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Abstract. Let T (X) be the full transformation semigroup on a nonempty set X. For ∅ , Z ⊆ Y ⊆ X, let
T (X,Y,Z) = {α ∈ T (X) : Yα ⊆ Z}. It is not difficult to see that it is a generalized form of three well-known
semigroups. This paper obtains an isomorphism theorem of T (X,Y,Z). In addition, when X is finite and
Z ⊂ Y ⊂ X, the rank of the semigroup T (X,Y,Z) is calculated.

1. Introduction

Transformation semigroups are ubiquitous in the semigroup theory because of Cayley’s Theorem which
states that every semigroup is embedded in some transformation semigroup (see [1, Theorem 1.1.2]). It is
well known that rank is a crucia concept in the semigroup theory. As usual, the rank of a semigroup S is
the smallest number of elements required to generate S defined by rank(S) = min{|A| : A ⊆ S, 〈A〉 = S}.

For a nonempty set X, let T (X) be the full transformation semigroup on X that is, the semigroup under
composition of all maps from X into itself. We denote by PT (X) the monoid of all partial transformations
of X, by I(X) the symmetric inverse semigroup on X, i.e., the submonoid of PT (X) of all injective partial
transformations of X, and by S(X) the symmetric group on X, i.e., the subgroup of I(X) of all injective full
transformations (permutations) of X. When X is finite, we take X = {1, 2, · · · ,n} and write PT n, Tn, In, and
Sn instead of PT (X), T (X), I(X), and S(X), respectively. For n ≥ 3, it is well known that the rank of PT n
,Tn, In, and Sn are equal to 4, 3, 3, and 2, respectively. These are well known results, and they all have
found strong support. See [1, pp. 39, 41, and 211], for example.

On the other hand, Gomes and Howie proved that the rank of the semigroup of singular mappings
Sin1n = {α ∈ Tn : |Xα| ≤ n − 1} is equal to n(n − 1)/2 in [2]. This result was later generalized by Howie
and McFadden [3] who showed that the rank of the semigroup K (n, r) = {α ∈ Tn : |Xα| ≤ r} is equal to
S(n, r), the Stirling number of the second kind for 2 ≤ r ≤ n − 1. Recall that for 1 ≤ r ≤ n and n ∈ N+, the
Stirling number of the second kind S(n, r) is the number of r-partitions on a set of n elements, which may
be defined by the recurrence relation S(n, r) = S(n − 1, r − 1) + rS(n − 1, r) with S(n, 1) = S(n,n) = 1. In [4],
Garba considered the semigroup PT (n, r) = {α ∈ PT n : |Xα| ≤ r} and showed that, for 2 ≤ r ≤ n − 1, its
rank is equal to S(n + 1, r + 1), and showed that the rank of the semigroup I(n, r) = {α ∈ In : |Xα| ≤ r} for
3 ≤ r ≤ n − 1, is

(n
r
)

+ 1. Recall that the number of ways that r objects can be chosen from n distinct objects
written

(n
r
)

is given by
(n

r
)

= n!
(n−r)!r! .
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Given a nonempty subset Y of X, let

T (X,Y) = {α ∈ T (X) : Yα ⊆ Y} and T (X,Y) = {α ∈ T (X) : Xα ⊆ Y}.

Then T (X,Y) is a subsemigroup of T (X) and T (X,Y) is a subsemigroup of T (X,Y). In 1966, Magill [5]
introduced and studied the semigroupT (X,Y). In 1975, Symons [6] introduced the semigroupT (X,Y), and
also described all automorphisms of T (X,Y). The study of semigroups T (X,Y) and T (X,Y) [7–24] includes
the aspects of regularity and Green’s relations (see [7–9]), abundance and starred Green’s Relations (see
[10, 11]), natural partial order (see [11, 12]), congruence relation (see [13, 14]), (maximal) subsemigroup
with some properties (see [15–21]), and rank (see [22, 23]), etc.

In this paper, we consider the subsemigroup T (X,Y,Z) of T (X) defined by

T (X,Y,Z) = {α ∈ T (X) : Yα ⊆ Z}

where ∅ , Z ⊆ Y ⊆ X, and we call it the semigroup of transformations with restricted partial range on X.
Clearly, the semigroup T (X,Y,Z) is a generalization of semigroups T (X), T (X,Y), and T (X,Z), that is,
• if Z = Y, then T (X,Y,Z) = T (X,Y);
• if Y = X, then T (X,Y,Z) = T (X,Z);
• if Z = Y = X, then T (X,Y,Z) = T (X).
For the case Z = Y = X it is easy to see that rank(T (X,Y,Z)) = rank(T (X)).
For the case Z ⊂ Y = X. Fernandes and Sanwong [22, Theorem 2.3] presented the following result.

Lemma 1.1. [22, Theorem 2.3] Let |X| = n, |Z| = k and k < n. Then rank(T (X,Z)) = S(n, k).

For the case Z = Y ⊆ X. The author [23, Theorem 1] presented the following result.

Lemma 1.2. [23, Theorem 1] Let |X| = n, |Y| = m. Then

rank(T (X,Y)) =


1, if n = 1;
2, if (n,m) = (2, 1) or m = n = 2;
3, if (n,m) = (3, 1) or (n,m) = (3, 2) or m = n ≥ 3;
4, if n ≥ 4 and m = 1 or n ≥ 4 and m = n − 1;
5, if n ≥ 4 and 2 ≤ m ≤ n − 2.

The motivation of this study is to compute the rank of T (X,Y,Z) when X is finite and Z ⊂ Y ⊂ X.
Throughout this paper, we always assume that X is a chain with n (n ≥ 3) elements, say X = {1 < 2 <

· · · < n}. Also, we assume that ∅ , Z ⊂ Y ⊂ X. We write functions on the right; in particular, this means
that for a composition αβ, α is applied first. For any sets A and B, we denote by |A| the cardinality of A, and
write A \ B = {a ∈ A : a < B}.

2. Isomorphism of T (X, Y,Z)

In this section, we aim to prove an isomorphism theorem of T (X,Y,Z) when Z ⊂ Y ⊂ X.
Let S be a subsemigroup ofT (X). Then S∩H(X) (whereH(X) is the set of transformations whose image

has cardinality one: the constant functions) will be abbreviated toH(S). Symons [6, Theorem 1.1] proved
the following lemma.

Lemma 2.1. [6, Theorem 1.1] Let S,T are both subsemigroups of T (X) such thatH(S),H(T) , ∅. If φ : S→ T is
an isomorphism. ThenH(S)φ = H(T).

We can now present the main result of this section.

Theorem 2.2. Let Zi, Yi are both nonempty subset of X with Zi ⊂ Yi ⊂ X for i = 1, 2. Then T (X,Y1,Z1) �
T (X,Y2,Z2) if and only if |Y1| = |Y2| and |Z1| = |Z2|.
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Proof. Let T (X,Y1,Z1) � T (X,Y2,Z2) and let φ : T (X,Y1,Z1) → T (X,Y2,Z2) is an isomorphism. First ob-
serve thatT (X,Y1,Z1),T (X,Y2,Z2) are both subsemigroups ofT (X) andH(T (X,Y1,Z1)),H(T (X,Y2,Z2)) ,
∅. Using Lemma 2.1, it follows that H(T (X,Y1,Z1))φ = H(T (X,Y2,Z2)). Clearly, |H(T (X,Y1,Z1))| =
|H(T (X,Y2,Z2))| and |H(T (X,Yi,Zi))| = |Zi| for i = 1, 2. Hence |Z1| = |Z2|. It is easy to compute that
|T (X,Yi,Zi)| = |Zi|

|Yi | ·nn−|Yi | for i = 1, 2 (n = |X|). By hypothesis, we have |T (X,Y1,Z1)| = |T (X,Y2,Z2)| and so
|Z1|

|Y1 | · nn−|Y1 | = |Z2|
|Y2 | · nn−|Y2 |, which can be simplified to |Z1|

|Y1 |−|Y2 | = n|Y1 |−|Y2 | (by |Z1| = |Z2|). Since |Z1| < n.
It follows that |Y1| = |Y2|.

Conversely, let |Y1| = |Y2| and |Z1| = |Z2|. Since Z1 ⊂ Y1 ⊂ X (or Z2 ⊂ Y2 ⊂ X). Then there exist some
bijections

f : Z1 → Z2, 1 : Y1 \ Z1 → Y2 \ Z2 and h : X \ Y1 → X \ Y2.

For each α ∈ T (X,Y1,Z1), we define

xα =


x f−1α f , if x ∈ Z2;
x1−1α f , if x ∈ Y2 \ Z2;
xh−1α f , if x ∈ X \ Y2 and xh−1α ∈ Z1;
xh−1α1, if x ∈ X \ Y2 and xh−1α ∈ Y1 \ Z1;
xh−1αh, if x ∈ X \ Y2 and xh−1α ∈ X \ Y1.

It is easy to verify that α ∈ T (X,Y2,Z2). Define φ : T (X,Y1,Z1)→ T (X,Y2,Z2) by αφ = α (α ∈ T (X,Y1,Z1)).
Clearly, φ is well defined. Next, we verify that φ is a bijection. Let α, β ∈ T (X,Y1,Z1) such that α , β, then
x0α , x0β for some x0 ∈ X. To do this, we distinguish three cases:

Case 1: x0 ∈ Z1. Then x0 f ∈ Z2 and so (x0 f )α = x0 f f−1α f = x0α f , x0β f = x0 f f−1β f = (x0 f )β.
Case 2: x0 ∈ Y1 \ Z1. Then x01 ∈ Y2 \ Z2 and so (x01)α = x011

−1α f = x0α f , x0β f = x011
−1β f = (x01)β.

Case 3: x0 ∈ X \ Y1. Then x0h ∈ X \ Y2 and so

(x0h)α =



x0hh−1α f = x0α f , x0β f = x0hh−1β f = (x0h)β, if x0α, x0β ∈ Z1;
x0hh−1α f = x0α f , x0β1 = x0hh−1β1 = (x0h)β, if x0α ∈ Z1, x0β ∈ Y1 \ Z1;
x0hh−1α f = x0α f , x0βh = x0hh−1βh = (x0h)β, if x0α ∈ Z1, x0β ∈ X \ Y1;
x0hh−1α1 = x0α1 , x0β f = x0hh−1β f = (x0h)β, if x0α ∈ Y1 \ Z1, x0β ∈ Z1;
x0hh−1α1 = x0α1 , x0β1 = x0hh−1β1 = (x0h)β, if x0α, x0β ∈ Y1 \ Z1;
x0hh−1α1 = x0α1 , x0βh = x0hh−1βh = (x0h)β, if x0α ∈ Y1 \ Z1, x0β ∈ X \ Y1;
x0hh−1αh = x0αh , x0β f = x0hh−1β f = (x0h)β, if x0α ∈ X \ Y1, x0β ∈ Z1;
x0hh−1αh = x0αh , x0β1 = x0hh−1β1 = (x0h)β, if x0α ∈ X \ Y1, x0β ∈ Y1 \ Z1;
x0hh−1αh = x0αh , x0βh = x0hh−1βh = (x0h)β, if x0α, x0β ∈ X \ Y1.

Thus, we have α , β and so φ is one-to-one. Since |T (X,Yi,Zi)| = |Zi|
|Yi | · nn−|Yi | for i = 1, 2 and |Z1| = |Z2|,

|Y1| = |Y2|, it follows that |T (X,Y1,Z1)| = |T (X,Y2,Z2)|. Therefore, we obtain that φ is a bijection.
Finally, we verify thatφ is a morphism, that is, (αφ)(βφ) = (αβ)φ for allα, β ∈ T (X,Y1,Z1). We distinguish

five cases:
Case 1: x ∈ Z2. Then xα = x f−1α f ∈ Z2 and so x(αφ)(βφ) = xαβ = (xα) f−1β f = x f−1α f f−1β f = x f−1αβ f =

xαβ = x(αβ)φ.
Case 2: x ∈ Y2 \ Z2. Then xα = x1−1α f ∈ Z2 and so x(αφ)(βφ) = xαβ = (xα) f−1β f = x1−1α f f−1β f =

x1−1αβ f = xαβ = x(αβ)φ.
Case 3: x ∈ X \ Y2 and xh−1α ∈ Z1. Then xα = xh−1α f ∈ Z2, xh−1αβ ∈ Z1 and so x(αφ)(βφ) = xαβ =

(xα) f−1β f = xh−1α f f−1β f = xh−1αβ f = xαβ = x(αβ)φ.
Case 4: x ∈ X \ Y2 and xh−1α ∈ Y1 \ Z1. Then xα = xh−1α1 ∈ Y2 \ Z2, xh−1αβ ∈ Z1 and so x(αφ)(βφ) =

xαβ = (xα)1−1β f = xh−1α11−1β f = xh−1αβ f = xαβ = x(αβ)φ.
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Case 5: x ∈ X \ Y2 and xh−1α ∈ X \ Y1. Then xα = xh−1αh ∈ X \ Y2 and so

x(αφ)(βφ) = xαβ =


(xα)h−1β f = xh−1αhh−1β f = xh−1αβ f = xαβ = x(αβ)φ, if xh−1αβ ∈ Z1;
(xα)h−1β1 = xh−1αhh−1β1 = xh−1αβ1 = xαβ = x(αβ)φ, if xh−1αβ ∈ Y \ Z1;
(xα)h−1βh = xh−1αhh−1βh = xh−1αβh = xαβ = x(αβ)φ, if xh−1αβ ∈ X \ Y1.

In summary, φ : T (X,Y1,Z1)→ T (X,Y2,Z2) is an isomorphism. Therefore, it follows that T (X,Y1,Z1) �
T (X,Y2,Z2), as desired.

3. Rank of T (X, Y,Z)

For each p ∈ N+, we denote by Xp the set {1 < 2 < · · · < p}. If ∅ , Z ⊂ Y ⊂ X with |Y| = m, |Z| = k. By
Theorem 2.2, we haveT (X,Y,Z) � T (Xn,Xm,Xk). Based on that, we shall enough to consider the semigroup
T (Xn,Xm,Xk). For convenience, we will write Tn,m,k for the semigroup T (Xn,Xm,Xk), where k < m < n.

If α ∈ Tn,m,k, we will write im(α) for the image of α. The kernel of α is the equivalence ker(α) = {(x, y) ∈
Xn ×Xn : xα = yα}. From Fountain [25], on the semigroup S the relation L ∗ (respectively R∗) is defined by
the rule that (a, b) ∈ L ∗ (respectively R∗) if and only if the elements a, b are related by the Green’s relation
L (respectively R) in some oversemigroup of S. The intersection of the equivalences L ∗ and R∗ is denoted
by H ∗. Since Tn,m,k is a subsemigroup of Tn, the starred Green’s relations in Tn,m,k can be characterized as:
For α, β ∈ Tn,m,k,
• (α, β) ∈ L ∗ if and only if im(α) = im(β);
• (α, β) ∈ R∗ if and only if ker(α) = ker(β);
• (α, β) ∈H ∗ if and only if im(α) = im(β) and ker(α) = ker(β).

Moreover, we define a equivalence J ∗ by
• (α, β) ∈J ∗ if and only if |im(α)| = |im(β)|.
Then L ∗,R∗ ⊆ J ∗. Let α ∈ Tn,m,k. We denote by L∗α, R∗α, and H ∗α the L ∗-class, R∗-class, and H ∗-class

of α, respectively.
Let α ∈ Tn,m,k. From Xmα ⊆ Xk we obtain that im(α) = Xmα ∪ (Xn \ Xm)α ⊆ Xk ∪ (Xn \ Xm)α. Then

1 ≤ |im(α)| ≤ n −m + k. Thus Tn,m,k has n −m + k J ∗-classes, namely J ∗1,J
∗

2, · · ·,J
∗

n−m+k, where

J
∗

r = {α ∈ Tn,m,k : |im(α)| = r}

for 1 ≤ r ≤ n−m + k. If |im(α)| = r with 1 ≤ r ≤ n−m + k, then there exists s ∈ Xr such that α can be expressed
as

α =

[
Ai
ai

]s

1≤i≤r
(1)

where
• Aiα = ai for all 1 ≤ i ≤ r;
• {A1,A2, · · · ,Ar} is a r-partition of Xn such that for 1 ≤ j ≤ s, A j ∩Xm , ∅, and for l ≥ s + 1 , Al ∩Xm = ∅;

and
• a1, a2, · · · , ar are distinct elements of Xn such that for 1 ≤ j ≤ s, a j ∈ Xk.

Lemma 3.1. Let n −m + k ≥ 3. Then J ∗r ⊆ 〈J ∗r+1〉 for all 1 ≤ r ≤ n −m + k − 2.

Proof. Suppose first that 1 ≤ r ≤ n − m + k − 2 and α ∈ J ∗r . Then α can be expressed as (1). Recall that
im(α) ⊂ Xn, we can choose y0 ∈ Xn \ im(α). If j ≥ s + 1, we also choose b j ∈ A j. We distinguish two cases:

Case 1: s = k. By formula (1) we obtain that {a1, a2, · · · , as} = Xk. Note that α ∈ J ∗r where 1 ≤ r ≤
n −m + k − 2. Then there exist x0 ∈ Xn \ Xm, i ∈ Xr such that x0 ∈ Ai with |Ai| ≥ 2.
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(a) If 1 ≤ i ≤ s. Then define two mappings β : Xn → Xn and γ : Xn → Xn by

xβ =


l, if x ∈ Al for 1 ≤ l ≤ s, l , i;
i, if x ∈ Ai \ {x0};
s + 1, if x = x0;
bt, if x ∈ At for s + 1 ≤ t ≤ r.

xγ =


ax, if 1 ≤ x ≤ s;
ai, if s + 1 ≤ x ≤ m;
at, if x = bt for s + 1 ≤ t ≤ r;
y0, otherewise.

(2)

According to the given conditions, it is easy to see that Ai(βγ) = ai for all 1 ≤ i ≤ r. Then α = βγ. Next, we
verify that β, γ ∈ J ∗r . Note that y0γ−1 = Xn \ {1, · · · , s, s + 1, · · · ,m, bs+1, · · · , br}. Since 1 ≤ r ≤ n − m + k − 2
and s = k, we have |y0γ−1

| = n− (m + r− s) ≥ n−m− r + k ≥ n−m− (n−m + k − 2) + k = 2 and so y0γ−1 , ∅.
Clearly, im(β) = {1, · · · , s, s + 1, bs+1, · · · , br} and im(γ) = {a1, · · · , ar, y0}. Combining formula (1), it follows
that Xmβ,Xmγ ⊆ Xk and thus β, γ ∈ J ∗r .

(b) If s + 1 ≤ i ≤ r. Then define two mappings β : Xn → Xn and γ : Xn → Xn by

xβ =


l, if x ∈ Al for 1 ≤ l ≤ s;
x0, if x = x0;
bt, if x ∈ At for s + 1 ≤ t ≤ r, t , i;
bi ∈ Ai \ {x0}, if x ∈ Ai \ {x0}.

xγ =


ax, if 1 ≤ x ≤ s;
as, if s + 1 ≤ x ≤ m;
ai, if x = x0;
at, if x = bt for s + 1 ≤ t ≤ r;
y0, otherwise.

Case 2: s < k. By formula (1) we obtain that {a1, a2, · · · , as} ⊂ Xk. Then there exist x0 ∈ Xm, i ∈ Xs such
that x0 ∈ Ai with |Ai| ≥ 2.

(a) If im(α) ∩ Xk ⊂ Xk. Then we can take a0 ∈ Xk \ (im(α) ∩ Xk). Let β be defined as (2) and define a
mapping γ : Xn → Xn by

xγ =


ax, if 1 ≤ x ≤ s;
ai, if x = s + 1;
at, if x = bt for s + 1 ≤ t ≤ r;
a0, otherwise.

(b) If im(α)∩Xk = Xk. Then there exist k−s elements ai1 , · · · , aik−s ∈ {as+1, · · · , ar} such that {a1, · · · , as, ai1 , · · · ,
aik−s } = Xk. We define two mappings β : Xn → Xn and γ : Xn → Xn by

xβ =


l, if x ∈ Al for 1 ≤ l ≤ s, l , i;
i, if x ∈ Ai \ {x0};
s + 1, if x = x0;
s + p + 1, if x ∈ Aip for 1 ≤ p ≤ k − s;
bt, if x ∈ At for s + 1 ≤ t ≤ r, t < {i1, · · · , ik−s}.

xγ =


ax, if 1 ≤ x ≤ s;
ai, if x = s + 1 or k + 2 ≤ x ≤ m;
aip , if x = s + p + 1 for 1 ≤ p ≤ k − s;
at, if x = bt for s + 1 ≤ t ≤ r, t < {i1, · · · , ik−s};
y0, otherwise.

For both cases, similar to case 1 (a), it is easy to verify that β, γ ∈ J ∗r+1 and α = βγ. Hence,J ∗r ⊆ 〈J ∗r+1〉.

For k,m,n ∈N+ such that k < m < n, we define a mapping λ : Xn → Xn by

xλ =


k, if k + 1 ≤ x ≤ m;
n − 1, if x = n;
x, otherwise.

(3)

Now we state and prove the following lemma.
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Lemma 3.2. Let λ be defined as (3). Then the following statements hold:

(i) for n −m = 1, J ∗n−m+k−1 ⊆ 〈J
∗

n−m+k〉;

(ii) for n −m ≥ 2, J ∗n−m+k−1 ⊆ 〈J
∗

n−m+k ∪ {λ}〉.

Proof. Suppose first that α ∈ J ∗n−m+k−1. Then α can be expressed as (1) (Here, we take r = n−m + k− 1), that
is

α =

[
Ai
ai

]s

1≤i≤n−m+k−1
(4)

Clearly, im(α) ⊂ Xn, so we can choose y0 ∈ Xn \ im(α). If j ≥ s + 1, we also choose b j ∈ A j.
(i) Let n −m = 1. Then n −m + k − 1 = k in (4). We distinguish two cases:
Case 1 : s = k. Then im(α) = {a1, a2, · · · , as} = Xk and so there exists i ∈ Xs such that n ∈ Ai with |Ai| ≥ 2.

We define two mappings β : Xn → Xn and γ : Xn → Xn by

xβ =


l, if x ∈ Al for 1 ≤ l ≤ s, l , i;
i, if x ∈ Ai \ {n};

m, if x = n.
xγ =


ax, if 1 ≤ x ≤ s;
ai, if s + 1 ≤ x ≤ m;
y0, if x = n.

Case 2 : s = k − 1. Then Ak = As+1 = {n} and so there exist x0 ∈ Xm, i ∈ Xs such that x0 ∈ Ai with |Ai| ≥ 2.
(a) If ak ∈ Xk. Then im(α) = Xk. We define two mappings β : Xn → Xn and γ : Xn → Xn by

xβ =


l, if x ∈ Al for 1 ≤ l ≤ s, l , i;
i, if x ∈ Ai \ {x0};
s + 1, if x = x0;
s + 2, if x = n.

xγ =


ax, if 1 ≤ x ≤ s;
ai, if x = s + 1;
ak, if s + 2 ≤ x ≤ m;
y0, if x = n.

.

(b) If ak < Xk. We may take a0 ∈ Xk \ im(α) and define two mappings β : Xn → Xn and γ : Xn → Xn by

xβ =


l, if x ∈ Al for 1 ≤ l ≤ s, l , i;
i, if x ∈ Ai \ {x0};
s + 1, if x = x0;
n, if x = n.

xγ =


ax, if 1 ≤ x ≤ s;
ai, if x = s + 1;
ak, if x = n;
a0, otherwise.

For both cases, it is easy to verify that β, γ ∈ J ∗n−m+k, α = βγ, and this is clearly equivalent to α ∈ 〈J ∗n−m+k〉,
establishing (i).

(ii) To show that J ∗n−m+k−1 ⊆ 〈J
∗

n−m+k ∪ {λ}〉 for n −m ≥ 2. We distinguish two cases:
Case 1 : s = k. Then {a1, a2, · · · , as} = Xk and there exist x0 ∈ Xn \ Xm, i ∈ Xn−m+k−1 such that x0 ∈ Ai with

|Ai| ≥ 2.
(a) If 1 ≤ i ≤ s. Then β, γ be defined as (2) (Here, we take r = n − m + k − 1). Clearly, α = βγ and

β, γ ∈ J ∗n−m+k.
(b) If s + 1 ≤ i ≤ n −m + k − 1. We define two mappings β : Xn → Xn and γ : Xn → Xn by

xβ =


l, if x ∈ Al for 1 ≤ l ≤ s;
n, if x = x0;
n − 1, if x ∈ Ai \ {x0};
m + t − k, if x ∈ At for s + 1 ≤ t ≤ i − 1;
m + p − k − 1, if x ∈ Ap for i + 1 ≤ p ≤ n −m + k − 1.

xγ =



ax, if 1 ≤ x ≤ s;
as, if s + 1 ≤ x ≤ m;
at, if x = m + t − k for s + 1 ≤ t ≤ i − 1;
ap, if x = m + p − k − 1 for i + 1 ≤ p ≤ n −m + k − 1;
ai, if x = n − 1;
y0, if x = n.
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Clearly, α = βλγ and β, γ ∈ J ∗n−m+k
Case 2 : s = k − 1. Using a similar proof of case 2 of Lemma 3.1, α = βγ and β, γ ∈ J ∗n−m+k
For both cases, α ∈ 〈J ∗n−m+k ∪ {λ}〉, giving (ii)

Using Lemma 3.1 and Lemma 3.2, we have the following corollary:

Corollary 3.3. Let λ be defined as (3). Then the following statements hold:

(i) for n −m = 1, Tn,m,k = 〈J ∗n−m+k〉.

(ii) for n −m ≥ 2, Tn,m,k = 〈J ∗n−m+k ∪ {λ}〉.

For k,m,n ∈N+ such that k < m < n, we define a mapping ε : Xn → Xn by

xε =

{
x, if 1 ≤ x ≤ k or m + 1 ≤ x ≤ n;
k, if k + 1 ≤ x ≤ m. (5)

Then ε ∈ J ∗n−m+k and

H
∗

ε =

{(
{1} · · · {k − 1} Xm \ Xk−1 {m + 1} · · · {n}
1σ · · · (k − 1)σ kσ (m + 1)ρ · · · nρ

)
: σ ∈ S(Xk), ρ ∈ S(Xn \ Xm)

}
(6)

is a group H ∗-class containing ε. Clearly,H ∗ε � S(Xk) × S(Xn \ Xm).
The following lemma was proved by Toker and Ayık [26, Lemma 3].

Lemma 3.4. [26, Lemma 3] Let p, q ∈N+. Then

rank(S(Xp) × S(Xq)) =

{
1, if (p, q) = (1, 1), (1, 2) or (2, 1);
2, otherwise.

If (k,n −m) = (1, 1), (1, 2) or (2, 1). We know from Lemma 3.4 that there exists θn,m,k ∈ H
∗
ε such that

H
∗

ε = 〈{θn,m,k}〉. (7)

Otherwise there exist two elements υn,m,k, υ′n,m,k ∈ H ∗ε such that

H
∗

ε = 〈{υn,m,k, υ′n,m,k}〉. (8)

Obviously, there are σ1, σ2 ∈ S(Xk), ρ1, ρ2 ∈ S(Xn \ Xm) such that υn,m,k, υ′n,m,k are expressed respectively as

υn,m,k =

(
{1} · · · {k − 1} Xm \ Xk−1 {m + 1} · · · {n}
1σ1 · · · (k − 1)σ1 kσ1 (m + 1)ρ1 · · · nρ1

)
(9)

υ′n,m,k =

(
{1} · · · {k − 1} Xm \ Xk−1 {m + 1} · · · {n}
1σ2 · · · (k − 1)σ2 kσ2 (m + 1)ρ2 · · · nρ2

)
(10)

We write

τn,m,k =

(
{1} ∪ (Xm \ Xk) {2} · · · {k} {m + 1} · · · {n}

1σ−1
1 σ2 2σ−1

1 σ2 · · · kσ−1
1 σ2 (m + 1)ρ−1

1 ρ2 · · · nρ−1
1 ρ2

)
(11)

Clearly, υ′n,m,k = υn,m,kτn,m,k and τn,m,k ∈ L
∗
ε. By formula (8) we get that

H
∗

ε ⊆ 〈{υn,m,k, τn,m,k}〉. (12)

Let ε be defined as (5), we denote by L the set of a single arbitrary element from each H ∗-class contained
in L∗ε. In addition, we denote by R the set of a single arbitrary element from each H ∗-class contained in
R
∗
ε \ H

∗
ε . In fact,

• L ⊆ L∗ε, and for all α ∈ L∗ε, the intersection of L andH ∗α has exactly one element;
• R ⊆ R∗ε \ H

∗
ε , and for all β ∈ R∗ε \ H ∗ε , the intersection of R andH ∗β has exactly one element.



J. Jin / Filomat 35:14 (2021), 4925–4936 4932

Lemma 3.5. LetH ∗ε be defined as (6). Then the following statements hold:

(i)H ∗α ⊆ αH ∗ε for all α ∈ L.

(ii)H ∗β ⊆ H
∗
εβ for all β ∈ R.

Proof. Let α ∈ L. From definition of L we know that α ∈ L∗ε and so im(α) = im(ε). Then α can be expressed
as

α =

(
A1 · · · Ak {m + 1} · · · {n}
1σ · · · kσ (m + 1)ρ · · · nρ

)
where {A1, · · · ,Ak} is a k-partition of Xm, σ ∈ S(Xk) and ρ ∈ S(Xn \ Xm). For each γ ∈ H ∗α, there exist
φ ∈ S(Xk), ϕ ∈ S(Xn \ Xm) such that γ can be expressed as

γ =

(
A1 · · · Ak {m + 1} · · · {n}
1φ · · · kφ (m + 1)ϕ · · · nϕ

)
.

Let

ζ =

(
{1} · · · Xm \ Xk−1 {m + 1} · · · {n}

1σ−1φ · · · kσ−1φ (m + 1)ρ−1ϕ · · · nρ−1ϕ

)
.

Clearly, γ = αζ and ζ ∈ H ∗ε . It is immediate that γ ∈ αH ∗ε and so H ∗α ⊆ αH ∗ε as required. (ii) follows in
similar way.

LetH ∗ε , θn,m,k, υn,m,k, υ′n,m,k, τn,m,k be respectively defined as (6), (7), (9), (10), (11), and let

Θn,m,k =


([L ∪R] \ H ∗ε) ∪ {θn,m,k}, if (k,n −m) = (1, 1), (1, 2) or (2, 1);
([L ∪R] \ H ∗ε) ∪ {υn,m,k, υ′n,m,k}, if k = 1 and n −m ≥ 3;
([L ∪R] \ [H ∗ε ∪H ∗τn,m,k

]) ∪ {υn,m,k, τn,m,k}, otherwise.
(13)

Using formulas (7), (8), (12), and Lemma 3.5, we have the following corollary.

Corollary 3.6. L∗ε ∪ R∗ε ⊆ 〈Θn,m,k〉.

Lemma 3.7. Let Θn,m,k be defined as (13). Then J ∗n−m+k ⊆ 〈Θn,m,k〉.

Proof. For each α ∈ J ∗n−m+k, there exist a k-partition {A1, · · · ,Ak} of Xm, a subset {a1, · · · , an−m} of Xn \ Xk and
δ ∈ S(Xk) such that α can be expressed as

α =

(
A1 · · · Ak {m + 1} · · · {n}
1δ · · · kδ a1 · · · an−m

)
.

Let

β =

(
A1 · · · Ak {m + 1} · · · {n}
1 · · · k m + 1 · · · n

)
, γ =

(
{1} · · · Xm \ Xk−1 {m + 1} · · · {n}
1δ · · · kδ a1 · · · an−m

)
.

Clearly, β ∈ L∗ε, γ ∈ R∗ε, where ε be defined as (5). It is easy to versify that α = βγ. From Corollary 3.6, we
have β, γ ∈ 〈Θn,m,k〉 and thus α ∈ 〈Θn,m,k〉. Therefore, J ∗n−m+k ⊆ 〈Θn,m,k〉, as required.

By Lemma 3.7 and Corollary 3.3, we have the following corollary.

Corollary 3.8. Let λ, Θn,m,k be defined as (3), (13), respectively. Then the following statements hold:

(i) for n −m = 1, Tn,m,k = 〈Θn,m,k〉.

(ii) for n −m ≥ 2, Tn,m,k = 〈Θn,m,k ∪ {λ}〉.
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Recall that
• if (k,n −m) = (1, 1), (1, 2) or (2, 1), θn,m,k ∈ H

∗
ε ;

• if k = 1 and n −m ≥ 3, υn,m,k, υ′n,m,k ∈ H ∗ε and υn,m,k , υ′n,m,k;
• otherwise υn,m,k ∈ H

∗
ε and τn,m,k ∈ L

∗
ε \ H

∗
ε .

By definitions of L and R, we have L ∩ R = ∅, |L ∩ H ∗ε | = 1 and R ∩ H ∗ε = ∅. It is also easy to show
that |L| = S(m, k) (recall that S(m, k) is the Stirling number of the second kind) and |R| =

(n−k
n−m

)
− 1. Thus

|L ∪R| = S(m, k) +
(n−k

n−m
)
− 1. Combining formula (13), we have

|Θn,m,k| =

{
|L ∪R| + 1 =

(n−1
n−m

)
+ 1, if k = 1 and n −m ≥ 3;

|L ∪R| = S(m, k) +
(n−k

n−m
)
− 1, otherwise.

Using Corollary 3.8, we obtain the following corollary.

Corollary 3.9.

rank(Tn,m,k) ≤


S(m, k) + n − k − 1, if n −m = 1;(n−1

n−m
)

+ 2, if k = 1 and n −m ≥ 3;
S(m, k) +

(n−k
n−m

)
, otherwise.

Let A is a generating set of Tn,m,k, and let α ∈ J ∗n−m+k. Then there are α1, · · · , αs ∈ A (s ≥ 2) such that

α = α1α2 · · ·αs. (14)

Then we can claim that
• for all i, αi ∈ J

∗

n−m+k (if not, there exists j such that α j < J ∗n−m+k, then |im(α j)| < n − m + k and so
|im(α)| = |im(α1α2 · · ·αs)| < n −m + k, contradicting the fact that α ∈ J ∗n−m+k);
• ker(α) = ker(α1) (By ker(α1) ⊆ ker(α1α2 · · ·αs) = ker(α) and |im(α1)| = |im(α)|);
• im(α) = im(αs) (By im(α) = im(α1α2 · · ·αs) ⊆ im(αs) and |im(αs)| = |im(α)|).
Hence, we proved the following:

Lemma 3.10. Let A is a generating set of Tn,m,k, and let α ∈ J ∗n−m+k. Then there are α1, · · · , αs ∈ A (s ≥ 2) such
that α = α1α2 · · ·αs and the following statements hold:

(i) for all i, αi ∈ J
∗

n−m+k.

(ii) ker(α) = ker(α1).

(iii) im(α) = im(αs).

Lemma 3.11. Let A is a generating set of Tn,m,k, and let α ∈ J ∗n−m+k such that im(α) = Xk ∪ (Xn \ Xm). Then
A ∩H ∗α , ∅.

Proof. Note that im(α) = Xk ∪ (Xn \ Xm) and Xmα ⊆ Xk. Then Xmα = Xk and (Xn \ Xm)α = Xn \ Xm.
Since A is a generating set of Tn,m,k, there are α1, · · · , αs ∈ A (s ≥ 2) such that formula (14) holds. From
Lemma 3.10 we obtain that ker(α) = ker(α1). In fact, im(α) = im(α1) (if not, there exists a ∈ im(α1) such
that a < im(α) = Xk ∪ (Xn \ Xm). Then a ∈ Xm \ Xk and so there exists a′ ∈ Xn \ Xm such that a′α1 = a.
Note that Xmαi ⊆ Xk for all i. Thus, a′α = a′α1α2 · · ·αs = aα2 · · ·αs ∈ Xk, this contradicts the fact that
(Xn \ Xm)α = Xn \ Xm). Then α1 ∈ H

∗
α. Note that α1 ∈ A. Hence, A ∩H ∗α , ∅ as required.

Lemma 3.12. Let k = 1, n −m ≥ 3 and let A is a generating set of Tn,m,k. Then |A ∩H ∗ε | ≥ 2 whereH ∗ε be defined
as (5).

Proof. From formula (5) we know that im(ε) = Xk ∪ (Xn \Xm). By Lemma 3.11, we have A∩H ∗ε , ∅, in other
words |A ∩H ∗ε | ≥ 1.
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To show that |A ∩H ∗ε | ≥ 2. Assume that |A ∩H ∗ε | = 1. Then there exists an element β of Tn,m,k such that
A ∩H ∗ε = {β}. By formula (6), there exists ρ1 ∈ S(Xn \ Xm) such that

β =

(
Xm {m + 1} · · · {n}
1 (m + 1)ρ1 · · · nρ1

)
For k = 1, n − m ≥ 3, from Lemma 3.4 we know that 〈A ∩ H ∗ε〉 = 〈{β}〉 ⊂ H ∗ε if β is unique element of A.
Then 〈A〉 , Tn,m,k, contradicting the hypothesis of the lemma. Now, let α ∈ H ∗ε . Since A is a generating set
of Tn,m,k, there are α1, · · · , αs ∈ A (s ≥ 2) such that formula (14) holds. We can assert that, for all i, αi ∈ H

∗
ε

(if not, there exists j such that α j < H ∗ε , from Lemma 3.10 we know that α j ∈ J
∗

n−m+k. Then there exist some
distinct elements a1, · · · , an−m ∈ Xn \ Xk with {a1, · · · , an−m} , Xn \ Xm such that

α j =

(
Xm {m + 1} · · · {n}
1 a1 · · · an−m

)
Clearly, if j = s, then, by Lemma 3.10, {1} ∪ (Xn \ Xm) = im(α) = im(αs) = im(α j) = {1, a1, · · · , an−m}. This
is a contradiction; otherwise, from {a1, · · · , an−m} , Xn \ Xm we know that there exists l ∈ {m + 1, · · · ,n}
such that al ∈ Xm. Then (Xm ∪ {l})α jα j+1 = {1, al}α j+1 = {1} and so |im(α jα j+1)| < n − m + k. Hence |im(β)| =
|im(α1α2 · · ·αs)| < n − m + k. This is also a contradiction). Since A ∩ H ∗ε = {β}, we have α1, · · · , αs ∈ 〈{β}〉.
It is immediate that α ∈ 〈{β}〉 ⊂ H ∗ε and so H ∗ε \ 〈{β}〉 cannot be generated by the set A, contradicting the
hypothesis of the lemma.

For each κ ∈ J ∗n−m+k, let

L
∗E
κ = {β ∈ L∗κ : (∀i, j ∈ Xk, i , j) iβ , jβ}. (15)

Lemma 3.13. Let A is a generating set of Tn,m,k, and let α ∈ J ∗n−m+k such that im(α) , Xk ∪ (Xn \ Xm). Then
A ∩ L∗Eκ , ∅.

Proof. Let β ∈ L∗Eκ . By (15), iβ , jβ for all i, j ∈ Xk (i , j). Observe that β ∈ L∗α and im(α) , Xk ∪ (Xn \ Xm).
Then im(β) , Xk ∪ (Xn \ Xm) and so there exist a k-partition {B1, · · · ,Bk} (i ∈ Bi, i = 1, · · · , k) of Xm, (n − m)-
element subset {a1, · · · , an−m} ({a1, · · · , an−m} , Xn \Xm) of Xn \Xk and σ ∈ S(Xk) such that β can be expressed
as

β =

(
B1 · · · Bk {m + 1} · · · {n}
1δ · · · kδ a1 · · · an−m

)
.

Since A is a generating set of Tn,m,k, there are β1, · · · , βs ∈ A (s ≥ 2) such that β = β1β2 · · · βs. By
Lemma 3.10, im(βs) = im(β). Then there exists a k-partition {C1,C2, · · · ,Ck} of Xm such that Xn/ker(βs) =
{C1,C2, · · · ,Ck, {m + 1}, · · · , {n}}. Now, we assert that there exists ρ ∈ S(Xk) such that iρ ∈ Ci where
i = 1, · · · , k (if not, there are p, q, j ∈ Xk (p , q) such that p, q ∈ C j. Clearly, p, q ∈ im(βs−1) and so
|im(β)| = |im(β1β2 · · · βs)| < n − m + k. This is a contradiction). Thus, βs ∈ L

∗E
κ . However, βs ∈ A. Therefore

A ∩ L∗Eκ , ∅, as required.

Lemma 3.14. Let n−m ≥ 2, and letα ∈ J ∗n−m+k−1 such that Xmα = Xk and (Xn\Xm)α∩Xk = ∅. Thenα < 〈J ∗n−m+k〉.

Proof. Assume that α ∈ 〈J ∗n−m+k〉. Then there are α1, · · · , αs ∈ J
∗

n−m+k (s ≥ 2) such that formula (14) holds.
We can assert that (Xn \ Xm)αi = Xn \ Xm for all 1 ≤ i ≤ s − 1 (if not, there exists 1 ≤ j ≤ s − 1 such
that (Xn \ Xm)α j , (Xn \ Xm), that is, there exists x0 ∈ Xn \ Xm such that x0α j ∈ Xm. (a) If j = 1. Then
x0α = x0α1 · · ·αs ∈ Xmα2 · · ·αs ⊆ Xk and so contradicting the fact that (Xn \ Xm)α ∩ Xk = ∅; (b) If j = 2. By
(a), we have (Xn \ Xm)α = (Xn \ Xm)α1 · · ·αs = (Xn \ Xm)α2 · · ·αs. However, x0α2 · · ·αs ∈ Xk, this contradicts
the fact that (Xn \ Xm)α ∩ Xk = ∅; Introduce contradictions in this way). By αs ∈ J

∗

n−m+k, there exists a
(n − m)-element subset V of Xn \ Xk such that (Xn \ Xm)α = (Xn \ Xm)α1 · · ·αs = (Xn \ Xm)αs = V. From
Xmα = Xk, it follows that α ∈ J ∗n−m+k, contradicting the fact that α ∈ J ∗n−m+k−1.
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Theorem 3.15. Let |X| = n, |Y| = m and |Z| = k such that k < m < n. Then

rank(T (X,Y,Z)) =


S(m, k) + n − k − 1, if n −m = 1;(n−1

n−m
)

+ 2, if k = 1 and n −m ≥ 3;
S(m, k) +

(n−k
n−m

)
, otherwise.

Proof. Since Theorem 2.2 and Corollary 3.9, we only need to prove that

|A| ≥


S(m, k) + n − k − 1, if n −m = 1;(n−1

n−m
)

+ 2, if k = 1 and n −m ≥ 3;
S(m, k) +

(n−k
n−m

)
, if (k,n −m) = (1, 2) or k ≥ 2 and n −m ≥ 2.

for any generating set A of Tn,m,k. Let

Σ = {H ∗α : α ∈ J ∗n−m+k, im(α) = Xk ∪ (Xn \ Xm)}, Λ = {L∗Eβ : β ∈ J ∗n−m+k, im(β) , Xk ∪ (Xn \ Xm)}.

With above notation, we have the following simple observation:

|Σ| = |L| = S(m, k), |Λ| = |R| =
(

n − k
n −m

)
− 1 and (

⋃
P∈Σ

P) ∩ (
⋃
Q∈Λ

Q) = ∅ (16)

We distinguish three cases:
Case 1 : n−m = 1. Combining Lemma 3.11, Lemma 3.13 and formula (16), we have |A| ≥ S(m, k)+n−k−1.
Case 2 : k = 1 and n −m ≥ 3. Combining Lemma 3.12, Lemma 3.13 and formula (16), |A| ≥

(n−1
n−m

)
+ 1. In

fact, |A| ≥
(n−1

n−m
)
+ 2 (if not, A ⊆ J ∗n−m+k. By Lemma 3.14, α < 〈J ∗n−m+k〉where α be defined as in Lemma 3.14.

Hence, α < 〈A〉, contradicting the fact that A is a generating set of Tn,m,k).
Case 3 : (k,n−m) = (1, 2) or k ≥ 2 and n−m ≥ 2. Combining Lemma 3.11, Lemma 3.13 and formula (16),

|A| ≥ S(m, k) +
(n−k

n−m
)
− 1. Using a similar proof of case 2, |A| ≥ S(m, k) +

(n−k
n−m

)
.
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