

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the Rank of Semigroup of Transformations with Restricted Partial Range

Jiulin Jina

^a School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China

Abstract. Let $\mathcal{T}(X)$ be the full transformation semigroup on a nonempty set X. For $\emptyset \neq Z \subseteq Y \subseteq X$, let $\mathcal{T}(X,Y,Z) = \{\alpha \in \mathcal{T}(X) : Y\alpha \subseteq Z\}$. It is not difficult to see that it is a generalized form of three well-known semigroups. This paper obtains an isomorphism theorem of $\mathcal{T}(X,Y,Z)$. In addition, when X is finite and $Z \subset Y \subset X$, the rank of the semigroup $\mathcal{T}(X,Y,Z)$ is calculated.

1. Introduction

Transformation semigroups are ubiquitous in the semigroup theory because of Cayley's Theorem which states that every semigroup is embedded in some transformation semigroup (see [1, Theorem 1.1.2]). It is well known that rank is a crucia concept in the semigroup theory. As usual, the rank of a semigroup S is the smallest number of elements required to generate S defined by $\operatorname{rank}(S) = \min\{|A| : A \subseteq S, \langle A \rangle = S\}$.

For a nonempty set X, let $\mathcal{T}(X)$ be the full transformation semigroup on X that is, the semigroup under composition of all maps from X into itself. We denote by $\mathcal{PT}(X)$ the monoid of all partial transformations of X, by I(X) the symmetric inverse semigroup on X, i.e., the submonoid of $\mathcal{PT}(X)$ of all injective partial transformations of X, and by S(X) the symmetric group on X, i.e., the subgroup of I(X) of all injective full transformations (permutations) of X. When X is finite, we take $X = \{1, 2, \dots, n\}$ and write \mathcal{PT}_n , \mathcal{T}_n , I_n , and S_n instead of $\mathcal{PT}(X)$, $\mathcal{T}(X)$, I(X), and S(X), respectively. For $n \geq 3$, it is well known that the rank of \mathcal{PT}_n , \mathcal{T}_n , I_n , and S_n are equal to 4, 3, 3, and 2, respectively. These are well known results, and they all have found strong support. See [1, pp. 39, 41, and 211], for example.

On the other hand, Gomes and Howie proved that the rank of the semigroup of singular mappings $Sing_n = \{\alpha \in \mathcal{T}_n : |X\alpha| \le n-1\}$ is equal to n(n-1)/2 in [2]. This result was later generalized by Howie and McFadden [3] who showed that the rank of the semigroup $\mathcal{K}(n,r) = \{\alpha \in \mathcal{T}_n : |X\alpha| \le r\}$ is equal to S(n,r), the Stirling number of the second kind for $2 \le r \le n-1$. Recall that for $1 \le r \le n$ and $n \in \mathbb{N}^+$, the Stirling number of the second kind S(n,r) is the number of r-partitions on a set of n elements, which may be defined by the recurrence relation S(n,r) = S(n-1,r-1) + rS(n-1,r) with S(n,1) = S(n,n) = 1. In [4], Garba considered the semigroup $\mathcal{PT}(n,r) = \{\alpha \in \mathcal{PT}_n : |X\alpha| \le r\}$ and showed that, for $2 \le r \le n-1$, its rank is equal to S(n+1,r+1), and showed that the rank of the semigroup $I(n,r) = \{\alpha \in I_n : |X\alpha| \le r\}$ for $1 \le r \le n-1$, is $n \le r \le n-1$, is $n \le r \le n-1$. Recall that the number of ways that $n \ge n-1$ objects can be chosen from $n \le n-1$.

2020 Mathematics Subject Classification. Primary 20M20

Keywords. transformation semigroup, rank, restricted range, isomorphism theorem.

Received: 10 December 2020; Revised: 22 March 2021; Accepted: 09 April 2021

Communicated by Dijana Mosić

Email address: JLJIN@gznu.edu.cn (Jiulin Jin)

Given a nonempty subset Y of X, let

$$\overline{\mathcal{T}}(X,Y) = \{ \alpha \in \mathcal{T}(X) : Y\alpha \subseteq Y \} \text{ and } \mathcal{T}(X,Y) = \{ \alpha \in \mathcal{T}(X) : X\alpha \subseteq Y \}.$$

Then $\overline{\mathcal{T}}(X,Y)$ is a subsemigroup of $\mathcal{T}(X)$ and $\mathcal{T}(X,Y)$ is a subsemigroup of $\overline{\mathcal{T}}(X,Y)$. In 1966, Magill [5] introduced and studied the semigroup $\overline{\mathcal{T}}(X,Y)$. In 1975, Symons [6] introduced the semigroup $\mathcal{T}(X,Y)$, and also described all automorphisms of $\mathcal{T}(X,Y)$. The study of semigroups $\overline{\mathcal{T}}(X,Y)$ and $\mathcal{T}(X,Y)$ [7–24] includes the aspects of regularity and Green's relations (see [7–9]), abundance and starred Green's Relations (see [10, 11]), natural partial order (see [11, 12]), congruence relation (see [13, 14]), (maximal) subsemigroup with some properties (see [15–21]), and rank (see [22, 23]), etc.

In this paper, we consider the subsemigroup $\mathcal{T}(X, Y, Z)$ of $\mathcal{T}(X)$ defined by

$$\mathcal{T}(X,Y,Z) = \{\alpha \in \mathcal{T}(X) : Y\alpha \subseteq Z\}$$

where $\emptyset \neq Z \subseteq Y \subseteq X$, and we call it the semigroup of transformations with restricted partial range on X. Clearly, the semigroup $\mathcal{T}(X,Y,Z)$ is a generalization of semigroups $\mathcal{T}(X)$, $\overline{\mathcal{T}}(X,Y)$, and $\mathcal{T}(X,Z)$, that is,

- if Z = Y, then $\mathcal{T}(X, Y, Z) = \overline{\mathcal{T}}(X, Y)$;
- if Y = X, then $\mathcal{T}(X, Y, Z) = \mathcal{T}(X, Z)$;
- if Z = Y = X, then $\mathcal{T}(X, Y, Z) = \mathcal{T}(X)$.

For the case Z = Y = X it is easy to see that $rank(\mathcal{T}(X, Y, Z)) = rank(\mathcal{T}(X))$.

For the case $Z \subset Y = X$. Fernandes and Sanwong [22, Theorem 2.3] presented the following result.

Lemma 1.1. [22, Theorem 2.3] Let |X| = n, |Z| = k and k < n. Then $rank(\mathcal{T}(X, Z)) = S(n, k)$.

For the case $Z = Y \subseteq X$. The author [23, Theorem 1] presented the following result.

Lemma 1.2. [23, Theorem 1] Let |X| = n, |Y| = m. Then

$$\operatorname{rank}(\overline{\mathcal{T}}(X,Y)) = \begin{cases} 1, & \text{if } n = 1; \\ 2, & \text{if } (n,m) = (2,1) \text{ or } m = n = 2; \\ 3, & \text{if } (n,m) = (3,1) \text{ or } (n,m) = (3,2) \text{ or } m = n \ge 3; \\ 4, & \text{if } n \ge 4 \text{ and } m = 1 \text{ or } n \ge 4 \text{ and } m = n - 1; \\ 5, & \text{if } n \ge 4 \text{ and } 2 \le m \le n - 2. \end{cases}$$

The motivation of this study is to compute the rank of $\mathcal{T}(X, Y, Z)$ when X is finite and $Z \subset Y \subset X$.

Throughout this paper, we always assume that X is a chain with n ($n \ge 3$) elements, say $X = \{1 < 2 < \cdots < n\}$. Also, we assume that $\emptyset \ne Z \subset Y \subset X$. We write functions on the right; in particular, this means that for a composition $\alpha\beta$, α is applied first. For any sets A and B, we denote by |A| the cardinality of A, and write $A \setminus B = \{a \in A : a \notin B\}$.

2. Isomorphism of $\mathcal{T}(X, Y, Z)$

In this section, we aim to prove an isomorphism theorem of $\mathcal{T}(X,Y,Z)$ when $Z \subset Y \subset X$.

Let S be a subsemigroup of $\mathcal{T}(X)$. Then $S \cap \mathcal{H}(X)$ (where $\mathcal{H}(X)$ is the set of transformations whose image has cardinality one: the constant functions) will be abbreviated to $\mathcal{H}(S)$. Symons [6, Theorem 1.1] proved the following lemma.

Lemma 2.1. [6, Theorem 1.1] Let S, T are both subsemigroups of $\mathcal{T}(X)$ such that $\mathcal{H}(S)$, $\mathcal{H}(T) \neq \emptyset$. If $\phi : S \to T$ is an isomorphism. Then $\mathcal{H}(S)\phi = \mathcal{H}(T)$.

We can now present the main result of this section.

Theorem 2.2. Let Z_i , Y_i are both nonempty subset of X with $Z_i \subset Y_i \subset X$ for i = 1, 2. Then $\mathcal{T}(X, Y_1, Z_1) \cong \mathcal{T}(X, Y_2, Z_2)$ if and only if $|Y_1| = |Y_2|$ and $|Z_1| = |Z_2|$.

Proof. Let $\mathcal{T}(X, Y_1, Z_1) \cong \mathcal{T}(X, Y_2, Z_2)$ and let $\phi : \mathcal{T}(X, Y_1, Z_1) \to \mathcal{T}(X, Y_2, Z_2)$ is an isomorphism. First observe that $\mathcal{T}(X, Y_1, Z_1)$, $\mathcal{T}(X, Y_2, Z_2)$ are both subsemigroups of $\mathcal{T}(X)$ and $\mathcal{H}(\mathcal{T}(X, Y_1, Z_1))$, $\bar{\mathcal{H}}(\mathcal{T}(X, Y_2, Z_2)) \neq 0$ \emptyset . Using Lemma 2.1, it follows that $\mathcal{H}(\mathcal{T}(X,Y_1,Z_1))\phi = \mathcal{H}(\mathcal{T}(X,Y_2,Z_2))$. Clearly, $|\mathcal{H}(\mathcal{T}(X,Y_1,Z_1))| =$ $|\mathcal{H}(\mathcal{T}(X,Y_2,Z_2))|$ and $|\mathcal{H}(\mathcal{T}(X,Y_i,Z_i))| = |Z_i|$ for i=1,2. Hence $|Z_1| = |Z_2|$. It is easy to compute that $|\mathcal{T}(X, Y_i, Z_i)| = |Z_i|^{|Y_i|} \cdot n^{n-|Y_i|}$ for i = 1, 2 (n = |X|). By hypothesis, we have $|\mathcal{T}(X, Y_1, Z_1)| = |\mathcal{T}(X, Y_2, Z_2)|$ and so $|Z_1|^{|Y_1|} \cdot n^{n-|Y_1|} = |Z_2|^{|Y_2|} \cdot n^{n-|Y_2|}$, which can be simplified to $|Z_1|^{|Y_1|-|Y_2|} = n^{|Y_1|-|Y_2|}$ (by $|Z_1| = |Z_2|$). Since $|Z_1| < n$. It follows that $|Y_1| = |Y_2|$.

Conversely, let $|Y_1| = |Y_2|$ and $|Z_1| = |Z_2|$. Since $Z_1 \subset Y_1 \subset X$ (or $Z_2 \subset Y_2 \subset X$). Then there exist some bijections

$$f: Z_1 \to Z_2$$
, $q: Y_1 \setminus Z_1 \to Y_2 \setminus Z_2$ and $h: X \setminus Y_1 \to X \setminus Y_2$.

For each $\alpha \in \mathcal{T}(X, Y_1, Z_1)$, we define

$$x\overline{\alpha} = \left\{ \begin{array}{ll} xf^{-1}\alpha f, & \text{if } x \in Z_2; \\ xg^{-1}\alpha f, & \text{if } x \in Y_2 \setminus Z_2; \\ xh^{-1}\alpha f, & \text{if } x \in X \setminus Y_2 \text{ and } xh^{-1}\alpha \in Z_1; \\ xh^{-1}\alpha g, & \text{if } x \in X \setminus Y_2 \text{ and } xh^{-1}\alpha \in Y_1 \setminus Z_1; \\ xh^{-1}\alpha h, & \text{if } x \in X \setminus Y_2 \text{ and } xh^{-1}\alpha \in X \setminus Y_1. \end{array} \right.$$

It is easy to verify that $\overline{\alpha} \in \mathcal{T}(X, Y_2, Z_2)$. Define $\phi : \mathcal{T}(X, Y_1, Z_1) \to \mathcal{T}(X, Y_2, Z_2)$ by $\alpha \phi = \overline{\alpha} \ (\alpha \in \mathcal{T}(X, Y_1, Z_1))$. Clearly, ϕ is well defined. Next, we verify that ϕ is a bijection. Let $\alpha, \beta \in \mathcal{T}(X, Y_1, Z_1)$ such that $\alpha \neq \beta$, then $x_0\alpha \neq x_0\beta$ for some $x_0 \in X$. To do this, we distinguish three cases:

Case 1: $x_0 \in Z_1$. Then $x_0 f \in Z_2$ and so $(x_0 f)\overline{\alpha} = x_0 f f^{-1} \alpha f = x_0 \alpha f \neq x_0 \beta f = x_0 f f^{-1} \beta f = (x_0 f) \overline{\beta}$. Case 2: $x_0 \in Y_1 \setminus Z_1$. Then $x_0g \in Y_2 \setminus Z_2$ and so $(x_0g)\overline{\alpha} = x_0gg^{-1}\alpha f = x_0\alpha f \neq x_0\beta f = x_0gg^{-1}\beta f = (x_0g)\overline{\beta}$. **Case 3**: $x_0 \in X \setminus Y_1$. Then $x_0h \in X \setminus Y_2$ and so

 $(x_0hh^{-1}\alpha f=x_0\alpha f\neq x_0\beta f=x_0hh^{-1}\beta f=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha,\,x_0\beta\in Z_1;\\ x_0hh^{-1}\alpha f=x_0\alpha f\neq x_0\beta g=x_0hh^{-1}\beta g=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha\in Z_1,\,x_0\beta\in Y_1\setminus Z_1;\\ x_0hh^{-1}\alpha f=x_0\alpha f\neq x_0\beta h=x_0hh^{-1}\beta h=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha\in Z_1,\,x_0\beta\in X\setminus Y_1;\\ x_0hh^{-1}\alpha g=x_0\alpha g\neq x_0\beta f=x_0hh^{-1}\beta f=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha\in Y_1\setminus Z_1,\,x_0\beta\in Z_1;\\ x_0hh^{-1}\alpha g=x_0\alpha g\neq x_0\beta g=x_0hh^{-1}\beta g=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha,x_0\beta\in Y_1\setminus Z_1,\,x_0\beta\in Z_1;\\ x_0hh^{-1}\alpha g=x_0\alpha g\neq x_0\beta h=x_0hh^{-1}\beta h=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha\in Y_1\setminus Z_1,\,x_0\beta\in X\setminus Y_1;\\ x_0hh^{-1}\alpha h=x_0\alpha h\neq x_0\beta f=x_0hh^{-1}\beta f=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha\in X\setminus Y_1,\,x_0\beta\in Z_1;\\ x_0hh^{-1}\alpha h=x_0\alpha h\neq x_0\beta g=x_0hh^{-1}\beta g=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha\in X\setminus Y_1,\,x_0\beta\in Y_1\setminus Z_1;\\ x_0hh^{-1}\alpha h=x_0\alpha h\neq x_0\beta h=x_0hh^{-1}\beta h=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha\in X\setminus Y_1,\,x_0\beta\in Y_1\setminus Z_1;\\ x_0hh^{-1}\alpha h=x_0\alpha h\neq x_0\beta h=x_0hh^{-1}\beta h=(x_0h)\overline{\beta},\quad \text{if }x_0\alpha,\,x_0\beta\in X\setminus Y_1.$

Thus, we have $\overline{\alpha} \neq \overline{\beta}$ and so ϕ is one-to-one. Since $|\mathcal{T}(X, Y_i, Z_i)| = |Z_i|^{|Y_i|} \cdot n^{n-|Y_i|}$ for i = 1, 2 and $|Z_1| = |Z_2|$, $|Y_1| = |Y_2|$, it follows that $|\mathcal{T}(X, Y_1, Z_1)| = |\mathcal{T}(X, Y_2, Z_2)|$. Therefore, we obtain that ϕ is a bijection.

Finally, we verify that ϕ is a morphism, that is, $(\alpha\phi)(\beta\phi) = (\alpha\beta)\phi$ for all $\alpha, \beta \in \mathcal{T}(X, Y_1, Z_1)$. We distinguish five cases:

Case 1: $x \in Z_2$. Then $x\overline{\alpha} = xf^{-1}\alpha f \in Z_2$ and so $x(\alpha\phi)(\beta\phi) = x\overline{\alpha}\overline{\beta} = (x\overline{\alpha})f^{-1}\beta f = xf^{-1}\alpha f f^{-1}\beta f = xf^{-1}\alpha\beta f = xf$ $x\overline{\alpha\beta} = x(\alpha\beta)\phi.$

Case 2: $x \in Y_2 \setminus Z_2$. Then $x\overline{\alpha} = xg^{-1}\alpha f \in Z_2$ and so $x(\alpha\phi)(\beta\phi) = x\overline{\alpha}\overline{\beta} = (x\overline{\alpha})f^{-1}\beta f = xg^{-1}\alpha f f^{-1}\beta f = xg^{-1}\beta f f^{-1}\beta f = xg^{-1}\beta f f^{-1}\beta f = xg^{-1}\beta f f^{-1}\beta f f^{-1}\beta f = xg^{-1}\beta f f^{-1}\beta f f^{-1}\beta f = xg^{-1}\beta f^{-1}\beta f f^{-1}\beta f = xg^{-1}\beta f^{-1}\beta f f^{-1}\beta f^{-1}\beta f f^{-1}\beta f^{-1}\beta f^{-1}\beta f^{-1}\beta f^{-1}\beta f^{-1}\beta f^{-1}\beta f^{-1$ $xg^{-1}\alpha\beta f = x\overline{\alpha\beta} = x(\alpha\beta)\phi.$

Case 3: $x \in X \setminus Y_2$ and $xh^{-1}\alpha \in Z_1$. Then $x\overline{\alpha} = xh^{-1}\alpha f \in Z_2$, $xh^{-1}\alpha\beta \in Z_1$ and so $x(\alpha\phi)(\beta\phi) = x\overline{\alpha}\overline{\beta} = xh^{-1}\alpha\beta$ $(x\overline{\alpha})f^{-1}\beta f = xh^{-1}\alpha f f^{-1}\beta f = xh^{-1}\alpha\beta f = x\overline{\alpha\beta} = x(\alpha\beta)\phi.$

Case 4: $x \in X \setminus Y_2$ and $xh^{-1}\alpha \in Y_1 \setminus Z_1$. Then $x\overline{\alpha} = xh^{-1}\alpha g \in Y_2 \setminus Z_2$, $xh^{-1}\alpha\beta \in Z_1$ and so $x(\alpha\phi)(\beta\phi) = xh^{-1}\alpha g \in X_1$ $x\overline{\alpha}\overline{\beta} = (x\overline{\alpha})g^{-1}\beta f = xh^{-1}\alpha gg^{-1}\beta f = xh^{-1}\alpha\beta f = x\overline{\alpha}\overline{\beta} = x(\alpha\beta)\phi.$

Case 5: $x \in X \setminus Y_2$ and $xh^{-1}\alpha \in X \setminus Y_1$. Then $x\overline{\alpha} = xh^{-1}\alpha h \in X \setminus Y_2$ and so

$$x(\alpha\phi)(\beta\phi) = x\overline{\alpha}\overline{\beta} = \left\{ \begin{array}{ll} (x\overline{\alpha})h^{-1}\beta f = xh^{-1}\alpha hh^{-1}\beta f = xh^{-1}\alpha\beta f = x\overline{\alpha}\overline{\beta} = x(\alpha\beta)\phi, & \text{if } xh^{-1}\alpha\beta \in Z_1; \\ (x\overline{\alpha})h^{-1}\beta g = xh^{-1}\alpha hh^{-1}\beta g = xh^{-1}\alpha\beta g = x\overline{\alpha}\overline{\beta} = x(\alpha\beta)\phi, & \text{if } xh^{-1}\alpha\beta \in Y \setminus Z_1; \\ (x\overline{\alpha})h^{-1}\beta h = xh^{-1}\alpha hh^{-1}\beta h = xh^{-1}\alpha\beta h = x\overline{\alpha}\overline{\beta} = x(\alpha\beta)\phi, & \text{if } xh^{-1}\alpha\beta \in X \setminus Y_1. \end{array} \right.$$

In summary, $\phi : \mathcal{T}(X, Y_1, Z_1) \to \mathcal{T}(X, Y_2, Z_2)$ is an isomorphism. Therefore, it follows that $\mathcal{T}(X, Y_1, Z_1) \cong \mathcal{T}(X, Y_2, Z_2)$, as desired. \square

3. Rank of $\mathcal{T}(X, Y, Z)$

For each $p \in \mathbb{N}^+$, we denote by X_p the set $\{1 < 2 < \cdots < p\}$. If $\emptyset \neq Z \subset Y \subset X$ with |Y| = m, |Z| = k. By Theorem 2.2, we have $\mathcal{T}(X,Y,Z) \cong \mathcal{T}(X_n,X_m,X_k)$. Based on that, we shall enough to consider the semigroup $\mathcal{T}(X_n,X_m,X_k)$. For convenience, we will write $\mathcal{T}_{n,m,k}$ for the semigroup $\mathcal{T}(X_n,X_m,X_k)$, where k < m < n.

If $\alpha \in \mathcal{T}_{n,m,k}$, we will write $\operatorname{im}(\alpha)$ for the image of α . The kernel of α is the equivalence $\ker(\alpha) = \{(x,y) \in X_n \times X_n : x\alpha = y\alpha\}$. From Fountain [25], on the semigroup S the relation \mathcal{L}^* (respectively \mathcal{R}^*) is defined by the rule that $(a,b) \in \mathcal{L}^*$ (respectively \mathcal{R}^*) if and only if the elements a,b are related by the Green's relation \mathcal{L} (respectively \mathcal{R}) in some oversemigroup of S. The intersection of the equivalences \mathcal{L}^* and \mathcal{R}^* is denoted by \mathcal{H}^* . Since $\mathcal{T}_{n,m,k}$ is a subsemigroup of \mathcal{T}_n , the starred Green's relations in $\mathcal{T}_{n,m,k}$ can be characterized as: For $\alpha,\beta\in\mathcal{T}_{n,m,k}$,

- $(\alpha, \beta) \in \mathcal{L}^*$ if and only if $im(\alpha) = im(\beta)$;
- $(\alpha, \beta) \in \mathcal{R}^*$ if and only if $\ker(\alpha) = \ker(\beta)$;
- $(\alpha, \beta) \in \mathcal{H}^*$ if and only if $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$ and $\ker(\alpha) = \ker(\beta)$.

Moreover, we define a equivalence \mathcal{J}^* by

• $(\alpha, \beta) \in \mathscr{J}^*$ if and only if $|\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)|$.

Then \mathcal{L}^* , $\mathcal{R}^* \subseteq \mathcal{J}^*$. Let $\alpha \in \mathcal{T}_{n,m,k}$. We denote by \mathcal{L}^*_{α} , \mathcal{R}^*_{α} , and \mathcal{H}^* the \mathcal{L}^* -class, \mathcal{R}^* -class, and \mathcal{H}^* -class of α , respectively.

Let $\alpha \in \mathcal{T}_{n,m,k}$. From $X_m \alpha \subseteq X_k$ we obtain that $\operatorname{im}(\alpha) = X_m \alpha \cup (X_n \setminus X_m) \alpha \subseteq X_k \cup (X_n \setminus X_m) \alpha$. Then $1 \le |\operatorname{im}(\alpha)| \le n - m + k$. Thus $\mathcal{T}_{n,m,k}$ has n - m + k \mathscr{J}^* -classes, namely $\mathcal{J}_1^*, \mathcal{J}_2^*, \cdots, \mathcal{J}_{n-m+k}^*$, where

$$\mathcal{J}_r^* = \{ \alpha \in \mathcal{T}_{n,m,k} : |\mathrm{im}(\alpha)| = r \}$$

for $1 \le r \le n-m+k$. If $|\operatorname{im}(\alpha)| = r$ with $1 \le r \le n-m+k$, then there exists $s \in X_r$ such that α can be expressed as

$$\alpha = \begin{bmatrix} A_i \\ a_i \end{bmatrix}_{1 \le i \le r}^s \tag{1}$$

where

- $A_i \alpha = a_i$ for all $1 \le i \le r$;
- $\{A_1, A_2, \dots, A_r\}$ is a r-partition of X_n such that for $1 \le j \le s$, $A_j \cap X_m \ne \emptyset$, and for $l \ge s+1$, $A_l \cap X_m = \emptyset$; and
 - a_1, a_2, \dots, a_r are distinct elements of X_n such that for $1 \le j \le s, a_j \in X_k$.

Lemma 3.1. Let $n-m+k \ge 3$. Then $\mathcal{J}_r^* \subseteq \langle \mathcal{J}_{r+1}^* \rangle$ for all $1 \le r \le n-m+k-2$.

Proof. Suppose first that $1 \le r \le n - m + k - 2$ and $\alpha \in \mathcal{J}_r^*$. Then α can be expressed as (1). Recall that $\operatorname{im}(\alpha) \subset X_n$, we can choose $y_0 \in X_n \setminus \operatorname{im}(\alpha)$. If $j \ge s + 1$, we also choose $b_j \in A_j$. We distinguish two cases:

Case 1: s = k. By formula (1) we obtain that $\{a_1, a_2, \dots, a_s\} = X_k$. Note that $\alpha \in \mathcal{J}_r^*$ where $1 \le r \le n - m + k - 2$. Then there exist $x_0 \in X_n \setminus X_m$, $i \in X_r$ such that $x_0 \in A_i$ with $|A_i| \ge 2$.

(a) If $1 \le i \le s$. Then define two mappings $\beta : X_n \to X_n$ and $\gamma : X_n \to X_n$ by

$$x\beta = \begin{cases} l, & \text{if } x \in A_l \text{ for } 1 \le l \le s, \ l \ne i; \\ i, & \text{if } x \in A_i \setminus \{x_0\}; \\ s+1, & \text{if } x = x_0; \\ b_t, & \text{if } x \in A_t \text{ for } s+1 \le t \le r. \end{cases}$$

$$x\gamma = \begin{cases} a_x, & \text{if } 1 \le x \le s; \\ a_i, & \text{if } s+1 \le x \le m; \\ a_t, & \text{if } x = b_t \text{ for } s+1 \le t \le r; \\ y_0, & \text{otherewise.} \end{cases}$$

$$(2)$$

According to the given conditions, it is easy to see that $A_i(\beta\gamma) = a_i$ for all $1 \le i \le r$. Then $\alpha = \beta\gamma$. Next, we verify that $\beta, \gamma \in \mathcal{J}_r^*$. Note that $y_0\gamma^{-1} = X_n \setminus \{1, \cdots, s, s+1, \cdots, m, b_{s+1}, \cdots, b_r\}$. Since $1 \le r \le n-m+k-2$ and s = k, we have $|y_0\gamma^{-1}| = n - (m+r-s) \ge n-m-r+k \ge n-m-(n-m+k-2)+k=2$ and so $y_0\gamma^{-1} \ne \emptyset$. Clearly, $\operatorname{im}(\beta) = \{1, \cdots, s, s+1, b_{s+1}, \cdots, b_r\}$ and $\operatorname{im}(\gamma) = \{a_1, \cdots, a_r, y_0\}$. Combining formula (1), it follows that $X_m\beta, X_m\gamma \subseteq X_k$ and thus $\beta, \gamma \in \mathcal{J}_r^*$.

(b) If $s + 1 \le i \le r$. Then define two mappings $\beta : X_n \to X_n$ and $\gamma : X_n \to X_n$ by

$$x\beta = \begin{cases} l, & \text{if } x \in A_l \text{ for } 1 \leq l \leq s; \\ x_0, & \text{if } x = x_0; \\ b_t, & \text{if } x \in A_t \text{ for } s+1 \leq t \leq r, \ t \neq i; \\ b_i \in A_i \setminus \{x_0\}, & \text{if } x \in A_i \setminus \{x_0\}. \end{cases} \qquad x\gamma = \begin{cases} a_x, & \text{if } 1 \leq x \leq s; \\ a_s, & \text{if } s+1 \leq x \leq m; \\ a_i, & \text{if } x = x_0; \\ a_t, & \text{if } x = b_t \text{ for } s+1 \leq t \leq r; \\ y_0, & \text{otherwise.} \end{cases}$$

Case 2: s < k. By formula (1) we obtain that $\{a_1, a_2, \dots, a_s\} \subset X_k$. Then there exist $x_0 \in X_m$, $i \in X_s$ such that $x_0 \in A_i$ with $|A_i| \ge 2$.

(a) If $\operatorname{im}(\alpha) \cap X_k \subset X_k$. Then we can take $a_0 \in X_k \setminus (\operatorname{im}(\alpha) \cap X_k)$. Let β be defined as (2) and define a mapping $\gamma : X_n \to X_n$ by

$$x\gamma = \begin{cases} a_x, & \text{if } 1 \le x \le s; \\ a_i, & \text{if } x = s + 1; \\ a_t, & \text{if } x = b_t \text{ for } s + 1 \le t \le r; \\ a_0, & \text{otherwise.} \end{cases}$$

(b) If $\operatorname{im}(\alpha) \cap X_k = X_k$. Then there exist k-s elements $a_{i_1}, \cdots, a_{i_{k-s}} \in \{a_{s+1}, \cdots, a_r\}$ such that $\{a_1, \cdots, a_s, a_{i_1}, \cdots, a_{i_{k-s}}\} = X_k$. We define two mappings $\beta: X_n \to X_n$ and $\gamma: X_n \to X_n$ by

$$x\beta = \begin{cases} l, & \text{if } x \in A_l \text{ for } 1 \le l \le s, \ l \ne i; \\ i, & \text{if } x \in A_i \setminus \{x_0\}; \\ s+1, & \text{if } x = x_0; \\ s+p+1, & \text{if } x \in A_{i_p} \text{ for } 1 \le p \le k-s; \\ b_t, & \text{if } x \in A_t \text{ for } s+1 \le t \le r, \ t \notin \{i_1, \cdots, i_{k-s}\}. \end{cases}$$

$$x\gamma = \begin{cases} a_x, & \text{if } 1 \le x \le s; \\ a_i, & \text{if } x = s+1 \text{ or } k+2 \le x \le m; \\ a_{i_p}, & \text{if } x = s+p+1 \text{ for } 1 \le p \le k-s; \\ a_t, & \text{if } x = b_t \text{ for } s+1 \le t \le r, \ t \notin \{i_1, \cdots, i_{k-s}\}; \\ y_0, & \text{otherwise.} \end{cases}$$

For both cases, similar to case 1 (a), it is easy to verify that $\beta, \gamma \in \mathcal{J}_{r+1}^*$ and $\alpha = \beta \gamma$. Hence, $\mathcal{J}_r^* \subseteq \langle \mathcal{J}_{r+1}^* \rangle$. \square

For $k, m, n \in \mathbb{N}^+$ such that k < m < n, we define a mapping $\lambda : X_n \to X_n$ by

$$x\lambda = \begin{cases} k, & \text{if } k+1 \le x \le m; \\ n-1, & \text{if } x=n; \\ x, & \text{otherwise.} \end{cases}$$
 (3)

Now we state and prove the following lemma.

Lemma 3.2. Let λ be defined as (3). Then the following statements hold:

(i) for
$$n-m=1$$
, $\mathcal{J}_{n-m+k-1}^*\subseteq\langle\mathcal{J}_{n-m+k}^*\rangle$;

(ii) for
$$n - m \ge 2$$
, $\mathcal{J}_{n-m+k-1}^* \subseteq \langle \mathcal{J}_{n-m+k}^* \cup \{\lambda\} \rangle$.

Proof. Suppose first that $\alpha \in \mathcal{J}_{n-m+k-1}^*$. Then α can be expressed as (1) (Here, we take r = n - m + k - 1), that

$$\alpha = \begin{bmatrix} A_i \\ a_i \end{bmatrix}_{1 \le i \le n-m+k-1}^{s} \tag{4}$$

Clearly, $\operatorname{im}(\alpha) \subset X_n$, so we can choose $y_0 \in X_n \setminus \operatorname{im}(\alpha)$. If $j \ge s + 1$, we also choose $b_j \in A_j$.

(i) Let n - m = 1. Then n - m + k - 1 = k in (4). We distinguish two cases:

Case 1 : s = k. Then $\operatorname{im}(\alpha) = \{a_1, a_2, \dots, a_s\} = X_k$ and so there exists $i \in X_s$ such that $n \in A_i$ with $|A_i| \ge 2$. We define two mappings $\beta: X_n \to X_n$ and $\gamma: X_n \to X_n$ by

$$x\beta = \left\{ \begin{array}{ll} l, & \text{if } x \in A_l \text{ for } 1 \leq l \leq s, \ l \neq i; \\ i, & \text{if } x \in A_i \setminus \{n\}; \\ m, & \text{if } x = n. \end{array} \right. \qquad x\gamma = \left\{ \begin{array}{ll} a_x, & \text{if } 1 \leq x \leq s; \\ a_i, & \text{if } s + 1 \leq x \leq m; \\ y_0, & \text{if } x = n. \end{array} \right.$$

Case 2: s = k - 1. Then $A_k = A_{s+1} = \{n\}$ and so there exist $x_0 \in X_m$, $i \in X_s$ such that $x_0 \in A_i$ with $|A_i| \ge 2$. (a) If $a_k \in X_k$. Then $\operatorname{im}(\alpha) = X_k$. We define two mappings $\beta : X_n \to X_n$ and $\gamma : X_n \to X_n$ by

$$x\beta = \begin{cases} l, & \text{if } x \in A_l \text{ for } 1 \le l \le s, \ l \ne i; \\ i, & \text{if } x \in A_i \setminus \{x_0\}; \\ s+1, & \text{if } x = x_0; \\ s+2, & \text{if } x = n. \end{cases} \qquad x\gamma = \begin{cases} a_x, & \text{if } 1 \le x \le s; \\ a_i, & \text{if } x = s+1; \\ a_k, & \text{if } s+2 \le x \le m; \\ y_0, & \text{if } x = n. \end{cases}$$

(b) If $a_k \notin X_k$. We may take $a_0 \in X_k \setminus \operatorname{im}(\alpha)$ and define two mappings $\beta : X_n \to X_n$ and $\gamma : X_n \to X_n$ by

$$x\beta = \begin{cases} l, & \text{if } x \in A_l \text{ for } 1 \le l \le s, \ l \ne i; \\ i, & \text{if } x \in A_i \setminus \{x_0\}; \\ s+1, & \text{if } x = x_0; \\ n, & \text{if } x = n. \end{cases} \qquad x\gamma = \begin{cases} a_x, & \text{if } 1 \le x \le s; \\ a_i, & \text{if } x = s+1; \\ a_k, & \text{if } x = n; \\ a_0, & \text{otherwise.} \end{cases}$$

For both cases, it is easy to verify that $\beta, \gamma \in \mathcal{J}^*_{n-m+k}$, $\alpha = \beta \gamma$, and this is clearly equivalent to $\alpha \in \langle \mathcal{J}^*_{n-m+k} \rangle$,

(ii) To show that $\mathcal{J}^*_{n-m+k-1} \subseteq \langle \mathcal{J}^*_{n-m+k} \cup \{\lambda\} \rangle$ for $n-m \ge 2$. We distinguish two cases: **Case 1** : s = k. Then $\{a_1, a_2, \cdots, a_s\} = X_k$ and there exist $x_0 \in X_n \setminus X_m$, $i \in X_{n-m+k-1}$ such that $x_0 \in A_i$ with

(a) If $1 \le i \le s$. Then β, γ be defined as (2) (Here, we take r = n - m + k - 1). Clearly, $\alpha = \beta \gamma$ and $\beta, \gamma \in \mathcal{J}_{n-m+k}^*$. (b) If $s+1 \le i \le n-m+k-1$. We define two mappings $\beta: X_n \to X_n$ and $\gamma: X_n \to X_n$ by

$$x\beta = \begin{cases} l, & \text{if } x \in A_l \text{ for } 1 \leq l \leq s; \\ n, & \text{if } x = x_0; \\ n-1, & \text{if } x \in A_i \setminus \{x_0\}; \\ m+t-k, & \text{if } x \in A_t \text{ for } s+1 \leq t \leq i-1; \\ m+p-k-1, & \text{if } x \in A_p \text{ for } i+1 \leq p \leq n-m+k-1. \end{cases}$$

$$x\gamma = \begin{cases} a_x, & \text{if } 1 \leq x \leq s; \\ a_s, & \text{if } s+1 \leq x \leq m; \\ a_t, & \text{if } x = m+t-k \text{ for } s+1 \leq t \leq i-1; \\ a_p, & \text{if } x = m+p-k-1 \text{ for } i+1 \leq p \leq n-m+k-1; \\ a_i, & \text{if } x = n-1; \\ y_0, & \text{if } x = n. \end{cases}$$

Clearly, $\alpha = \beta \lambda \gamma$ and $\beta, \gamma \in \mathcal{J}_{n-m+k}^*$ **Case 2**: s = k-1. Using a similar proof of case 2 of Lemma 3.1, $\alpha = \beta \gamma$ and $\beta, \gamma \in \mathcal{J}_{n-m+k}^*$ For both cases, $\alpha \in \langle \mathcal{J}_{n-m+k}^* \cup \{\lambda\} \rangle$, giving (ii) \square

Using Lemma 3.1 and Lemma 3.2, we have the following corollary:

Corollary 3.3. *Let* λ *be defined as* (3). *Then the following statements hold:*

(i) for
$$n-m=1$$
, $\mathcal{T}_{n,m,k}=\langle \mathcal{J}_{n-m+k}^* \rangle$.

(ii) for
$$n - m \ge 2$$
, $\mathcal{T}_{n,m,k} = \langle \mathcal{J}_{n-m+k}^* \cup \{\lambda\} \rangle$.

For $k, m, n \in \mathbb{N}^+$ such that k < m < n, we define a mapping $\epsilon : X_n \to X_n$ by

$$x\epsilon = \begin{cases} x, & \text{if } 1 \le x \le k \text{ or } m+1 \le x \le n; \\ k, & \text{if } k+1 \le x \le m. \end{cases}$$
 (5)

Then $\epsilon \in \mathcal{J}_{n-m+k}^*$ and

$$\mathcal{H}_{\epsilon}^{*} = \left\{ \begin{pmatrix} \{1\} & \cdots & \{k-1\} & X_{m} \setminus X_{k-1} \\ 1\sigma & \cdots & (k-1)\sigma & k\sigma \end{pmatrix} \middle| \begin{cases} m+1\} & \cdots & \{n\} \\ (m+1)\rho & \cdots & n\rho \end{cases} \right\} : \sigma \in \mathcal{S}(X_{k}), \ \rho \in \mathcal{S}(X_{n} \setminus X_{m}) \right\}$$
(6)

is a group \mathcal{H}^* -class containing ϵ . Clearly, $\mathcal{H}^*_{\epsilon} \cong \mathcal{S}(X_k) \times \mathcal{S}(X_n \setminus X_m)$.

The following lemma was proved by Toker and Ayık [26, Lemma 3].

Lemma 3.4. [26, Lemma 3] Let $p, q \in \mathbb{N}^+$. Then

$$\operatorname{rank}(\mathcal{S}(X_p) \times \mathcal{S}(X_q)) = \begin{cases} 1, & \text{if } (p,q) = (1,1), (1,2) \text{ or } (2,1); \\ 2, & \text{otherwise.} \end{cases}$$

If (k, n - m) = (1, 1), (1, 2) or (2, 1). We know from Lemma 3.4 that there exists $\theta_{n,m,k} \in \mathcal{H}^*_{\epsilon}$ such that

$$\mathcal{H}_{\epsilon}^* = \langle \{\theta_{n,m,k}\} \rangle. \tag{7}$$

Otherwise there exist two elements $v_{n,m,k}$, $v_{n,m,k} \in \mathcal{H}_{\epsilon}^*$ such that

$$\mathcal{H}_{c}^{*} = \langle \{v_{n\,m\,k}, v_{l\,n\,m\,k}\} \rangle. \tag{8}$$

Obviously, there are $\sigma_1, \sigma_2 \in \mathcal{S}(X_k), \rho_1, \rho_2 \in \mathcal{S}(X_n \setminus X_m)$ such that $v_{n,m,k}, v_{n,m,k}$ are expressed respectively as

$$\upsilon_{n,m,k} = \begin{pmatrix} \{1\} & \cdots & \{k-1\} & X_m \setminus X_{k-1} & \{m+1\} & \cdots & \{n\} \\ 1\sigma_1 & \cdots & (k-1)\sigma_1 & k\sigma_1 & (m+1)\rho_1 & \cdots & n\rho_1 \end{pmatrix}$$

$$(9)$$

$$\upsilon_{n,m,k} = \begin{pmatrix} \{1\} & \cdots & \{k-1\} & X_m \setminus X_{k-1} & \{m+1\} & \cdots & \{n\} \\ 1\sigma_2 & \cdots & (k-1)\sigma_2 & k\sigma_2 & (m+1)\rho_2 & \cdots & n\rho_2 \end{pmatrix}$$
(10)

We write

$$\tau_{n,m,k} = \begin{pmatrix} \{1\} \cup (X_m \setminus X_k) & \{2\} & \cdots & \{k\} & \{m+1\} & \cdots & \{n\} \\ 1\sigma_1^{-1}\sigma_2 & 2\sigma_1^{-1}\sigma_2 & \cdots & k\sigma_1^{-1}\sigma_2 & (m+1)\rho_1^{-1}\rho_2 & \cdots & n\rho_1^{-1}\rho_2 \end{pmatrix}$$
(11)

Clearly, $v_{n,m,k} = v_{n,m,k} \tau_{n,m,k}$ and $\tau_{n,m,k} \in \mathcal{L}_{\epsilon}^*$. By formula (8) we get that

$$\mathcal{H}_{\epsilon}^* \subseteq \langle \{v_{n,m,k}, \tau_{n,m,k}\} \rangle. \tag{12}$$

Let ϵ be defined as (5), we denote by Ω the set of a single arbitrary element from each \mathcal{H}^* -class contained in \mathcal{L}^*_{ϵ} . In addition, we denote by \Re the set of a single arbitrary element from each \mathscr{H}^* -class contained in $\mathcal{R}_{\epsilon}^* \setminus \mathcal{H}_{\epsilon}^*$. In fact,

- $\mathfrak{L} \subseteq \mathcal{L}_{\epsilon'}^*$ and for all $\alpha \in \mathcal{L}_{\epsilon'}^*$ the intersection of \mathfrak{L} and \mathcal{H}_{α}^* has exactly one element;
- $\Re \subseteq \mathcal{R}^*_{\epsilon} \setminus \mathcal{H}^*_{\epsilon}$, and for all $\beta \in \mathcal{R}^*_{\epsilon} \setminus \mathcal{H}^*_{\epsilon}$, the intersection of \Re and \mathcal{H}^*_{β} has exactly one element.

Lemma 3.5. Let \mathcal{H}_{ϵ}^* be defined as (6). Then the following statements hold:

- (i) $\mathcal{H}_{\alpha}^* \subseteq \alpha \mathcal{H}_{\varepsilon}^*$ for all $\alpha \in \Omega$.
- (ii) $\mathcal{H}_{\beta}^* \subseteq \mathcal{H}_{\epsilon}^* \beta$ for all $\beta \in \Re$.

Proof. Let $\alpha \in \mathfrak{L}$. From definition of \mathfrak{L} we know that $\alpha \in \mathcal{L}_{\epsilon}^*$ and so $\operatorname{im}(\alpha) = \operatorname{im}(\epsilon)$. Then α can be expressed as

$$\alpha = \begin{pmatrix} A_1 & \cdots & A_k & \{m+1\} & \cdots & \{n\} \\ 1\sigma & \cdots & k\sigma & (m+1)\rho & \cdots & n\rho \end{pmatrix}$$

where $\{A_1, \dots, A_k\}$ is a k-partition of X_m , $\sigma \in \mathcal{S}(X_k)$ and $\rho \in \mathcal{S}(X_n \setminus X_m)$. For each $\gamma \in \mathcal{H}_{\alpha}^*$, there exist $\phi \in \mathcal{S}(X_k)$, $\varphi \in \mathcal{S}(X_n \setminus X_m)$ such that γ can be expressed as

$$\gamma = \left(\begin{array}{ccc|c} A_1 & \cdots & A_k & \{m+1\} & \cdots & \{n\} \\ 1\phi & \cdots & k\phi & (m+1)\phi & \cdots & n\phi \end{array}\right).$$

Let

$$\zeta = \left(\begin{array}{ccc|c} \{1\} & \cdots & X_m \setminus X_{k-1} & \{m+1\} & \cdots & \{n\} \\ 1\sigma^{-1}\phi & \cdots & k\sigma^{-1}\phi & (m+1)\rho^{-1}\phi & \cdots & n\rho^{-1}\phi \end{array} \right).$$

Clearly, $\gamma = \alpha \zeta$ and $\zeta \in \mathcal{H}_{\epsilon}^*$. It is immediate that $\gamma \in \alpha \mathcal{H}_{\epsilon}^*$ and so $\mathcal{H}_{\alpha}^* \subseteq \alpha \mathcal{H}_{\epsilon}^*$ as required. (ii) follows in similar way. \square

Let \mathcal{H}_{ϵ}^* , $\theta_{n,m,k}$, $v_{n,m,k}$, $v_{n,m,k}$, $\tau_{n,m,k}$ be respectively defined as (6), (7), (9), (10), (11), and let

$$\Theta_{n,m,k} = \begin{cases}
([\mathfrak{Q} \cup \mathfrak{R}] \setminus \mathcal{H}_{\epsilon}^{*}) \cup \{\theta_{n,m,k}\}, & \text{if } (k,n-m) = (1,1), (1,2) \text{ or } (2,1); \\
([\mathfrak{Q} \cup \mathfrak{R}] \setminus \mathcal{H}_{\epsilon}^{*}) \cup \{v_{n,m,k}, v_{n,m,k}\}, & \text{if } k = 1 \text{ and } n - m \ge 3; \\
([\mathfrak{Q} \cup \mathfrak{R}] \setminus [\mathcal{H}_{\epsilon}^{*} \cup \mathcal{H}_{\tau_{n,m,k}}^{*}]) \cup \{v_{n,m,k}, \tau_{n,m,k}\}, & \text{otherwise.}
\end{cases} (13)$$

Using formulas (7), (8), (12), and Lemma 3.5, we have the following corollary.

Corollary 3.6. $\mathcal{L}_{\epsilon}^* \cup \mathcal{R}_{\epsilon}^* \subseteq \langle \Theta_{n,m,k} \rangle$.

Lemma 3.7. Let $\Theta_{n,m,k}$ be defined as (13). Then $\mathcal{J}_{n-m+k}^* \subseteq \langle \Theta_{n,m,k} \rangle$.

Proof. For each $\alpha \in \mathcal{J}_{n-m+k}^*$, there exist a k-partition $\{A_1, \cdots, A_k\}$ of X_m , a subset $\{a_1, \cdots, a_{n-m}\}$ of $X_n \setminus X_k$ and $\delta \in \mathcal{S}(X_k)$ such that α can be expressed as

$$\alpha = \left(\begin{array}{ccc} A_1 & \cdots & A_k & \{m+1\} & \cdots & \{n\} \\ 1\delta & \cdots & k\delta & a_1 & \cdots & a_{n-m} \end{array}\right).$$

Let

$$\beta = \left(\begin{array}{ccc|c} A_1 & \cdots & A_k & \{m+1\} & \cdots & \{n\} \\ 1 & \cdots & k & m+1 & \cdots & n \end{array} \right), \quad \gamma = \left(\begin{array}{ccc|c} \{1\} & \cdots & X_m \setminus X_{k-1} & \{m+1\} & \cdots & \{n\} \\ 1\delta & \cdots & k\delta & a_1 & \cdots & a_{n-m} \end{array} \right).$$

Clearly, $\beta \in \mathcal{L}_{\epsilon}^*$, $\gamma \in \mathcal{R}_{\epsilon}^*$, where ϵ be defined as (5). It is easy to versify that $\alpha = \beta \gamma$. From Corollary 3.6, we have $\beta, \gamma \in \langle \Theta_{n,m,k} \rangle$ and thus $\alpha \in \langle \Theta_{n,m,k} \rangle$. Therefore, $\mathcal{J}_{n-m+k}^* \subseteq \langle \Theta_{n,m,k} \rangle$, as required. \square

By Lemma 3.7 and Corollary 3.3, we have the following corollary.

Corollary 3.8. Let λ , $\Theta_{n,m,k}$ be defined as (3), (13), respectively. Then the following statements hold:

(i) for
$$n - m = 1$$
, $\mathcal{T}_{n,m,k} = \langle \Theta_{n,m,k} \rangle$.

(ii) for
$$n - m \ge 2$$
, $\mathcal{T}_{n,m,k} = \langle \Theta_{n,m,k} \cup \{\lambda\} \rangle$.

Recall that

- if (k, n m) = (1, 1), (1, 2) or $(2, 1), \theta_{n,m,k} \in \mathcal{H}_{\epsilon}^*$;
- if k = 1 and $n m \ge 3$, $v_{n,m,k}$, $v_{n,m,k} \in \mathcal{H}_{\epsilon}^*$ and $v_{n,m,k} \ne v_{n,m,k}$;
- otherwise $v_{n,m,k} \in \mathcal{H}_{\epsilon}^*$ and $\tau_{n,m,k} \in \mathcal{L}_{\epsilon}^* \setminus \mathcal{H}_{\epsilon}^*$.

By definitions of $\mathfrak L$ and $\mathfrak R$, we have $\mathfrak L\cap\mathfrak R=\emptyset$, $|\mathfrak L\cap\mathcal H^*_\epsilon|=1$ and $\mathfrak R\cap\mathcal H^*_\epsilon=\emptyset$. It is also easy to show that $|\mathfrak L|=S(m,k)$ (recall that S(m,k) is the Stirling number of the second kind) and $|\mathfrak R|=\binom{n-k}{n-m}-1$. Thus $|\mathfrak L\cup\mathfrak R|=S(m,k)+\binom{n-k}{n-m}-1$. Combining formula (13), we have

$$|\Theta_{n,m,k}| = \left\{ \begin{array}{ll} |\mathfrak{L} \cup \mathfrak{R}| + 1 = \binom{n-1}{n-m} + 1, & \text{if } k = 1 \text{ and } n - m \geq 3; \\ |\mathfrak{L} \cup \mathfrak{R}| = S(m,k) + \binom{n-k}{n-m} - 1, & \text{otherwise.} \end{array} \right.$$

Using Corollary 3.8, we obtain the following corollary.

Corollary 3.9.

$$\operatorname{rank}(\mathcal{T}_{n,m,k}) \leq \begin{cases} S(m,k) + n - k - 1, & \text{if } n - m = 1; \\ \binom{n-1}{n-m} + 2, & \text{if } k = 1 \text{ and } n - m \geq 3; \\ S(m,k) + \binom{n-k}{n-m}, & \text{otherwise.} \end{cases}$$

Let *A* is a generating set of $\mathcal{T}_{n,m,k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^*$. Then there are $\alpha_1, \dots, \alpha_s \in A$ ($s \ge 2$) such that

$$\alpha = \alpha_1 \alpha_2 \cdots \alpha_s. \tag{14}$$

Then we can claim that

- for all i, $\alpha_i \in \mathcal{J}^*_{n-m+k}$ (if not, there exists j such that $\alpha_j \notin \mathcal{J}^*_{n-m+k'}$ then $|\operatorname{im}(\alpha_j)| < n-m+k$ and so $|\operatorname{im}(\alpha)| = |\operatorname{im}(\alpha_1\alpha_2\cdots\alpha_s)| < n-m+k$, contradicting the fact that $\alpha \in \mathcal{J}^*_{n-m+k}$);
 - $\ker(\alpha) = \ker(\alpha_1)$ (By $\ker(\alpha_1) \subseteq \ker(\alpha_1 \alpha_2 \cdots \alpha_s) = \ker(\alpha)$ and $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = \lim_{$
 - $\operatorname{im}(\alpha) = \operatorname{im}(\alpha_s)$ (By $\operatorname{im}(\alpha) = \operatorname{im}(\alpha_1 \alpha_2 \cdots \alpha_s) \subseteq \operatorname{im}(\alpha_s)$ and $\operatorname{im}(\alpha_s) = \operatorname{im}(\alpha)$).

Hence, we proved the following:

Lemma 3.10. Let A is a generating set of $\mathcal{T}_{n,m,k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^*$. Then there are $\alpha_1, \dots, \alpha_s \in A$ ($s \geq 2$) such that $\alpha = \alpha_1 \alpha_2 \dots \alpha_s$ and the following statements hold:

- (i) for all i, $\alpha_i \in \mathcal{J}_{n-m+k}^*$.
- (ii) $ker(\alpha) = ker(\alpha_1)$.
- (iii) $im(\alpha) = im(\alpha_s)$.

Lemma 3.11. Let A is a generating set of $\mathcal{T}_{n,m,k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^*$ such that $\operatorname{im}(\alpha) = X_k \cup (X_n \setminus X_m)$. Then $A \cap \mathcal{H}_{\alpha}^* \neq \emptyset$.

Proof. Note that $\operatorname{im}(\alpha) = X_k \cup (X_n \setminus X_m)$ and $X_m \alpha \subseteq X_k$. Then $X_m \alpha = X_k$ and $(X_n \setminus X_m)\alpha = X_n \setminus X_m$. Since A is a generating set of $\mathcal{T}_{n,m,k}$, there are $\alpha_1, \dots, \alpha_s \in A$ ($s \ge 2$) such that formula (14) holds. From Lemma 3.10 we obtain that $\ker(\alpha) = \ker(\alpha_1)$. In fact, $\operatorname{im}(\alpha) = \operatorname{im}(\alpha_1)$ (if not, there exists $a \in \operatorname{im}(\alpha_1)$ such that $a \notin \operatorname{im}(\alpha) = X_k \cup (X_n \setminus X_m)$. Then $a \in X_m \setminus X_k$ and so there exists $a \in X_n \setminus X_m$ such that $a \neq x_n \in X_k$ for all $a \in X_m \setminus X_k$ and so there exists $a \in X_k \in X_k$, this contradicts the fact that $(X_n \setminus X_m)\alpha = X_n \setminus X_m$. Then $\alpha_1 \in \mathcal{H}^*_\alpha$. Note that $\alpha_1 \in A$. Hence, $A \cap \mathcal{H}^*_\alpha \ne \emptyset$ as required. \square

Lemma 3.12. Let k = 1, $n - m \ge 3$ and let A is a generating set of $\mathcal{T}_{n,m,k}$. Then $|A \cap \mathcal{H}_{\varepsilon}^*| \ge 2$ where $\mathcal{H}_{\varepsilon}^*$ be defined as (5).

Proof. From formula (5) we know that $\operatorname{im}(\epsilon) = X_k \cup (X_n \setminus X_m)$. By Lemma 3.11, we have $A \cap \mathcal{H}_{\epsilon}^* \neq \emptyset$, in other words $|A \cap \mathcal{H}_{\epsilon}^*| \geq 1$.

To show that $|A \cap \mathcal{H}_{\epsilon}^*| \ge 2$. Assume that $|A \cap \mathcal{H}_{\epsilon}^*| = 1$. Then there exists an element β of $\mathcal{T}_{n,m,k}$ such that $A \cap \mathcal{H}_{\epsilon}^* = \{\beta\}$. By formula (6), there exists $\rho_1 \in \mathcal{S}(X_n \setminus X_m)$ such that

$$\beta = \left(\begin{array}{c|cc} X_m & \{m+1\} & \cdots & \{n\} \\ 1 & (m+1)\rho_1 & \cdots & n\rho_1 \end{array}\right)$$

For k=1, $n-m\geq 3$, from Lemma 3.4 we know that $\langle A\cap \mathcal{H}_{\epsilon}^{+}\rangle = \langle \{\beta\}\rangle \subset \mathcal{H}_{\epsilon}^{+}$ if β is unique element of A. Then $\langle A\rangle \neq \mathcal{T}_{n,m,k}$, contradicting the hypothesis of the lemma. Now, let $\alpha\in\mathcal{H}_{\epsilon}^{+}$. Since A is a generating set of $\mathcal{T}_{n,m,k}$, there are $\alpha_{1},\cdots,\alpha_{s}\in A$ ($s\geq 2$) such that formula (14) holds. We can assert that, for all $i,\alpha_{i}\in\mathcal{H}_{\epsilon}^{+}$ (if not, there exists j such that $\alpha_{j}\notin\mathcal{H}_{\epsilon}^{+}$, from Lemma 3.10 we know that $\alpha_{j}\in\mathcal{J}_{n-m+k}^{+}$. Then there exist some distinct elements $a_{1},\cdots,a_{n-m}\in X_{n}\setminus X_{k}$ with $\{a_{1},\cdots,a_{n-m}\}\neq X_{n}\setminus X_{m}$ such that

$$\alpha_j = \left(\begin{array}{c|cc} X_m & \{m+1\} & \cdots & \{n\} \\ 1 & a_1 & \cdots & a_{n-m} \end{array}\right)$$

Clearly, if j = s, then, by Lemma 3.10, $\{1\} \cup (X_n \setminus X_m) = \operatorname{im}(\alpha) = \operatorname{im}(\alpha_s) = \operatorname{im}(\alpha_j) = \{1, a_1, \cdots, a_{n-m}\}$. This is a contradiction; otherwise, from $\{a_1, \cdots, a_{n-m}\} \neq X_n \setminus X_m$ we know that there exists $l \in \{m+1, \cdots, n\}$ such that $a_l \in X_m$. Then $(X_m \cup \{l\})\alpha_j\alpha_{j+1} = \{1, a_l\}\alpha_{j+1} = \{1\}$ and so $|\operatorname{im}(\alpha_j\alpha_{j+1})| < n-m+k$. Hence $|\operatorname{im}(\beta)| = |\operatorname{im}(\alpha_1\alpha_2\cdots\alpha_s)| < n-m+k$. This is also a contradiction). Since $A \cap \mathcal{H}^*_{\varepsilon} = \{\beta\}$, we have $\alpha_1, \cdots, \alpha_s \in \langle \{\beta\} \rangle$. It is immediate that $\alpha \in \langle \{\beta\} \rangle \subset \mathcal{H}^*_{\varepsilon}$ and so $\mathcal{H}^*_{\varepsilon} \setminus \langle \{\beta\} \rangle$ cannot be generated by the set A, contradicting the hypothesis of the lemma. \square

For each $\kappa \in \mathcal{J}_{n-m+k'}^*$ let

$$\mathcal{L}_{\kappa}^{*E} = \{ \beta \in \mathcal{L}_{\kappa}^* : (\forall i, j \in X_k, i \neq j) \ i\beta \neq j\beta \}. \tag{15}$$

Lemma 3.13. Let A is a generating set of $\mathcal{T}_{n,m,k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^*$ such that $\operatorname{im}(\alpha) \neq X_k \cup (X_n \setminus X_m)$. Then $A \cap \mathcal{L}_{\kappa}^{*E} \neq \emptyset$.

Proof. Let $\beta \in \mathcal{L}_{\kappa}^{*E}$. By (15), $i\beta \neq j\beta$ for all $i, j \in X_k$ ($i \neq j$). Observe that $\beta \in \mathcal{L}_{\alpha}^*$ and $\operatorname{im}(\alpha) \neq X_k \cup (X_n \setminus X_m)$. Then $\operatorname{im}(\beta) \neq X_k \cup (X_n \setminus X_m)$ and so there exist a k-partition $\{B_1, \dots, B_k\}$ ($i \in B_i, i = 1, \dots, k$) of X_m , (n - m)-element subset $\{a_1, \dots, a_{n-m}\}$ ($\{a_1, \dots, a_{n-m}\} \neq X_n \setminus X_m$) of $X_n \setminus X_k$ and $\sigma \in \mathcal{S}(X_k)$ such that β can be expressed as

$$\beta = \left(\begin{array}{ccc|c} B_1 & \cdots & B_k & \{m+1\} & \cdots & \{n\} \\ 1\delta & \cdots & k\delta & a_1 & \cdots & a_{n-m} \end{array}\right).$$

Since A is a generating set of $\mathcal{T}_{n,m,k}$, there are $\beta_1,\cdots,\beta_s\in A$ ($s\geq 2$) such that $\beta=\beta_1\beta_2\cdots\beta_s$. By Lemma 3.10, $\operatorname{im}(\beta_s)=\operatorname{im}(\beta)$. Then there exists a k-partition $\{C_1,C_2,\cdots,C_k\}$ of X_m such that $X_n/\ker(\beta_s)=\{C_1,C_2,\cdots,C_k,\{m+1\},\cdots,\{n\}\}$. Now, we assert that there exists $\rho\in\mathcal{S}(X_k)$ such that $i\rho\in C_i$ where $i=1,\cdots,k$ (if not, there are $p,q,j\in X_k$ ($p\neq q$) such that $p,q\in C_j$. Clearly, $p,q\in\operatorname{im}(\beta_{s-1})$ and so $|\operatorname{im}(\beta)|=|\operatorname{im}(\beta_1\beta_2\cdots\beta_s)|< n-m+k$. This is a contradiction). Thus, $\beta_s\in\mathcal{L}_\kappa^{*E}$. However, $\beta_s\in A$. Therefore $A\cap\mathcal{L}_\kappa^{*E}\neq\emptyset$, as required. \square

Lemma 3.14. Let $n-m \ge 2$, and let $\alpha \in \mathcal{J}_{n-m+k-1}^*$ such that $X_m \alpha = X_k$ and $(X_n \setminus X_m) \alpha \cap X_k = \emptyset$. Then $\alpha \notin \langle \mathcal{J}_{n-m+k}^* \rangle$.

Proof. Assume that $\alpha \in \langle \mathcal{J}_{n-m+k}^* \rangle$. Then there are $\alpha_1, \cdots, \alpha_s \in \mathcal{J}_{n-m+k}^*$ $(s \geq 2)$ such that formula (14) holds. We can assert that $(X_n \setminus X_m)\alpha_i = X_n \setminus X_m$ for all $1 \leq i \leq s-1$ (if not, there exists $1 \leq j \leq s-1$ such that $(X_n \setminus X_m)\alpha_j \neq (X_n \setminus X_m)$, that is, there exists $x_0 \in X_n \setminus X_m$ such that $x_0\alpha_j \in X_m$. (a) If j = 1. Then $x_0\alpha = x_0\alpha_1 \cdots \alpha_s \in X_m\alpha_2 \cdots \alpha_s \subseteq X_k$ and so contradicting the fact that $(X_n \setminus X_m)\alpha \cap X_k = \emptyset$; (b) If j = 2. By (a), we have $(X_n \setminus X_m)\alpha = (X_n \setminus X_m)\alpha_1 \cdots \alpha_s = (X_n \setminus X_m)\alpha_2 \cdots \alpha_s$. However, $x_0\alpha_2 \cdots \alpha_s \in X_k$, this contradicts the fact that $(X_n \setminus X_m)\alpha \cap X_k = \emptyset$; Introduce contradictions in this way). By $\alpha_s \in \mathcal{J}_{n-m+k}^*$, there exists a (n-m)-element subset V of $X_n \setminus X_k$ such that $(X_n \setminus X_m)\alpha = (X_n \setminus X_m)\alpha_1 \cdots \alpha_s = (X_n \setminus X_m)\alpha_s = V$. From $X_m\alpha = X_k$, it follows that $\alpha \in \mathcal{J}_{n-m+k}^*$, contradicting the fact that $\alpha \in \mathcal{J}_{n-m+k-1}^*$. \square

Theorem 3.15. Let |X| = n, |Y| = m and |Z| = k such that k < m < n. Then

$$\operatorname{rank}(\mathcal{T}(X,Y,Z)) = \begin{cases} S(m,k) + n - k - 1, & \text{if } n - m = 1; \\ \binom{n-1}{n-m} + 2, & \text{if } k = 1 \text{ and } n - m \ge 3; \\ S(m,k) + \binom{n-k}{n-m}, & \text{otherwise.} \end{cases}$$

Proof. Since Theorem 2.2 and Corollary 3.9, we only need to prove that

$$|A| \ge \begin{cases} S(m,k) + n - k - 1, & \text{if } n - m = 1; \\ \binom{n-1}{n-m} + 2, & \text{if } k = 1 \text{ and } n - m \ge 3; \\ S(m,k) + \binom{n-k}{n-m}, & \text{if } (k,n-m) = (1,2) \text{ or } k \ge 2 \text{ and } n - m \ge 2. \end{cases}$$

for any generating set A of $\mathcal{T}_{n,m,k}$. Let

$$\Sigma = \{\mathcal{H}_{\alpha}^* : \alpha \in \mathcal{J}_{n-m+k}^*, \text{ im}(\alpha) = X_k \cup (X_n \setminus X_m)\}, \quad \Lambda = \{\mathcal{L}_{\beta}^{*E} : \beta \in \mathcal{J}_{n-m+k}^*, \text{ im}(\beta) \neq X_k \cup (X_n \setminus X_m)\}.$$

With above notation, we have the following simple observation:

$$|\Sigma| = |\mathfrak{L}| = S(m,k), \ |\Lambda| = |\mathfrak{R}| = \binom{n-k}{n-m} - 1 \text{ and } (\bigcup_{P \in \Sigma} P) \cap (\bigcup_{Q \in \Lambda} Q) = \emptyset$$
 (16)

We distinguish three cases:

Case 1: n-m = 1. Combining Lemma 3.11, Lemma 3.13 and formula (16), we have $|A| \ge S(m,k) + n - k - 1$.

Case 2 : k = 1 and $n - m \ge 3$. Combining Lemma 3.12, Lemma 3.13 and formula (16), $|A| \ge \binom{n-1}{n-m} + 1$. In fact, $|A| \ge \binom{n-1}{n-m} + 2$ (if not, $A \subseteq \mathcal{J}_{n-m+k}^*$. By Lemma 3.14, $\alpha \notin \langle \mathcal{J}_{n-m+k}^* \rangle$ where α be defined as in Lemma 3.14. Hence, $\alpha \notin \langle A \rangle$, contradicting the fact that A is a generating set of $\mathcal{T}_{n,m,k}$).

Case 3 : (*k*, *n* − *m*) = (1, 2) or $k \ge 2$ and $n - m \ge 2$. Combining Lemma 3.11, Lemma 3.13 and formula (16), $|A| \ge S(m,k) + \binom{n-k}{n-m} - 1$. Using a similar proof of case 2, $|A| \ge S(m,k) + \binom{n-k}{n-m}$. □

Acknowledgement

The author is very grateful to the anonymous reviewers for their constructive comments and suggestions, which contributed to the improved version of this paper.

References

- [1] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
- [2] G.M.S. Gomes, J.M. Howie, On the ranks of certain finite semigroups of transformations, Math. Proc. Camb. Philos. Soc., 101(3)(1987), 395–403.
- [3] J.M Howie, R.B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. R. Soc. Edinb. Sect. A, 114(3-4)(1990), 161–167
- [4] G.U. Garba, Idempotents in partial transformation semigroups, Proc. R. Soc. Edinb. Sect. A, 116(3-4)(1990), 359–366.
- [5] K.D. Magill, Subsemigroups of S(X), Math. Japon, 11(1966), 109-115.
- [6] J.S.V. Symons, Some results concerning a transformation semigroup, J. Aust. Math. Soc., 19(1975), 413–425.
- [7] P. Honyam, J. Sanwong, Semigroups of transformations with invariant set, J. Korean Math. Soc., 48(2)(2011), 289–300.
- [8] S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Mathematics and Applications, 16(3)(2005), 307-314.
- [9] J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci., Article ID 794013, 11 pages, 2008.
- [10] L. Sun, A note on abundance of certain semigroups of transformations with restricted range, Semigroup Forum, 87(2013), 681–684.
- [11] L. Sun, J.L. Sun, A natural partial order on certain semigroups of transformations with restricted range, Semigroup Forum, 92(1)(2016), 135–141.
- [12] L. Sun, L.M. Wang, Natural Partial order in semigroups of transformations with invariant set, Bull. Aust. Math. Soc., 87(1)(2013), 94–107.
- [13] Z.H. Feng, X.L. Yang, Minimal congruences on finite transformation semigroup of weak Y-stabilizer, Journal of Zhejiang University (Science Edition), 38(5)(2011), 495–496+507.

- [14] J. Sanwong, B. Singha, R.P. Sullivan, Maximal and minimal congruences on some semigroups, Acta. Math. Sin. (Engl. Ser.), 25(3)(2009), 455–466.
- [15] C. Pookpienlert, P. Honyam, J. Sanwong, Green's Relations on a Semigroup of Transformations with Restricted Range that Preserves an Equivalence Relation and a Cross-Section, Mathematics, 6(8)(2018), 134.
- [16] V.H. Fernandes, P. Honyam, T.M. Quinteiro, B. Singha, On semigroups of orientation-preserving transformations with restricted range, Communications in Algebra, 44(1)(2016), 253–264.
- [17] H.D. Ruan, T.J. You, P. Zhao, Maximal Regular Subsemibands of *Q*(*F, k*), Journal of Northeast Normal University (Natural Science Edition), 50(2)(2018), 11–15.
- [18] H.D. Ruan, T.J. You, P. Zhao, Maximal Regular Subsemibands of Q(k), Journal of Jinlin University (Science Edition), 56(2)(2018), 242–248.
- [19] J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum, 83(2011), 134-146.
- [20] J. Zhang, Y.F. Luo, On certain order-preserving transformation semigroups, Communications in Algebra, 45(7)(2017), 2980–2995.
- [21] J.L. Jin, W. Teng, F.Y. Zhu, T.J. You, Y.Y. Qu, Maximal subsemigroups of the finite transformation semigroup of weak *Y*-stabilizer, Journal of Shandong University (Natural Science), 55(10)(2020), 55–62.
- [22] V.H. Fernandes, J. Sanwong, On the ranks of semigroups of transformations on a finite set with restricted range, Algebra Colloquium, 21(3)(2014), 497–510.
- [23] J.L. Jin, F.Y. Zhu, T.J. You, Y.Y. Qu, Rank of the finite transformation semigroup of weak Y-stabilizer, Journal of Northeast Normal University (Natural Science Edition), 52(3)(2020), 50–55.
- [24] Q.F Yan, ŚF Wang, Some results on semigroups of transformations with restricted range, Open Mathematics, 19(1)(2021), 69-76.
- [25] J. Fountain, Abundant semigroups, Proc. London Math. Soc., 44(3)(1982), 103-129.
- [26] K. Toker, H.Ayık, On the rank of transformation semigroup $\mathcal{T}_{(n,m)}$, Turk. J. Math., 42(2018), 1970–1977.