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Abstract. In this paper, we establish new Hermite–Hadamard inequalities for h–convex functions, with in
the framework of a previously defined generalized integral. The results obtained, generalize or complete,
several reported in the literature. Some final remarks show the strength and scope of our results.

1. Introduction

One of the most fruitful mathematical concepts in recent years, due to its multiplicity of applications
and interrelationships with other sciences, is that of convex function. Subsequent extensions of this concept
have appeared in recent times, which has turned it into a difficult map to unravel. To get an idea about
it, we recommend the reader the work [13], where a fairly complete study is made of different notions of
convexity.

In [19], the author defined the h−convex functions:

Definition 1.1. Let I ⊂ R\ {0} be a real interval and h : I → R be a positive function. A function φ : I → R is said
to be h−convex, if φ is non–negative and

φ
(
tx + (1 − t)y

)
≤ h(t)φ(x) + h(1 − t)φ(y) (1)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1) is reversed, then φ is said to be h−concave.

By other hand, it is known that the Fractional Calculus, that is, the Calculus with integral and differential
operators of non–integer order, is as old as the classical Calculus itself, in recent times it has had a theoretical
development and its applications have increased in such a way that We have many fractional operators,
applied in various fields, from comprehensive inequalities to epidemic modeling. In particular, one of the
operators that has had the most development has been the Riemann–Liouville Fractional Integral, on which
we will focus our work. Throughout the work we use the classical Euler’s gamma function Γ (see [15]) and
Γk (cf. defined by [5]):

Γ(z) =

∫
∞

0
tz−1e−t dt, and Γk(z) =

∫
∞

0
tz−1e−tk/k dt, with z ∈ C, Re(z) > 0 and k > 0
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It is clear that if k→ 1 we have Γk(z)→ Γ(z), Γk(z) = (k)
z
k−1Γ

(
z
k

)
and Γk(z + k) = zΓk(z).

To facilitate understanding of the subject, we present several definitions of fractional integrals, some
very recent (eith 0 ≤ a < t < b ≤ ∞). The first is the classic Riemann–Liouville fractional integrals.

One of the first operators that can be called fractional is that of Riemann–Liouville fractional derivatives
of order α ∈ C,Re(α) ≥ 0, defined by (see [9]).

Definition 1.2. Let φ ∈ L[a1, a2], (a1, a2) ∈ R2, a1 < a2. The right and life side Riemann–Liouville fractional
integrals of order α > 0 are defined by

RL Jαa1
+φ(t) =

1
Γ(α)

∫ t

a1

(t − s)α−1φ(s)ds, t > a1 and RL Jαa2
−φ(t) =

1
Γ(α)

∫ a2

t
(s − t)α−1φ(s)ds, t < a2.

Other definitions of fractional operators are as follows.
The left–sided and right–sided Riemann–Liouville k−fractional integrals are given in [10].

Definition 1.3. Let φ ∈ L[a1, a2]. Then the Riemann-Liouville k−fractional integrals of order α ∈ C, Re(α) > 0 and
k > 0 are given by the expressions:

αIk
a+

1
φ(x) =

1
kΓk(α)

∫ x

a1

(x − t)
α
k −1φ(t) dt, x > a1, and αIk

a−2
φ(x) =

1
kΓk(α)

∫ a2

x
(t − x)

α
k −1φ(t) dt, x < a2.

In [12] a generalized derivative was defined in the following way (see also [11] and [20]).

Definition 1.4. Given a function φ : [0,+∞)→ R. Then the N-derivative of φ of order α is defined by

Nα
Tφ(t) = lim

ε→0

φ(t + εT(t, α)) − φ(t)
ε

,

for all t > 0, α ∈ (0, 1) being T(α, t) is some function. In some cases of T is defined using Ea,b(.) the classic definition
of Mittag–Leffler function with Re(a),Re(b) > 0. Also we consider Ea,b(.)k is the k-nth term of Ea,b(.).
If φ is α−differentiable in some (0, α), and lim

t→0+
Nα

Tφ(t) exists, then define Nα
Tφ(0) = lim

t→0+
Nα

Tφ(t), note that if φ is

differentiable, then Nα
Tφ(t) = T(t, α)φ′(t), where φ′(t) is the ordinary derivative.

Now, we give the definition of a general fractional integral right and left sided (see [8]). Throughout
the work we will consider that the integral operator kernel T defined below is an absolutely continuous
function.

Definition 1.5. Let I be an interval I ⊆ R, a, t ∈ I and α ∈ R. The integral operator JαT,a1+
, right and left, is defined

for every locally integrable function φ on I as

JαT,a+(φ)(t) =

∫ t

a1

φ(s)
T(t − s, α)

ds, t > a1 and JαT,b−(φ)(t) =

∫ a2

t

φ(s)
T(s − t, α)

ds, a2 > t.

Remark 1.6. It is easy to see that the case of the JαT operator defined above contains, as particular cases, the integral
operators obtained from conformable and nonconformable local derivatives. However, we will see that it contains
many of the known fractional integral operators.

Remark 1.7. We will also use the “central” integral operator defined by (see [8] and [20]):

JαT,a1
(φ)(a2) =

∫ a2

a1

φ(t)
T(t, α)

dt, a2 > a1.
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Additional properties of these operators can be consulted in [8],[14] and [20].
Let φ : I ⊂ R→ R be a convex function and a1, a2 ∈ I◦, a1 < a2. The following double inequality:

φ
(a1 + a2

2

)
≤

1
a2 − a1

∫ a2

a1

φ(x)dx ≤
φ(a1) + φ(a2)

2
(2)

it is called Hermite–Hadamard inequality for convex function.
In this work, using the integral operators previously defined in the Definition 1.5 we will obtain new

Hermite–Hadamard inequalities for h−convex functions, throughout the work we present convenient
remarks that show the strength and scope of the results obtained.

2. Main Results

Our first result is an extension of the Hermite–Hadamard Inequality.

Theorem 2.1. Let φ a continuous real function defined on some interval I, I ⊂ R, a1, a2 ∈ I◦, a1 < a2. Then we have
the following inequality:

Π

h
(

1
2

)φ (a1 + a2

2

)
≤

1
a2 − a1

[
JαT, a1+φ( a2) + JαT, a2−

φ( a1)
]
≤ (H(t) + H(1 − t))

(
φ(a1) + φ(a2)

)
, (3)

with Π =
∫ 1

0
dt

T(( a2− a1)t,α) ,H(t) =
∫ 1

0
h(t)dt

T(( a2− a1)t,α) and H(1 − t) =
∫ 1

0
h(1−t)dt

T(( a2− a1)t,α) .

Proof. For x = ta1 + (1 − t)a2, y = ta2 + (1 − t)a1 and t = 1
2 from (1), we obtain

φ
(a1 + a2

2

)
≤ h

(1
2

) (
φ(ta1 + (1 − t)a2) + φ(ta2 + (1 − t)a1)

)
.

Multiplying by 1
T(( a2− a1)t,α) and integrating from 0 to 1, and dividing both sides of the inequality by h(1/2),

we obtain:

φ
(a1 + a2

2

) ∫ 1

0

dt
T((a2 − a1)t, α)

≤ h
(1

2

) {∫ 1

0

φ(t a1 + (1 − t) a2)
T(( a2 − a1)t, α)

dt +

∫ 1

0

φ(t a1 + (1 − t) a2)
T(( a2 − a1)t, α)

dt
}
,

or

Π

h
(

1
2

)φ (a1 + a2

2

)
≤

∫ 1

0

φ(ta1 + (1 − t)a2)
T((a2 − a1)t, α)

dt +

∫ 1

0

φ(ta1 + (1 − t)a2)
T(( a2 − a1)t, α)

dt.

Making the change of variables u = ta1 + (1− t)a2 in the first integral and u = ta2 + (1− t)a1 in the second,
we easily obtain the left inequality (3).

To obtain the right inequality (3), from (1) we successively obtain
φ(ta1 + (1 − t)a2) ≤ h(t)φ(a1) + h(1 − t)φ(a2),

φ(ta2 + (1 − t)a1) ≤ h(t)φ(a2) + h(1 − t)φ(a1).
(4)

Adding term to term inequalities (4) and multiplying by 1
T((a2−a1)t,α) , and integrating, we obtain

1
a2 − a1

[
JαT, a1+φ(a2) + JαT, a2−

φ(a1)
]
≤ (H(t) + H(1 − t))

(
φ(a1) + φ(a2)

)
,

which is the required inequality. This completes the proof.
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Remark 2.2. Let’s take a look at some of the results covered by the previous result at T ≡ 1:
(i) we are dealing with the classical Riemann integral. Since Π ≡ 1 if we take h(t) = t, that is, for the case of a

classical convex function, we obtain the Hermite–Hadamard inequality ( 2).
(ii) If we consider the concept of s−convexity (in the second sense, see [3]), i.e., h(t) = ts, then from the previous

theorem we obtain Theorem 2.1 from [7].
(iii) If the function is h−convex, then this result covers Theorem 6 in [16].

Remark 2.3. The right member of the inequality (3) coincides with the left member of Theorem 2.1 in [17], if we
consider the kernel t1−α, that is, if we consider integrals fractional Riemann-Liouville type.

The following definition will be used in our next result (see [1]).

Definition 2.4. A function h : I→ R is a superadditive function if

h(x + y) ≥ h(x) + h(y), for all x, y ∈ I.

Theorem 2.5. Let φ : I ⊂ R→ R be a differentiable on I◦ and h−convex function such that φ ∈ L[a1, a2], a1, a2 ∈ I◦.
If h is a superadditive function, then we have the following inequality

1
a2 − a1

[
JαT, a1+φ(a2) + JαT, a2−

φ(a1)
]
≤ h(1)

(
φ(a1) + φ(a2)

)
Π. (5)

Proof. From (4) and using the superadditivity of h, we obtain the inequality:

φ(ta1 + (1 − t)a2) + φ(ta2 + (1 − t)a1) ≤ h(1)(φ(a1) + φ(a2)).

After multiplying by 1
T(( a2− a1)t,α) we have∫ 1

0

φ(ta1 + (1 − t)a2)
T((a2 − a1)t, α)

dt +

∫ 1

0

φ(ta2 + (1 − t)a1)
T((a2 − a1)t, α)

dt ≤ h(1)
(
φ( a1) + φ( a2)

) ∫ 1

0

dt
T((a2 − a1)t, α)

.

From where it is obtained without much difficulty, the necessary inequality.

Remark 2.6. If we use the kernel t1−α, instead of T((a2 − a1)t, α), then from this result we obtain the Theorem 2.4 of
[17] .

Our next result will be basic from now on. Let us denote Θ(u) =
∫ u

0
ds

T((b−a)s,α) , then true is next lemma:

Lemma 2.7. Let φ : I ⊂ R→ R be a differentiable on I◦ such that φ′ ∈ L[a1, a2], a1, a2 ∈ I◦. If φ is h−convex, then
the following inequality holds:

−Θ(1)(φ(a1) + φ(a2))+
1

a2 − a1

[
JαT,a1+φ(a2) + JαT,a2−

φ(a1)
]

(6)

= (a2 − a1)
∫ 1

0
[Θ(1 − t) −Θ(t)]φ′(ta2 + (1 − t)a1)dt.

Proof. Let’s put

I =

∫ 1

0
[Θ(1 − t) −Θ(t)]φ′(ta2 + (1 − t)a1)dt

=

∫ 1

0
Θ(1 − t)φ′(ta2 + (1 − t)a1)dt −

∫ 1

0
Θ(t)φ′(ta2 + (1 − t)a1)dt = I1 − I2.
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Integrating by parts I1 and with a change of variables we have

I1 = −
Θ(1)

a2 − a1
φ( a1) +

1

(a2 − a1)2

∫ a2

a1

φ(u)
T(a2 − u, α)

du.

Similarly for I2 we obtain

I2 =
Θ(1)

a2 − a1
φ( a2) −

1

( a2 − a1)2

∫ a2

a1

φ(u)
T( u − a1, α)

du.

By subtracting the second equality from the first, the required equality is obtained. The proof is com-
pleted.

Remark 2.8. If we take the kernel T ≡ 1, and Θ(s) = s, then this result is equivalent to Lemma 2.1 of [6].

Let’s call

LHH = −Θ(1)(φ(a1) + φ(a2)) +
1

a2 − a1

[
JαT, a1+(φ)(a2) + JαT, a2−

(φ)(a1)
]
.

Theorem 2.9. Let φ : I ⊂ R→ R be a differentiable on I◦such that φ′ ∈ L[a1, a2], a1, a2 ∈ I◦. If
∣∣∣φ′∣∣∣ is h−convex

then the following inequality

|LHH| ≤ (a2 − a1)
(
A

∣∣∣φ′(a2)
∣∣∣ + B

∣∣∣φ′(a1)
∣∣∣) (7)

holds, with A =
∫ 1

0 |Θ(1 − t) −Θ(t)|h(t)dt and B =
∫ 1

0 |Θ(1 − t) −Θ(t)|h(1 − t)dt.

Proof. From Lemma 2.7 and using the h−convexity of
∣∣∣φ′∣∣∣ we have

|LHH| ≤ (a2 − a1)
∫ 1

0
|Θ(1 − t) −Θ(t)|

∣∣∣φ′(ta2 + (1 − t)a1)
∣∣∣ dt

≤ (a2 − a1)
∫ 1

0
|Θ(1 − t) −Θ(t)|

[
h(t)

∣∣∣φ′(a2)
∣∣∣ + h(1 − t)

∣∣∣φ′(a1)
∣∣∣] dt.

Using the definition of A and B, it is very easy to conclude the proof.

Remark 2.10. Under the conditions of the Remark 2.8 , if we take h(t) = t, then Theorem 2.9 contains as a particular
case Theorem 2.2 of [6].

Theorem 2.11. Let φ : I ⊂ R→ R be a differentiable on I◦ such that φ′ ∈ L[a1, a2], a1, a2 ∈ I◦. If
∣∣∣φ′∣∣∣q is h−convex,

with q ≥ 1, then we have the following inequality

|LHH| ≤ (a2 − a1)C1− 1
q
(
A
∣∣∣φ′(a2)

∣∣∣q + B
∣∣∣φ′(a1)

∣∣∣q) 1
q (8)

with A and B as before and C =
∫ 1

0 |Θ(1 − t) −Θ(t)|dt.

Proof. From Lemma 2.7, the well-known power mean inequality and using the h−convexity of
∣∣∣φ′∣∣∣q we have

|LHH| ≤ (a2 − a1)
(∫ 1

0
|Θ(1 − t) −Θ(t)|dt

)1− 1
q
(∫ 1

0
|Θ(1 − t) −Θ(t)|

∣∣∣φ′(ta2 + (1 − t)a1)
∣∣∣qdt

) 1
q

≤ (a2 − a1)C1− 1
q

(∫ 1

0
|Θ(1 − t) −Θ(t)|

(
h(t)

∣∣∣φ′(a2)
∣∣∣q + h(1 − t)

∣∣∣φ′(a1)
∣∣∣q) dt

) 1
q

= (a2 − a1)C1− 1
q
(
A
∣∣∣φ′( a2)

∣∣∣q + B
∣∣∣φ′( a1)

∣∣∣q) 1
q .

We got the required inequality. The proof is complete.
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Corollary 2.12. Under the conditions of the Theorem 2.11, if we use the kernel t1−α, instead of T((a2 − a1)t, α) and
h(t) = ts, then from this result we obtain the Theorem 4 of [18]:∣∣∣∣∣φ(a1) + φ(a2)

2
−
αΓ(α)
a2 − a1

[
RL Jαa1+(φ)(a2) + RL Jαa2−

(φ)(a1)
]∣∣∣∣∣ (9)

≤
1

(a2 − a1)α

(
2α − 1

(α + 1) 2α−1

)1− 1
q [∣∣∣φ′(a2)

∣∣∣q +
∣∣∣φ′(a1)

∣∣∣q] 1
q

×

[
β 1

2
(s + 1, α + 1) − β 1

2
(α + 1, s + 1) +

2α+s
− 1

(α + s + 1)2α+s

]
,

where βx(u, v) is incomplete Euler Beta function and β 1
2
(u, v) =

∫ x

0 tu−1(1 − t)v−1dt, x ∈ (0, 1).

Proof. Since we use the kernel t1−α, then

Θ(t) =

∫ t

0

dξ
T((a2 − a1)ξ, α)

=

∫ t

0

dξ
[(a2 − a1)ξ]1−α =

1
α(a2 − a1)1−α tα and

Θ(1 − t) =
1

α(a2 − a1)1−α
(1 − t)α .

and it should be noted that

|Θ(1 − t) −Θ(t)| =


Θ(1 − t) −Θ(t), t ∈ [0, 1

2 ]

Θ(t) −Θ(1 − t) t ∈ [ 1
2 , 1]

.

With this in mind:

C =

∫ 1

0
|Θ(1 − t) −Θ(t)|dt =

∫ 1
2

0
[Θ(1 − t) −Θ(t)] dt +

∫ 1

1
2

[Θ(1 − t) −Θ(t)] dt

=
1

α(a2 − a1)1−α


∫ 1

2

0

[
(1 − t)α −tα

]
dt +

∫ 1

1
2

[
tα− (1 − t)α

]
dt

 =
2(1 − 2−α)

α(α + 1)(a2 − a1)1−α

and

A =

∫ 1

0
|Θ(1 − t) −Θ(t)|h(t)dt =

1
α(a2 − a1)1−α

∫ 1
2

0

[
(1 − t)α −tα

]
tsdt +

∫ 1

1
2

[
tα− (1 − t)α

]
tsdt


=

1
α(a2 − a1)1−α

[
β 1

2
(s + 1, α + 1) − β 1

2
(α + 1, s + 1) +

2α+s
− 1

(α + s + 1)2α+s

]
.

Similarly

B =

∫ 1

0
|Θ(1 − t) −Θ(t)|h(1 − t)dt

=
1

α(a2 − a1)1−α

[
β 1

2
(s + 1, α + 1) − β 1

2
(α + 1, s + 1) +

2α+s
− 1

(α + s + 1)2α+s

]
.

Thus, for the LHH, we can write:

|LHH| =
∣∣∣∣∣−Θ(1)(φ(a1) + φ(a2)) +

1
a2 − a1

[
JαT, a1+(φ)(a2) + JαT, a2−

(φ)(a1)
]∣∣∣∣∣ (10)

=

∣∣∣∣∣∣∣−
[
φ(a1) + φ(a2)

]
α(a2 − a1)1−α +

αΓ(α)
a2 − a1

[
RL Jαa1+(φ)(a2) +RL Jαa2−

(φ)(a1)
]∣∣∣∣∣∣∣ .
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Or

|LHH| ≤ (a2 − a1)C1− 1
q
[
A
∣∣∣φ′(a2)

∣∣∣q + B
∣∣∣φ′(a1)

∣∣∣q] 1
q (11)

≤ (a2 − a1)

 2
(
1 − 1

2α

)
α(α + 1)(a2 − a1)1−α


1− 1

q [
1

α(a2 − a1)1−α

(∣∣∣φ′(a2)
∣∣∣q +

∣∣∣φ′(a1)
∣∣∣q)] 1

q

×

[
β 1

2
(s + 1, α + 1) − β 1

2
(α + 1, s + 1) +

2α+s
− 1

(α + s + 1)2α+s

]
=

a2 − a1

α(a2 − a1)1−α

[
2α − 1

(α + 1) 2α−1

]1− 1
q [∣∣∣φ′(a2)

∣∣∣q +
∣∣∣φ′(a1)

∣∣∣q] 1
q

×

[
β 1

2
(s + 1, α + 1) − β 1

2
(α + 1, s + 1) +

2α+s
− 1

(α + s + 1)2α+s

]
.

Taking into account (10) and (11), we have∣∣∣∣∣− 1
α(a2 − a1)1−α

[
φ(a1) + φ(a2)

]
+
αΓ(α)
a2 − a1

[
RL Jαa1+(φ)(a2) +RL Jαa2−

(φ)(a1)
]∣∣∣∣∣

≤ (a2 − a1)
(

2α − 1
(α + 1) 2α−1

)1− 1
q [∣∣∣φ′(a2)

∣∣∣q +
∣∣∣φ′(a1)

∣∣∣q] 1
q

×

[
β 1

2
(s + 1, α + 1) − β 1

2
(α + 1, s + 1) +

2α+s
− 1

(α + s + 1)2α+s

]
.

or, multiplying the last inequality by the expression α(a2−a1)1−α

2 we get (9). Proof is completed.

This inequality was proved in [18] (Theorem 4). A variant of the result obtained in Theorem 2.11 is presented
below.

Theorem 2.13. Let φ : I ⊂ R→ R be a differentiable on I◦ such that φ′ ∈ L[a1, a2], a1, a2 ∈ I◦. If
∣∣∣φ′∣∣∣q is h−convex,

with q > 1, then we have the following inequality

|LHH| ≤ (a2 − a1)
(
D

1
p + E

1
p
)(∣∣∣φ′(a2)

∣∣∣q ∫ 1

0
h(t)dt +

∣∣∣φ′(a1)
∣∣∣q ∫ 1

0
h(1 − t)dt

) 1
q

(12)

with D =
∫ 1

0 Θp(1 − t)dt, E =
∫ 1

0 Θp(t)dt and 1
p + 1

q = 1.

Proof. From Lemma 2.7, using the Hölder inequality and the h−convexity of
∣∣∣φ′∣∣∣q we obtain

|LHH| ≤ (a2 − a1)
(∫ 1

0
Θ(1 − t)

∣∣∣φ′(ta2 + (1 − t)a1)
∣∣∣ dt +

∫ 1

0
Θ(t)

∣∣∣φ′(ta2 + (1 − t)a1)
∣∣∣ dt

)

≤ (a2 − a1)
(∫ 1

0
Θp(1 − t)dt

) 1
p
(∫ 1

0

∣∣∣φ′(ta2 + (1 − t)a1)
∣∣∣qdt

) 1
q

+ (a2 − a1)
(∫ 1

0
Θp(t)dt

) 1
p
(∫ 1

0

∣∣∣φ′(ta2 + (1 − t)a1)
∣∣∣qdt

) 1
q

= (a2 − a1)
(
D

1
p + E

1
p
)(∣∣∣φ′(a2)

∣∣∣q ∫ 1

0
h(t)dt +

∣∣∣φ′( a1)
∣∣∣q ∫ 1

0
h(1 − t)dt

) 1
q

.

Required inequality that completes the Theorem’s proof.

Remark 2.14. Under the conditions of the Remarks 2.10, the Theorem 2.3 of [6] is contained in this result.
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3. Conclusions

In our work, we have obtained different variants of the Hermite–Hadamard Inequality, in the context of
the generalized integral operators of the Definition 1.5. The results achieved contain, as a particular case,
several known from the literature.

On the other hand, the generalized integral operator used in this paper opens new directions of work,
so we can state, by way of illustration, the following results that can be obtained by following the ideas
presented. Defining the mapping L by L = 1

a2−a1

[
JαT, a1+

φ(a2) + JαT, a2−
φ(a1)

]
we can generalize the results

obtained in [4]. On the other hand, if instead of considering the Hermite–Hadamard Inequality, we
consider the Hermite–Hadamard–Fejér version, then we can extend the results of [2].
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[8] P. M. Guzmán, L. M. Lugo, J. E. Nápoles Valdés, M. Vivas, On a New Generalized Integral Operator and Certain Operating

Properties, Axioms 9(2) (2020), 69; doi:10.3390/axioms9020069
[9] R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order,Springer, Wien (1997)

223–276.
[10] S. Mubeen, G. M. Habibullah, k−fractional integrals and applications., Int. J. Contemp. Math. Sci. 7,(2012) 89–94
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