¢ ® ¢ ® ¢ ® id ® ¢ to both sides of the above equation, we get k» ® k357! (k1) = k ® 1. Therefore, we

have
ky®ki =k ®1k1 = k3 ® k45_1(k2)k1 =k ®kj.

So H is cocommutative.
Next, we verify that H is commutative. Forany 1®1®k®1®g®1 € H; ® H, ® H,, we have

(id ® Yh, p,) © (P gy, ®idd) o (id @ Ppip,) (1@ 1@k 1R g 1)
= (id ® Yiy, 1) © Wk, ® i) (1@ 1@ (k@ D11 (9 ® 1)) ® (k® D)oy < (9 ® 1))
= (id ® Yri, i) © (Wi, @)1 1@ k1> (181 ® (r ®1) < 1)
= (id ® Yu,m,) © (Yp y, ® id)(1®1®kigS(kr) ® 10 ks ® 1)
= (id ® Y, 1,)(k19S(k2) ® D)joj < S~ (1 ® 1))

® S ((k1gS(k2) ® 1)j-1) > (1@ 1)0) ® k3 ® 1)

= (id ® Y, 1,) (k2925 (ks) ® 1) < 1@ S (k1 g1 S(ka)) > (1© 1) ® ks ® 1)
= (id ® Y1, 11,) (k2925 (k3) ® 1® S (k1915 (ks)) @ 1 @ ks ® 1)
=kg2S(k3) ®1®ks ® 1 ® S (k191S(ks)) ® 1 by Lemma 3.3

and

(Yr,, ® id) 0 (id @ P! 1) 0 (Phym, ®id)(1010k®1®g®1)
= (Y, ®@id) o ((d@ Y} 1 )(k®1©1®1®9g®1) by Lemma 3.3
= Wy, @ik ®1® (7@ 1)< STH((1® 1)) ® S (9 ® D—1) > (1 ® 1)(0))
= (Ypm, ®id) (k@10 (2 ®1)<1® 57 (g1) > (1®1))
= Wnn, ®id)(k®1®7p 185 (7)) ®1)
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=k® D> (28 1)@ (k@D < (2@ 1)1 ®S ' (g1)®1
=k ()@ kel)<105 (1)1
=kig2Stk)®1®k; ®1® S (1) ® 1.

Since LR(H) is pseudosymmetric, we get
k2g2S(3) ®1®k®1® S‘l(klgls(k4)) ®1=kgSk)®1®ko1l® 5_1(91) ®1.

Apply (e®e®id®e®id®e)(id®idRid®id®S®id) to both sides of the above equation, we get ks®k;gS(kz) = k®g.
Hence, we have

gk = kigS(k)ks = kige(ks) = kg.

So H is commutative.
The proof of the converse can refer to Proposition 2.5 in [10]. This completes the proof. [J

If we consider H; = H® k and H, = H ® k, then H; and H, are two left-left Yetter-Drinfel’d modules. By
the proof of Theorem 3.4, we have the following result:

Corollary 3.5. The canonical braiding of BY D is pseudosymmetric if and only if H is cocommutative and commu-
tative.

4. The u-condition in LR(H)

In this section, we introduce the definition of the u-condition in LR(H) over Hopf algebra H and discuss
some properties and results related to the u-condition. It is easy to obtain the u-condition in. YD when the
right action and coaction are trivial.

Definition 4.1. Let H be a Hopf algebra and M € LR(H). Then M is said to satisfy the u-condition if
m-1) > Mo)(0) < Mojn) = 1M, (“.1)
forany m € M.

Note that Eq.(4.1) is equivalent to the following equation:
mo)[-1] > Mo] < M) = M, (4.2)

for any m € M.
In the following, we will give a necessary and sufficient condition for Hy, Hp, H3 and Hy4 in Example 2.4
to satisfy the u-condition.

Proposition 4.2. Let H be a Hopf algebra. Then
(1) H; satisfies the u-condition if and only if S* = id.
(2) H, satisfies the u-condition if and only if S* = id.
(3) Hj satisfies the u-condition if and only if S* = id.
(4) Hy satisfies the u-condition if and only if S* = id.
Proof. 1t is basic in [3] that S? = id if and only if S(ha)hy = e(h) or haS(h1) = e(h).
For (1), if S? = id, we only need to check that Eq.(4.1) holds. For any k,! € H, we have

(k® D11 > (k® Dyoj0) < (k ® Djoy1) = k1S(ks) & (k2 ® D)0 < (k2 ® D)1
=kiS(ks) > (ko ® 1) <
= k1S(ks)k2 ® S(I2)l115
=kie(kr) ® e(l)l
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=k®l

Conversely, assume that H; satisfies the u-condition. For any k ® 1 € H;, we have

(k® )11 > (k ® Djoy) < (k ® Djojay = k1S(k3) > (ko ® 1)0) < (k2 ® 1))
= kS(ks) > (ko ®1) < 1
=k S(ks)k, ® 1.

By assumption, we have k1 S(k3)ko ® 1 = k® 1. Apply id ® ¢ to both sides, we get
k1S(k3)ky = k. (4.3)
By computing we have

S(ka)kr = €(k1)S(k3)kz
= (S(k1)k2)S(ka)ks
= S(k1)(k2S(ka)ks)
= S(k1)ky by (4.3) applied to kp
= g(k).
Hence S? = id.
For (2), if S? = id, for any k, | € H, we have
(k® D-11> (k® Djoy0) < (k ® Dyoyay = k1 > (k2 ® )0 < (k2 ® D1y
=ki> (ke ® L) «S(lh)ls
= kik3S(k2) ® 1S(1h)l5
=kie(ka) ® e(hh)l
=k®lL

Conversely, assume that H, satisfies the u-condition. For any k ® 1 € H,, we have

(k®D)-11> (k® D)oy < (k ® Doyay = k1> (k2 ® 1)(0) < (k2 ® 1)1y
=kr(k®1)<1
= k1k35(k2) ®1.

By assumption, we have kik3S(k;) ® 1 = k® 1. Apply id ® ¢ to both sides, we get
klkgs(kz) =k. (44)
By computing we have

kaS(k) = e(k1)ksS(kz)
= (S(k1)k2)kaS(k3)
= S(k1)(kak4S(ks))
= S(k1)ky by (4.4) applied to k,
= e(k).

Hence S? = id.
Similarly, we can check that the statements (3) and (4) hold. [

Proposition 4.3. Let H be a Hopf algebra and S* = id, and assume that M and N satisfy the u-condition. Then
M ® N satisfies the u-condition if and only if YN is a symmetry.
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Proof. For any m € M and n € N, we have

(m®n)(-1] > (m @ n)o)(0) < (M ® n)joy1)
= (mp_1yny_17) > (myo) ® nyo1)0) < (M) ® njop) )
= (mp-1yng-11) > (Moy0) ® 101(0)) < (Myoj1)Mp01(1))
= mp-11 > [np-11 > (Mo)0) ® Nyoy0)) < Moyl < 1poj1)
= mp-qy > [ > Moy < Mpoya1) ® (M-112 > 1oy0)) < Mpojy2] < 1oy
= mp-11> [n@)-111 > (M010) < Mpoyw1) ® (Moy-112 > Moyio1) < Moyl <ny by (2.2)
= mp-11 > [n-111 (M1 (ME)-113)) > (Mpo)0) < Mi0)1)3)
® ()12 > ny01) < (St moial <nay by §* = id
= mp-11> [(no)-11117(0)[-112) S (M(0)[-1113) » (M[03(0) < M[0)(1)22)
® (n()-1112 > 1(y01) < S(Myoy1y21) Moy Mpoy123) < 1)
= m-11 > [(n)-mnpi-1)S(Me)-113) > (Mo)0)©0) < Mo0)1)2)
® (no-112 > nyoror) < Sy Moy moiws)] < 1)
= mp-1) > [(o)-111 > noD 1101125 (M©)-113) > (M0)0) < M{0)(1)3)0)
® (-1 > noyonior < Smoyay)mpoyw2 (Moo < mpiws)m] <nw by (2.3), (2.5)
= mp-11> [(n)-11 > noyo1)-11 > (Mpo0) < M01(1))0)
® ()11 > Mool < (Moj0) < Moyl <na)
= m-11> [Ynm(no)-11 > 1o)0] ® M0)(0) < Mpo)m)] < 11y
= PN m(mp-11 > [ne)-11 > noyo) ® Moj0) < Moyl <))
= PN m(m-nn)-11 > noyo] <Ay ® Mi-112 > Mojo) < Mioj1)"(1)2)
= PN m(m-1o)0)-11 > PO)O)0] < o)1) ® Mio]i-1] > Mo][0](0) < M[0][0](1) (1))
= ng,M(m[_l] > 1(0) @ M[o] < n(l)) by (4.1), (4.2)
= Ynm o Yun(m @ n).

This completes the proof. [

If we consider M = H; and N = Hj, for any 7, j = 1,2,3,4 (see Example 2.4). By Proposition 4.2 and 4.3, we
obtain:

Corollary 4.4. Let H be a Hopf algebra, and assume that H; and H; satisfy the u-condition. Then H; ® H; satisfies
the u-condition if and only if Yy, u, is a symmetry, for any i, j=1,2,3,4.

5. Yetter-Drinfel’d-Long categories over quasitriangular Hopf algebras

In this section, we focus on M € LR(H) for which ¢ is a symmetry. Triangular Hopf algebras give
rise to such M.

Theorem 5.1. Let (H, R) be a quasitriangular Hopf algebra. Then the category yMpy of H-bimodules is a Yetter-
Drinfel’d-Long subcategory of LR(H) under the coactions p'(m) = R ® R' > m and p'(m) = m < R' ® R?, where »
(«, resp.) is the left (right, resp.) action on M.

Proof. First, we check that M is a right H-comodule. By the definition of right H-comodule, for any m € M,
we have
(id ® A)p'(m) = (id ® A)(m <R ® R?)
=m<R'®@R]®R;
=m<R'7"'®r®R* by (QT2)
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= (p' ®id)(m<R' ® R?)
= (p" ®id)p’(m),

and it is clear that m)e(m)) = m <R'e(R?) = m <1 = m. Similarly, we can get that M is a left H-comodule.
Next, we verify the compatible condition of H-bicomodule. For any m € M, we have

(id ® p")p'(m) = (id ® p")(R* ® R* > m)
=RPQR'>m)<rt@r?
=R?@R'> (mar)®r? by (2.1)
= (pl Rid)(m<r' ®r?)
= (p' ® id)p'(m).
We now prove that M satisfies the four compatible conditions (2.3) ~ (2.6). Indeed, for any & € H and
m € M, we have
(h>m) o) ® (> m)qy = (h>m) <R' @ R?
=h» (m<R") ®R?
= h>mg) ® m).

Thus Eq.(2.4) holds. For Eq.(2.5) , we have

my <hy ® mayhy = (m < RY) <h; ® R?h,
=m<R'M @ R%hy
=m<hpR'®@mR* by (QT3)
= (m<hy) <«R' ® i1 R?
= (m <h2)) ® hi(m <hy)q).

Similarly, we can show that Eq.(2.3) and (2.6) hold.

Finally, we need to show that any morphisms iny M} are both left H-colinear and right H-colinear. For
this purpose, we take any M, N € yMp, and assume that f : M — N is a morphism iny My, we get

(f ®id) o pj,(m) = f(m<R1)®R2 = f(m) <R'®R? = py © f(m).

So f is right H-colinear. Similarly, we can obtain that f described above is left H-colinear.
This completes the proof. [

Proposition 5.2. Let H be a triangular Hopf algebra. Then the Yetter-Drinfel’d-Long subcategory yMpy defined
above is symmetric.

Proof. For any m € M and n € N, we have
l,bN,M Ol,DM,N(i’Tl@I’l) = ll)N,M(R2l>7’l<71®R1 r>m<r2)
:Q2>(R1>m<72)<q1®Ql>(R2>n<rl)<q2
— Q2R1>m<;’2q1®Q1R2>n<rlq2 b]/ (QTS)
=1lem<l®len<l

=men.

Thus the subcategory g My is symmetric. [
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By Theorem 5.1 and Proposition 5.2, we know that If (H, R) be a triangular Hopf algebra then the subcategory
uMpy described above is symmetric. A particular example is M = H ® H. In the following we prove the
converse. That is, assume that the braiding {ngn Hen is a symmetry forces (H, R) to be triangular, where
H ® H is a Hopf algebra with usual tensor product and tensor coproduct.

Theorem 5.3. Let H be a Hopf algebra with a bijective antipode, and assume that (H®H,»> = m®id, p' = p1 ®id, <« =
id®m,p" =id ® py) € LR(H), where m is usual multiplication and p1 (pa, resp.) is a left (right, resp.) coaction on
H. Then Yuen e is a symmetry if and only if there exists R € H ® H so that (H, R) is triangular. And then p' and
p" are induced by R. That is,

plkel)=R*®R%k®!, p'kel)=keIR'®R?
forany k,1 € H, in particular, R"® 1 = p'(1® 1) and 1® R = p'(1®1).
Proof. If 1 = YHgn HeH is a symmetry, for any k, 1, g,h € H, we have

PkIQgh) = (k®)-11> (g ®h)0) ® (k® D)< (9 ®h)y)
= (g®h) <S T (k® 1) @ S (g @ W)-1)) > (k® ) o). (5.1)
In particular, let p'(1®1) =x;® y;® land p'(1®1) = 1®s; ® ;. Then
Xi®si®Y; ®t; =x>(1®s)®(y;®1) <t;
=(1®D> (1)@ (1&g «(1®1)q)
= (1@ <S (1)1 @S (1)) >(1®1)q by(5.1)
=i®1)<S(t) @S (xi) > (1®s)
=y ®S(t)® S (x) ®si.
Thus
Xi®si®Y;®ti=y; ® Sil(t,') ® Sil(x,') ® s;.
Apply id® ¢ ®id ® € and ¢ ® id ® € ® id to both sides, respectively, we have

X ®yi=yi®S(x), (5.2)
si®t=ST(H) ®s;. (5.3)

Apply id® S to Eq.(5.2) yields
xX; ® S(]/,‘) =Y ®X;. (5.4)

SetR®1=y;®x®1=(t®id)op(1®1)and 1®R=1®s;®* = p’(1®1). In the following, we wish
to show that (H, R) is triangular and that p’ and p” are induced by R. For this purpose, we first need the
following equations p'(k®1) = (id® ¢ ®id*)Y(k®I®1®1) and p'(k®1) = (id* ® e ® id) (1 ® 1 @k ® ). Indeed,
for any k,/ € H:

(i[d®e@id)Wk@l®1®1) = (id®e®@id*)(k® 11> (1® 1)) ® (k® Djo; < (1 ® 1)1))
(id ® e ®id®)(k® I)j_11> (1 ®5;) ® (k® Doy < t;)
((d®e® ld2)((k ® D11 ®si @ (k@ D)oy <)
=([d®e®id) (k@ D11 ®S (1) ® (k® o) <5;) by (5.3)
= (k1@ (koo <1
= (k& ® (ke
=plk®))
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and

(id*®e®id)py(1®10k®])

(id* ® e ® id)(1® 111> (k® I)0) ® (1® Doy < (k@ D))
(id* ® e ®id)(x;> (k®)0) ® (v ® 1) < (k ® )(1))

(id* ® e ®id)(x; > (k® )0) ® ¥i ® (k® 1))

= (id*®e®@id)(yi> (k® D) ® S () ® (k®)1)) by (5.2)
=1 (k®D)o) ® (k® )

= (k& ® ke

=p'k®l).

We now prove that p' and p” are induced by R. For any k, [ € H, we have

Pkl =(id®e®id)Pkel®1e1)
= (i[d®e@id)((1® D <SH (k@) ® S (1@ 1)-1)) > (k® D) by (5.1)
= (id®e@id)(yi®1) <S5 ((k® 1) ® S (x1) > (k® ) g))
= (id®e@id)(y;® S ((k® 1) ® S (xi) > (k® D))
=y ®S(x)> (k®I)
=y®S T (x)k®!
=xQ®yk®l by(5.2)

and

Pkl = (i ®c®id)p(1010ke])
= (id*® e ®id)(k® Do <SH((1®1)a) @S ((k®D-1)) > 1® 1)) by (5.1)
= (i* ® e @id)((k® Doy <S™'(t) ® ST ((k® D-17) > (1 ®5y))
= (i* @ e @id)((k® Doy < S~ (1) ® ST (k ® D_1)) ®5)
= (k®)<S7\(t) ®s;
=k®I1S(t) ®s;
=k®I5;®t;. by(5.3)
Thus

Pkl =x0ykel,
Pkl =k®ls; ®t.

4890

(5.5)
(5.6)

Finally, we verify that (H, R) is triangular. By definition, we need to prove the five equations (QT1) ~

(QT5). For (QT1), we only have to check that A(y;) ® x; = y; ® y; ® x;x;.

Ay) ®x; = (id® ® e)(A(y) ®x; ® 1)
= (id® ® £)(A(x) ® S(y;) ® 1) by (5.4)
= ([ ®S®e)(A®id*)(x;®y; ®1)
= (id*®S®e)(A®id?)p'(1®1)
= (id*®S®e)(id® p)p'(1®1)
= (i ®S® &)X ® p'(y; ® 1))
=(d*®S®e)(xi®x;®yjy;®1)) by (5.5)
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=(d*®S®e)(yi®Y;®S(x)S (x) ®1)) by (5.2)
=Yi®Y;j ® xix;j.

Similarly, we can check that (QT2) holds. For (QT3), we only need to show that hyy; ® hix; = yily ® x;h,.
Since both 1 and ¢ are H-module maps, we have

hxi®hy, =([{[d®cRid®e)(hxi®1®hy;®1)
= (id®€®id®€)(h1 >(x,-®1)®h2>(yi®1))
=(d®e®idee)hr(x®10y; ®1)]
=he[([d®e®id®e)(xi®10Yy; ®1)]
=he[(id®id®¢)o p'(1®1)]
=he[([d®e®id®e)p(1910111)]
=(deeRidee)hrP(1919111)]
=([d®e®ide)|[phr(1®10181))]
=([dRe®id®e)[Pp(h ®1®h, ®1)]
=([(d®e®id®&)[(h ® 1)—11> (ha ® 1)) ® (1 ® L)po) < (2 ® 1) ()]
=(d®e®id®¢)[x;i>(h ®s)® (yih ®1) <t;] by (5.5), (5.6)
=(d®e®id® ¢)[xihy ®s; ® yil @ 1]
=xh, ® yihl-

For (QT4), we have

eRHR? = (e ®id®e)(R'OR*®1)
=(e®id®e)(yi®xi®1)
=(e®id®e)(STH(x)®yi®l) by (5.2)
=(e®id®e)(xi®y;i®1)

(e®id®e)p(1®1)

1.

Similarly, we can check that ¢(R?)R! = 1. For (QT5), we have

19lelel=¢(181e1al)
=1 D> 1 1)@ (1@ g < (1@ 1))
=i (1©s)®(yi®1) <t)
=X ®s;i®Y; ®t)
= (i ® si)(-11 > (Vi ® £i) () ® (xi ®si)jo) < (i ® ti)y)
=xj>(y;i ®tisj) ® (yjxi ®s;) <t
= XY ® LiS; ® YjX; ® St

Thus, R is invertibleand R = x; ® y; = t; ® 5.
The converse is Theorem 5.1 and Proposition 5.2. This completes the proof. [

As a corollary we have:

Corollary 5.4. Let H be a Hopf algebra with a bijective antipode. Then, for H3 € LR(H), the braiding Vu, 1, is a
symmetry if and only if H is cocommutative.
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Proof. If the braiding satisfies lpfh 1, = i, then by Theorem 5.3 (H, R) is triangular with P(1®1) =R"®1.
Since p'(k®1) = k1S(ks) ®k, ® for any k, I € H, we have p'(1®1) = 1®1®1, 50 R = 1® 1. Thus (QT3) implies
that H is cocommutative.

Conversely, assume that H is cocommutative, for any k,1, g, € H, we have

¢H3,H3(k RI® g h) = (k ® l)[_1] > (g ® ]’l)(o) ® (k ® l)[o] < (g ® h)(l)
=k1S(ks) > (9 ® h2) ® (ko ® I) < h1S(h3)
=k S(ko) > (g ® h3) ® (ks ® ) «h1S(hy) by H is cocommutative
=lr(g@h) kel <1
=gh®k®l

It is clear that the braiding 'y, m, is a symmetry. O
If we consider H ® k, by Theorem 5.3, we generalize the important result in [1].

Corollary 5.5. Let H be a Hopf algebra with a bijective antipode, and assume that (H,m, p) € HY D, where m is
usual multiplication. Then Yy is a symmetry if and only if there exists R € H® H so that (H, R) is triangular. And
then p is induced by R. That is,

p(k) = R* ® R'k,

forany k € H, in particular, R* = p(1).

6. Yetter-Drinfel’d-Long categories over coquasitriangular Hopf algebras

In this section, we discuss the dual cases of section 5.

Theorem 6.1. Let (H, C) be a coquasitriangular Hopf algebra. Then the category™ MH of H-bicomodules is a Yetter-
Drinfel’d-Long subcategory of LR(H) under the actions h>m = C(h, mi_11)my) and m <h = mC(h, mqy), for any
heHandmeMef MH,

Proof. First, we prove that (M, <) is a right H-module. For any k, g € H and m € M, we have

(m < g) <h = mg) <hC(g, mu)
= myo S, moy)C(g, ma))
= m)C(h, may)C(g, may2)
= m)C(gh, ma)) by (CQT2)
=m=<gh,
and it is clear that m <1 = m)C(1,ma)) = meye(ma)) = m. Similarly, we can obtain that (M,») is a left

H-module.
Next, we check the compatible condition of H-bimodule. For any #, g € H and m € M, we have

(h>m)<g = C(h,m1)m; <g
= C(h, mp-ap)mioy0)C(g, Mioj))
= C(h, my-1)my0C(g, may) by (2.2)
= h>mC(g, ma))
=hv (m < g),

We now check that the four compatible conditions (2.3) ~ (2.6). For any & € H and m € M, we have

(h>m)@) ® (h>m)qy = C(h, mi_17)myoy0) @ (h > m)joia)
= C(h, my-1)myo; ® mqy by (2.2)
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=hv m) ® m(1).
Thus Eq.(2.4) holds. For Eq.(2.5), we have

mey < ® m(l)hz = m)0)C(h1, my)) ® mayhz
m) ® C(hy, may)mayhs
my ® himyClha, may) by (CQT3)
= myy0)C(h2, ma)) ® him)a)
= (m <hz)) ® h1(m < ha)q).

Similarly, we can verify that Eq.(2.3) and (2.6) hold.
Finally, we have to prove that any morphisms in M are both left H-linear and right H-linear. For this
purpose, we take any M, N € M, and assume that f : M — N is a morphism in? M, we have

f(m<h) = f(m@))C(h, mq)) = f(m)eC(h, f(m)q)) = f(m)<h.

So f is right H-linear. Similarly, we can obtain that f is left H-linear.
This completes the proof. [

Proposition 6.2. Let H be a cotriangular Hopf algebra. Then the Yetter-Drinfel'd-Long subcategory™ MY defined
above is symmetric.

Proof. For any m € M and n € N, we have

UM © Ymn(m @ n) = Yy m(m—1] > 1) ® M) < M(1y)
= PN m(COmp-ay, no-1)n©) 01 ® Mioyo) C(1 ), Mioyw))
= C(mp-ay, noy-1) (1), mpojw)no)oi-11 > Mojo)©0) ® Mool < M0)0)1)
= C(mpy, noy-11)C(1nay, M) o) -112 > Miojo) ® Moo < Mojan
= Umyr-11, n-111)C(Mpoy1), My2)n-112 > Moy[0] ® Mpojo) <My by (2.2)
= C(my-11, n-111)C(1q0)1), M1y2)
C(n-ap, m(o [1-1)M)01i0] ® 1[01(0)(0) C(M1)1, Mf01(0)(1))
= C(my-111, n-111)C(M =112, M(0)[-1]2)
C(my, npoyay1)C(npoyy2, Mma)moyo; ® npojo) by (CQTS)
=mQn.

So the subcategory? MH is symmetric. [J
Theorem 6.3. Let H be a Hopf algebra with a bijective antipode, and assume that (H® H,» =— ®id, p' = A®id, <« =
id® —,p" = id ® A) € LR(H), where A is usual comultiplication and — (<, resp.) is a left (vight, resp.) action on
H. Then Yuen pen is a symmetry if and only if there exists a braiding C : H® H — k so that (H, C) is cotriangular
Hopf algebra. And then C(k, 9)C(h,]) = (e®c®e @ e)P(k@I®g®h), for any k,1,9,h € H. That is,
he(k®@l)=h—k®l=_Chk)k ®],
k@) <h=k®l—h=k®LTlhL).
Proof. Assume that 1) = ygr Hen iS @ symmetry, then for any k,[,g,h € H,

Pkolegeh) =khi1>(g@h)w® kg <(g@h)y
= (g@h)o <SS (k® D) ® ST (g @ h)-1) > (k@ D)),
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i.e.

YkRI®geh) =k = g®m kel —h
=0®h— S (L)®S(g1) = kL. 6.1)

Define for any k,I,g,h € H, C(k, 9)C(h, ) = (e ® e ®@e®@e)P(k®@I®g®h). LetI=h=1,and apply e®e®@e® ¢
to Eq.(6.1), we get

Ck g) = ek = g) = e(S7'(9) = k) = LS (9), . 6.2)
By applying C(k, 9) = C(S~\(g), k) to C(g, S(K)), we get

Uk, 9) = C(g, S(K)). (6.3)
Similarly, we can get that

C(h, 1) = e(l = ) = e(h = ST (D) = TS~ (D), h) = T S()). (6.4)
Moreover, let] = h = 1,and apply id ® ¢ ® ¢ ® ¢ to Eq.(6.1), we get by (6.2), that for any k, g € H,

k— g=0S"91), kg2 = Ck, 91)g2- (6.5)

Similarly, we can get by (6.4), that for any /,h € H,
Lem = C(S7 (), )l = Tl L)l
Thus we have
he(k®l)=h—=k®I=_Chk)k ],
kD) <h=k®l—h=k®LCh,L).

By definition of cotriangular, we need to prove the five equations (CQT1) ~ (CQT5). First, we prove (CQT2).
Forany h,g,] € H, we have

C(hg, 1) = e(hg — 1)
=(e®e®e®@e) = (@g—-N®10h®1)
=(E®e®e®e)r(g—101)@ (M, ®1)<1)
=(e®e®@e@Yhele®g—11)
=C(h,g — DC(1,1)
=C(h, g, k) by (6.5)
= C(h, 1)C(g, ).

Next, we prove (CQT1). For any k, 9,1 € H, we have

C(h, gl) = C(gl, S(h)) by (6.3)
= U9, S(M2)C(, S()y) - by (CQT2)

= (g, S(h))C(l, S(h2))
= C(h1, 9)C(hy, 1). by (6.3)
We prove now (CQT3).

h1g1C(ha, g2) = higie(hy — g2) by (6.2)
=(d®e®e) g ®hy — g2 ®1)
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= (i[d®e®&)((g® Dy ®h2> (9@ o))
=({d®e®e)((> @)y ®h > 1)) by(23)
=([[de®e®e)((hh = g V) ® (hh — g® 1))
=(d®e®e)(( — ghha @ — 9)2®1)

= — gha

= C(h1, g1)g2h2. by (6.5)

It is easy to check that (CQT4) and (CQT5) hold.
The converse is Theorem 6.1 and Proposition 6.2. This completes the proof. O

As a corollary we have:

Corollary 6.4. Let H be a Hopf algebra with a bijective antipode. Then, for Hy € LR(H), the braiding Vu, 1, is a
symmetry if and only if H is commutative.

Proof. If the braiding satisfies l/JH o= = id, then by (6.2) C(k,g) = etk = g) = (e®@e)k>(g® 1) = (¢ ®
e)(k195(k2) ® 1) = &(g)e(k) for any k g € H. Thus by Theorem 6.3 (H, ¢ ® ¢) is a cotriangular Hopf algebra,
which by (CQT3) implies that H is commutative.

Conversely, assume that H is commutative, for any k,1, g, € H, we have

Vh, (k@ 1© g@h) = (k@ Di-11> (9 © 1)) ® (k® Doy < (9 ® M)y
=ki> ()@ (k1) <hy
= klgS(kz) M ®k; ® hzlS(l’l3)
=k1S(k)g®h1 ® ks ® IhyS(hs) by H is commutative
=gRh®kel.

It is clear that the braiding 'y, m, is a symmetry. [

If we consider H ® k, by Theorem 6.3, we generalize the another important result in [1].

Corollary 6.5. Let H be a Hopf algebra with a bijective antipode, and assume that (H,—, A) € LY D, where A is
usual comultiplication and — is a left action on H. Then Yy is a symmetry if and only if there exists a braiding
C:H®H — kso that (H, C) is cotriangular Hopf algebra. And then C(k, g) = (¢ ® e)(k®g), for any k, g € H. That
is,

k— g =C(k g1)9>-
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