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On the Rank of Semigroup of Transformations with Restricted Partial
Range

Jiulin Jin?

?School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China

Abstract. Let 7 (X) be the full transformation semigroup on a nonempty set X. For® # Z C Y C X, let
TXY,Z) ={a e T(X): Ya C Z}. Itis not difficult to see that it is a generalized form of three well-known
semigroups. This paper obtains an isomorphism theorem of 7 (X, Y, Z). In addition, when X is finite and
Z c Y c X, the rank of the semigroup 7 (X, Y, Z) is calculated.

1. Introduction

Transformation semigroups are ubiquitous in the semigroup theory because of Cayley’s Theorem which
states that every semigroup is embedded in some transformation semigroup (see [1, Theorem 1.1.2]). It is
well known that rank is a crucia concept in the semigroup theory. As usual, the rank of a semigroup S is
the smallest number of elements required to generate S defined by rank(S) = min{|A| : A C S, (A) = S}.

For a nonempty set X, let 7 (X) be the full transformation semigroup on X that is, the semigroup under
composition of all maps from X into itself. We denote by P7 (X) the monoid of all partial transformations
of X, by 7(X) the symmetric inverse semigroup on X, i.e., the submonoid of 7 (X) of all injective partial
transformations of X, and by S(X) the symmetric group on X, i.e., the subgroup of 7(X) of all injective full
transformations (permutations) of X. When X is finite, we take X = {1,2,--- , n} and write P7,,, 75, L, and
S, instead of P7 (X), 7 (X), 7(X), and S(X), respectively. For n > 3, it is well known that the rank of 7,
T n, Iy, and S, are equal to 4, 3, 3, and 2, respectively. These are well known results, and they all have
found strong support. See [1, pp. 39, 41, and 211], for example.

On the other hand, Gomes and Howie proved that the rank of the semigroup of singular mappings
Sing, = {a € 7, : |Xa| < n -1} is equal to n(n — 1)/2 in [2]. This result was later generalized by Howie
and McFadden [3] who showed that the rank of the semigroup K(n,r) = {a € 7, : |Xa| < r} is equal to
S(n,r), the Stirling number of the second kind for 2 < r < n — 1. Recall that for 1 <r <#n and n € N¥, the
Stirling number of the second kind S(#, r) is the number of r-partitions on a set of n elements, which may
be defined by the recurrence relation S(n,r) = S(n — 1, — 1) + ¥rS(n — 1,7) with S(n,1) = S(n,n) = 1. In [4],
Garba considered the semigroup P7 (n,r) = {a € PT,, : |Xa| < r} and showed that, for 2 < r < n -1, its
rank is equal to S(n + 1,7 + 1), and showed that the rank of the semigroup 7 (n,7) = {a € 1, : |Xa| < r} for
3 <r<mn-1,is () + 1. Recall that the number of ways that r objects can be chosen from n distinct objects

written (}) is given by () = (n_”—r'),,,
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Given a nonempty subset Y of X, let
TXY)={faeT(X): YaCYland T(X,Y) = {a € T(X) : Xa C Y}.

Then 7(X,Y) is a subsemigroup of 7 (X) and 7 (X,Y) is a subsemigroup of T(X,Y). In 1966, Magill [5]
introduced and studied the semigroup 7_'(X, Y). In 1975, Symons [6] introduced the semigroup 7 (X, Y), and
also described all automorphisms of 7 (X, Y). The study of semigroups ?(X, Y)and 7 (X, Y) [7-24] includes
the aspects of regularity and Green’s relations (see [7-9]), abundance and starred Green’s Relations (see
[10, 11]), natural partial order (see [11, 12]), congruence relation (see [13, 14]), (maximal) subsemigroup
with some properties (see [15-21]), and rank (see [22, 23]), etc.

In this paper, we consider the subsemigroup 7 (X, Y, Z) of 7 (X) defined by

TX,Y,Z)={a e T(X): YaC Z)

where 0 # Z C Y C X, and we call it the semigroup of transformations with restricted partial range on X.
Clearly, the semigroup 7 (X, Y, Z) is a generalization of semigroups 7 (X), ?(X, Y), and 7 (X, Z), that is,

eif Z=Y,then7T(X,Y,Z) = T (X, Y);

eif Y =X, thenT(X,Y,Z2) =T (X, Z);

oif Z=Y=X,thenT (X, Y, Z) = T (X).

For the case Z = Y = X it is easy to see that rank(7 (X, Y, Z)) = rank(7 (X)).

For the case Z C Y = X. Fernandes and Sanwong [22, Theorem 2.3] presented the following result.

Lemma 1.1. [22, Theorem 2.3] Let |X| = n, |Z| = k and k < n. Then rank(7 (X, Z)) = S(n, k).
For the case Z = Y C X. The author [23, Theorem 1] presented the following result.
Lemma 1.2. [23, Theorem 1] Let |X| = n, |Y| = m. Then

, ifn=1;

if(n,m)=2,1)orm=n=2;
if(n,m)=3,1)or(n,m)=3,2)orm=n>3;
ifn>4andm=1orn>4andm=n-1;

, fn>4and2<m<n-2.

~

rank(7°(X, Y)) =

~

TR LN~

The motivation of this study is to compute the rank of 7 (X, Y, Z) when X is finiteand Z c Y C X.
Throughout this paper, we always assume that X is a chain with # (n > 3) elements, say X = {1 <2 <
- < n}. Also, we assume that @ # Z C Y € X. We write functions on the right; in particular, this means
that for a composition af, a is applied first. For any sets A and B, we denote by |A| the cardinality of A, and
write A\B={ae€A:a¢ B}.

2. Isomorphism of 7 (X, Y, Z)

In this section, we aim to prove an isomorphism theorem of 7(X,Y,Z) whenZ Cc Y C X.

Let S be a subsemigroup of 7 (X). Then SNH(X) (where H(X) is the set of transformations whose image
has cardinality one: the constant functions) will be abbreviated to H(S). Symons [6, Theorem 1.1] proved
the following lemma.

Lemma 2.1. [6, Theorem 1.1] Let S, T are both subsemigroups of T (X) such that H(S), H(T) # 0. If p : S — T is
an isomorphism. Then H(S)¢p = H(T).

We can now present the main result of this section.

Theorem 2.2. Let Z;, Y; are both nonempty subset of X with Z; C Y; C X for i = 1,2. Then T(X,Y1,2Z1) =
T (X, Y2, Zy) if and only if |Y1| = |Y2| and |Z1| = |Z,].
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Proof. Let T(X,Y1,Z1) = T(X,Y2,Z;) and let ¢ : T (X, Y1,Z1) — T(X,Y2,Z,) is an isomorphism. First ob-
serve that 7(X, Y1, Z1), T (X, Y2, Z,) are both subsemigroups of 7 (X) and H(7 (X, Y1, Z1)), H(T (X, Y2, Zy)) #
0. Using Lemma 2.1, it follows that H(7(X,Y1,Z1))p = H(T (X, Y2, Z3)). Clearly, |H(T (X, Y1,21))| =
H(T (X, Y2, Zo))l and |H(T(X,Yi, Z))l = |Zi| for i = 1,2. Hence |Zi| = |Z,|. It is easy to compute that
1T (X, Y, Z)| = |Z;|¥1-n"Nil for i = 1,2 (n = |X]). By hypothesis, we have |7 (X, Y1,Z1)| = |7 (X, Y2, Z,)| and so
|Z1 |1l p=Ml = | Zy P2l g2l which can be simplified to |Z; V12! = »yVi=Y2l (by |Z3] = |Z,]). Since |Z4] < n.
It follows that [Y1| = |Y>|.

Conversely, let |Yq| = |Y>| and |Z;| = |Z,|. Since Z; C Yy € X (or Z; C Y, C X). Then there exist some
bijections

f:Z1—>Z2, g:Yl\Z1—>Y2\Z2 and hX\Y1—>X\Y2
For each a € 7(X, Y1, Z,), we define

xflaf, ifxeZy;
xglaf, ifxeYy\Zy

xa={ xhlaf, ifxeX\Yyandxhlae€Z;
xhlag, ifxeX\Yyand xhla€ Y\ Zy;
xhlah, ifxeX\Y,andxh la e X\ Y.

Itis easy to verify thata € 7(X, Yy, Z;). Define ¢ : 7(X,Y1,2Z1) = T (X, Y2, Zo)byadp =a (@ € T(X,Y1,Z1)).
Clearly, ¢ is well defined. Next, we verify that ¢ is a bijection. Let o, f € 7(X, Y1, Z1) such that @ # 8, then
Xoa # xof for some xj € X. To do this, we distinguish three cases:

Case 1: xp € Z;. Then xof € Z, and so (xof)@ = xof f'af = xoaf # xopf = xof fBf = (x0f)B-
Case 2: xg € Y1\ Z;. Then xog € Y \ Z, and so (xo9)a = x099 ' af = xoaf # xof = x099~ 'Bf = (x0g)B-
Case 3: xp € X\ Yq. Then xph € X \ Y, and so

X()hh_lo(f = X()O(f * X()ﬁf = Xohh_lﬁf (X() )B if xoar, xoﬁ €”Zq;
xohhlaf = xoaf # x0Bfg = xohh™'Bg = (xoh)B, if xoa € Z1, xof € Y1\ Z1;
xohh‘af = xoaf # xoph = xohh™'Bh = (xoh)B, if xoa € Z3, xop € X \ Y1;
xohh‘ag = xoag # xoBf = xohh™'Bf = (xoh)B, if xoa € Y1\ Z1, x0f € Z3;
(xoh)a =3 xohh™tag = xpag # xofg = xohh™'Bg = (xoh)B,  if xoa, x0f € Y1\ Z3;
xohhtag = xoag # xoph = xohh™'ph = (xoh)B, if xoar € Y1\ Z1, xoB € X\ Y3;
Xohhilah = xoath # XQ‘Bf = xOhhilﬁf (XQ )E if xpa € X\ Yy, X()ﬁ €7
xohh™ah = xoah # xofg = xohh™'Bg = (xoh)B, if xopa € X\ Y1, x0f € Y1\ Z3;
xXohh™Yah = xoah # xoph = xohh™'ph = (xoh)B,  if xot, xof € X \ Y1.

Thus, we have @ #  and so ¢ is one-to-one. Since |7°(X, Y;, Z))| = |1Z;|¥ - 0¥ for i = 1,2 and |Zy| = |Za],
[Y1] = [Y2l, it follows that |7 (X, Y1, Z1)| = |7 (X, Y2, Z5)|. Therefore, we obtain that ¢ is a bijection.

Finally, we verify that ¢ is a morphism, thatis, (a¢)(B¢) = (af)¢ foralla, p € T (X, Y1, Z1). We distinguish
five cases:

Case 1: x € Zy. Thenxa = xf'af € Z, and so x(ap)(Bp) = xap = (xa)f~'Bf = xfaf f1f = xflapf =
xaf = x(ap)o.

Case2: x € Y\ Zy. Then x&@ = xg'af € Z, and so x(ap)(Bo) = xap = (xa)f'Bf = xg 'aff'Bf =
xg~'apf = xap = x(ap)¢. B

Case3: x € X\ Yy and xh'a € Z;. Then xa = xhlaf € Z,, xh 'ap € Z; and so x(ad)(B) = xap =
(@ ff = xh7 af fIBf = xh7lapf = xap = x(ap)g.

Case4: x € X\ Y, and xhita € Y1\ Z;. Then xa = xh lag € Y, \ Zy, xh™'ap € Z; and so x(ad)(Bp) =
Xap = (<@g pf = xh”agg " pf = xh~'apf = xap = x(ap)p.
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Case5: xe X\ Y,and xh'a e X\ Yy. Then xa = xh~lah € X\ Y, and so

(xa)h 'Bf = xh \ahh™Bf = xh 'aBf = xaf = x(ap)p, if xh'ap € Zy;
x(ap)(Bp) = xap ={ (x@)h By = xh'ahh™'Bg = xh 'apyg = xap = x(ap)p, if xhlape Y\ Zy;
(xa)h~'ph = xh~ ahh™'ph = xh ' aph = xap = x(af)p, if xh'ape X\ Y;.

In summary, ¢ : 7(X, Y1,Z1) = 7 (X, Y3, Z,) is an isomorphism. Therefore, it follows that 7 (X, Y1, Z;) =
T(X,Yo,75), as desired. [

3. Rank of 7(X, Y, Z)

For each p € N*, we denote by X, theset {1 <2 <---<p}l. If 0 # Z C Y C X with [Y| = m, |Z] = k. By
Theorem 2.2, we have 7 (X, Y, Z) = 7 (X,;, X;n, Xi). Based on that, we shall enough to consider the semigroup
T (Xy, Xim, Xk). For convenience, we will write 77, ,,  for the semigroup 7 (X, X;u, Xk), where k < m < n.

If o € T, x, we will write im(a) for the image of a. The kernel of « is the equivalence ker(a) = {(x, y) €
Xy X Xy © xa = ya}. From Fountain [25], on the semigroup S the relation £ (respectively %”) is defined by
the rule that (a,b) € " (respectively #*) if and only if the elements 4, b are related by the Green’s relation
Z (respectively #) in some oversemigroup of S. The intersection of the equivalences . and %" is denoted
by . Since T,k is a subsemigroup of 7, the starred Green’s relations in 77, x can be characterized as:
For a,B € Tk,

o (o, B) € " if and only if im(a) = im(B);

o (o, p) € #* if and only if ker(ar) = ker(B);

o (a,p) € 2" if and only if im(a) = im(p) and ker(a) = ker(p).

Moreover, we define a equivalence ¢ by

e (a,p) € 7 if and only if [im(a)| = im(B)|.

Then ", %* C _7*. Leta € T, k. We denote by L, R;,,
of a, respectively.

Let @ € Ty k. From X, € X, we obtain that im(a) = Xpua U (X, \ Xp)a € Xx U (X, \ Xim)a. Then

1 < lim(a)l <n—m+k. Thus 7, ux hasn —m +k ¢ *-classes, namely 77,73, - Tk where

and H;, the £*-class, #*-class, and .#*-class

J; =1 € Tymk : im(a)| = 1}

forl <r<n-m+k. If[im(a)| = rwith 1 < r < n—m+k, then there exists s € X, such that a can be expressed

as
H

where

eAix=g;foralll <i<r

o {A1,Az, -+, A} is ar-partition of X, such thatfor1 <j<s, AjNX,, #0,andforl>s+1,A,NX, =0;
and

®ay,a, - ,a, are distinct elements of X, such that for 1 < j <, a; € X.

Lemma3.1. Letn—m+k2>3. Then J; C(J ) foralll <r<n-m+k-2.

Proof. Suppose first that 1 < r <n—-m+k—2and a € J;. Then a can be expressed as (1). Recall that
im(a) C X, we can choose yo € X;, \ im(a). If j > s + 1, we also choose b; € A;. We distinguish two cases:

Case1: s = k. By formula (1) we obtain that {a1,a5,--- ,a;} = X;. Note that a € J; where 1 < r <
n—m + k — 2. Then there exist xg € X,, \ X,;, i € X, such that xy € A; with |A;| > 2.
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(@) If 1 <i <s. Then define two mappings f: X, = X, and y : X, = X,, by

I, ifxeAforl<I<s, l+i a,, ifl<x<s;
i if x € A; \ {xo}; ) a4, ifs+1<x<m
Xp = s+1, ifx=uxp; Y= a, ifx=bfors+1<t<r (2)
by, ifxeA;fors+1<t<r. Yo, otherewise.

According to the given conditions, it is easy to see that A;(fy) = a; forall 1 <i <r. Then a = fy. Next, we
verify that 8,y € J;. Note that yoy‘l =X, \{1,---,s8,s+1,--- ,m,bsy1,-+- ,b,}. Sincel <r<n-m+k-2
ands =k, wehave |yoy =n—(m+r—s)>n-m—-r+k>n-m-(m-m+k-2)+k=2and so yoy™* #0.
Clearly, im(g) = {1,---,5,58 + 1,bs41,--- , by} and im(y) = {ay,--- ,a,, yo}. Combining formula (1), it follows
that X,,f, X,y € Xi and thus 5,y € J;.

(b) If s +1 <i < r. Then define two mappings § : X, = X, and y : X,, — X, by

a, ifl<x<s;

I, ifxeAforl<I<s; a ifs+1<x<m
R _ . Ss = - 4
X = o, %fx—xo, oxy =1 a4, ifx=uxp
by, ifxeAifors+1<t<r t+#i a ifx=b fors+1<t<r;
bie A\ fxol, ifx € A\ xol. . t S

Yo, otherwise.

Case 2: s < k. By formula (1) we obtain that {a1,a2,--- ,as} C Xi. Then there exist xg € X,,,, i € X; such
that xg € A; with |A;] > 2.

(a) If im(a) N Xk C Xk. Then we can take a9 € Xi \ (im(a) N Xj). Let p be defined as (2) and define a
mapping y : X, — X, by

a, ifl<x<s;

a;, ifx=s+1;

a, fx=bfors+1<t<r
ag, otherwise.

xy =

(b) If im(a)N Xy = Xi. Then there existk—s elementsa;,,--- ,a;,_, € {as41,--- ,a,} suchthat{ay, -, a5, 4, -
a;,_.} = X. We define two mappings § : X, — X, and y : X, — X,, by

4

I, ifxeAforl<I<s, l+#i
i ifxeAi\{xg};
xp={ s+1, if x = xp;
s+p+1, ifxeA forl<p<k-s;
by, ifxeAifors+1<t<r té&{ir, -, ik

a,, ifl<x<s;

a;, ifx=s+lork+2<x<m;

xy =3 a,, ifx=s+p+lforl<p<k-s;

a;, ifx=bfors+1<t<r, t¢{in, -, i}
Yo, otherwise.

For both cases, similar to case 1 (a), it is easy to verify that 8, € J,; and @ = fy. Hence, J; € (7, ;). O

For k,m,n € IN* such that k < m < n, we define a mapping A : X, = X, by

k, ifk+1<x<m
xA=3 n-1, ifx=mn; 3
X, otherwise.

Now we state and prove the following lemma.
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Lemma 3.2. Let A be defined as (3). Then the following statements hold:
@ forn=m=1,T,_ 1 AT i

(i) forn-m=2,9"_ . ST . YIAD.

Proof. Suppose first that a € I
is

_mk_1- Then a can be expressed as (1) (Here, we take r = n —m +k — 1), that

S
a= [ A ] @
b N<isn—-m+k-1
Clearly, im(@) C X, so we can choose 1o € X, \ im(a). If j > s + 1, we also choose b; € A;.
(i) Letn —m =1. Thenn —m + k — 1 = k in (4). We distinguish two cases:
Case1:s = k. Then im(a) = {a1,ay, - ,as} = X and so there exists i € X; such that n € A; with |A;| > 2.
We define two mappings f : X, — X, and y : X,, — X, by

I, ifxeAforl<I<s l+i a,, ifl<x<s;
xp = i, ifxeA;\{n}; xy=3 a, ifs+1<x<m
m, ifx=n. Yo, ifx=n.

Case2:s=k—1. Then Ay = Ass1 = {n} and so there exist xg € X,,,, i € X, such that xg € A; with |A;| > 2.
(a) If ar € Xi. Then im(a) = X;. We define two mappings f: X, — X, and y : X;, — X, by

1, ifxeAforl<Il<s [+i a,, ifl<x<s;
], if x € Ai \ {x0}; ) oa, ifx=s+1;
p = s+1, ifx=uxg V= ap, ifs+2<x<m;
s+2, ifx=n. Yo, ifx=n.

(b) If ar ¢ Xi. We may take ap € Xi \ im(a) and define two mappings : X, — X, and y : X, — X,, by

1 ifxeAforl<Il<s [+i a,, ifl<x<s;

], if x € Ai \ {xo}; _)oa, ifx=s+1;
Xp = s+1, ifx=uxg Xy = a, ifx=mn;

n, if x = n. ag, otherwise.

For both cases, it is easy to verify that,y € J_ .,
establishing (i).

(ii) To show that g~ . | €T ., U{A}) for n —m > 2. We distinguish two cases:

Case1:s =k. Then {aj,ay,--- ,as} = Xy and there exist xg € X,, \ X1, i € X,_msk—1 such that xo € A; with
|Aj] > 2.

(@ If 1 <i <s. Then B,y be defined as (2) (Here, we take ¥ = n —m + k — 1). Clearly, « = By and
ﬁ 7V E j 1:7m+k’

(b)Ifs+1<i<n-—m+k—1. Wedefine two mappings f: X, — X, and y : X, = X,, by

a = By, and thisis clearly equivalenttoa € (J;_ ..,

1, ifxeA forl<l<s;
n, if x = xg;
xp=4 n-1, if x € A; \ {xo};
m+t—k, ifxeAfors+1<t<i-1;

m+p—k-1, ifxeA,fori+1<p<n-m+k-1
a, ifl<x<s;

a;, ifs+1<x<m;

| oa, ifx=m+t—kfors+1<t<i-1;

7= ay, ifx=m+p-k-1fori+1<p<n-m+k-1;
a, ifx=n-1;

Yo, ifx=n.
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Clearly,a = Ay and B,y € T

n—m+k

Case 2:s =k — 1. Using a similar proof of case 2 of Lemma 3.1, a = fyand 8,y € J,_, .,
For both cases, a € (7 _ .. U{A}), giving (ii) O
Using Lemma 3.1 and Lemma 3.2, we have the following corollary:

Corollary 3.3. Let A be defined as (3). Then the following statements hold:
() for n=m =1, Tomie = (T
(i) forn—m =2, Tymr =T, _,.x YI{AD.
For k,m,n € IN* such that k < m < n, we define a mapping € : X, — X, by

_Jx, ifl<x<korm+1<x<m 5
Y=\ &k ifk+l<x<m. ®)

Thenee g, _ .. and

7'@:{( {1 - k=1 Xp\Xpa | im+1} - {n})

lo -+ (k=10 ko m+1p --- mnp

‘0 € S(Xk)r pe S(Xn \ Xm)} (6)
is a group #*-class containing e. Clearly, H; = S(Xx) X S(X; \ Xin).

The following lemma was proved by Toker and Ayik [26, Lemma 3].
Lemma 3.4. [26, Lemma 3] Let p,q € N*. Then

1L if(pg)=(1,1),(1,2)0r(2,1),

rank(S(X;) x 5(Xy)) = { 2, otherwise.

If (k,n —m) = (1,1),(1,2) or (2,1). We know from Lemma 3.4 that there exists 0,, ,,x € H: such that

7_(; = <{6n,m,k}>~ (7)
Otherwise there exist two elements vy, k, V7, mx € H such that
7{; = <{Un,m,kr U’n,m,k}>- (8)
Obviously, there are 01, 02 € S(X), p1, p2 € S(Xin \ Xi) such that vy, sk, U/ m are expressed respectively as
o[ k=1 X\ X | 1) ) o
ik =\ 16y - (k—=1)oq ko, (m+1p1 --- npx
(o k=1 X\ Xt | m+1p o {n}
Dl = ( loy - (k=Dor ko |(m+Dpy - npy ) {10
We write
S (WUAX0 @ e K| me e ) a
nmk lo7'o, 207'0y -+ kojlop | (m+1)pyte2 o mpilps

Clearly, v/, mk = VnmiTnmi and Ty € L. By formula (8) we get that

7‘12 c <{vn,m,k/ Tn,m,k}>~ (12)

Let € be defined as (5), we denote by £ the set of a single arbitrary element from each .7#*-class contained
in £;. In addition, we denote by R the set of a single arbitrary element from each .7#*-class contained in
R\ H. In fact,

e £ C L7, and for all @ € L}, the intersection of £ and H, has exactly one element;

e R C R\ H;, and for all B € R \ H;, the intersection of R and 7-(; has exactly one element.
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Lemma 3.5. Let H; be defined as (6). Then the following statements hold:
(i) H, € aH: forall a € L.
(i) Hy € HP forall p € R.

Proof. Let a € £. From definition of £ we know that o € £ and so im(a) = im(e). Then «a can be expressed
as

(A A
a_(lo -oo ko

m+1y -+ {n}
m+1p --- mnp

where (A;, -+, Ay} is a k-partition of X,,, 0 € S(Xi) and p € S(X,, \ X,). For each y € H;, there exist
¢ € S(Xk), ¢ € S(X,, \ X,,) such that y can be expressed as

(A e A fm+1) - {n)
Let
C= 1 - X\ Xk {m+1} {n}
"\ 1ot - kol | (m+1pte -+ nple |

Clearly, y = aC and C € H. It is immediate that y € aH; and so H, C aH; as required. (ii) follows in
similar way. [

Let H;, Onmis Vnmks Vnmir Tnmi De respectively defined as (6), (7), (9), (10), (11), and let

(1L URT\ H) U (64, if (k1 — m) = (1,1), (1,2) or (2,1);
Opmr =4 ([LURI\H) U vnmkr, Vnmk)s ifk=1landn—-m=>3; (13)
([CURI\ [H:U W;,,,m,k]) U{Vnmi, Tumkl, otherwise.

Using formulas (7), (8), (12), and Lemma 3.5, we have the following corollary.
Corollary 3.6. L; UR: C (O, ).
Lemma 3.7. Let ©,,x be defined as (13). Then T,

—m+k

c <®n,m,k>-
Proof. Foreacha € g, there exist a k-partition {Ay,--- , A¢} of X, a subset {ay, - -+, ay—m} of Xy, \ Xy and

0 € 8(X) such that a can be expressed as

=15 - kS 0 O

Let
(A A1) e ) () e X\ X [ 1) e )
p= 1 - k|l m+1 --- n ) V= 15 - ko a e pem |

Clearly, g € L, y € R, where € be defined as (5). It is easy to versify that @ = fy. From Corollary 3.6, we
have 8,y € (®,, ) and thus «a € (@, ). Therefore, T _ (®y,m k), as required. [

-
n—m+k =
By Lemma 3.7 and Corollary 3.3, we have the following corollary.
Corollary 3.8. Let A, Oy, .« be defined as (3), (13), respectively. Then the following statements hold:
(i)fOT’ n-m=1, 7Un,m,k = <@n,m,k>~

() forn —m =2, Tymi = (O i U {A}).
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Recall that

oif (k,n—m)=(1,1),(1,2) or (2,1), Oy mi € H;

eifk=1andn—m =3, vymk, Vumk € H: and vy pi # Uy mps

o otherwise v,y x € H; and Ty, € L\ H.

By definitions of £ and R, we have £NR =0, LN H;| = 1 and RN H; = 0. It is also easy to show
that || = S(m, k) (recall that S(m, k) is the Stirling number of the second kind) and |R| = (;’__’1‘1) — 1. Thus

1€ UR| = S(m, k) + (") —1. Combining formula (13), we have

n—m
@, = ICURI+1=("))+1, ifk=landn-m>3;
mmkET e USR] = S(m, k) + (;__7’; )—1, otherwise.

Using Corollary 3.8, we obtain the following corollary.
Corollary 3.9.

Smky+n—-k-1, ifn-m=1;
rank (7 p,mx) < (:__,}1) +2, ifk=1andn—-m=3;
S(m, k) + ("5, otherwise.

Let A is a generating set of 75, x, and leta € I ik Then there are ay,--- ,as € A (s > 2) such that
a = a1y - As. (14)

Then we can claim that

e forall i, a; € J;_er (if not, there exists j such that a; ¢ j;_m+k, then |im(a;)| < n —m + k and so
[im(a)| = im(aiaz - - )| < n —m + k, contradicting the fact that o € k)

o ker(a) = ker(a;) (By ker(aq) C ker(aqas - - - as) = ker(a) and [im(a;)| = [im(a)]);

e im(a) = im(a;) (By im(a) = im(a1az - - - a5) € im(a;) and [im(as)| = [im(a)l).

Hence, we proved the following:

Lemma 3.10. Let A is a generating set of T, and let o € J* Then there are aq,--- ,as € A (s > 2) such

that a = anay - - - as and the following statements hold: o
@) foralli,ai € J;_ ..

(ii) ker(ar) = ker(a).

(iii) im(a) = im(as).

Lemma 3.11. Let A is a generating set of Tpmi, and let @ € ik such that im(a) = X U (X, \ X;,,). Then
ANH;, #0.

Proof. Note that im(a) = X U (X, \ X)) and X € Xi. Then Xj,a = Xi and (X, \ Xp)a = Xy \ X
Since A is a generating set of 7, there are a,--- ,a; € A (s > 2) such that formula (14) holds. From
Lemma 3.10 we obtain that ker(a) = ker(a;). In fact, im(a) = im(a7) (if not, there exists a € im(ay) such
that a ¢ im(a) = X, U (X, \ X;). Then a € X, \ X; and so there exists ar € X, \ X,, such that asay = a.
Note that X,,a; C X for all i. Thus, ara = ara1ap---as = aar ---as € Xy, this contradicts the fact that
(X \ Xm)a = X, \ Xi). Then a; € H;,. Note that oy € A. Hence, A N H, # 0 as required. [

Lemma 3.12. Let k =1, n —m > 3 and let A is a generating set of T mj. Then |A N H;| > 2 where H be defined
as (5).

Proof. From formula (5) we know thatim(e) = X; U (X, \ X,). By Lemma 3.11, we have ANH; # 0, in other
words [ANH;| > 1.
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To show that |A N H;| > 2. Assume that |A N H;| = 1. Then there exists an element 8 of 77, ,, x such that
A NH; = {B). By formula (6), there exists p1 € S(X,, \ X)) such that

ﬁ=(X1’”

Fork =1, n—m > 3, from Lemma 3.4 we know that (A N H) = ({B}) € H; if B is unique element of A.
Then (A) # Tmx, contradicting the hypothesis of the lemma. Now, let @ € H;. Since A is a generating set
of Ty mk, there are ay,--- ,as € A (s > 2) such that formula (14) holds. We can assert that, for all i, a; € H
(if not, there exists j such that a; ¢ H:, from Lemma 3.10 we know that a €T k" Then there exist some
distinct elements aq, - -+ ,a,_, € X, \ X with {ay, -+, a,_m} # X, \ X, such that

Ck]'=(Xm {m+1} .- {n})

m+1y -+ {n}
m+1py --- np;

1 al oo an_m

Clearly, if j = s, then, by Lemma 3.10, {1} U (X, \ X;;) = im(@) = im(as) = im(a;) = {1,a1,--+ ,a4-}. This
is a contradiction; otherwise, from {aq, - ,4,_n} # Xu \ X;» we know that there exists l € {m +1,---,n}
such that a; € Xj,. Then (X, U {lD)ajaj1 = {1,a}ajp1 = {1} and so [im(aja 1) < n —m + k. Hence [im(B)| =
im(aiaz -+~ as)] < n—m + k. This is also a contradiction). Since A N H; = {B}, we have ay, -, a5 € ({B).
It is immediate that a € ({8}) € H; and so H; \ ({B}) cannot be generated by the set A, contradicting the
hypothesis of the lemma. 0O

Foreachx € J MY let
LE=peLi:(VijeXyi#|)ip+jp). (15)
Lemma 3.13. Let A is a generating set of Tymk, and let o € J_ ., such that im(a) # Xg U (X, \ Xy). Then

ANLE 0.

Proof. Let B € L. By (15),if # jp foralli,j € X (i # j). Observe that f € £, and im(a) # Xi U (X; \ Xin)-
Then im(B) # Xix U (X, \ Xin) and so there exist a k-partition {By,:-- ,Bi} (i€ Bi, i =1,--- ,k) of X,;, (n — m)-
element subset {a1, -+, ay—n} (a1, , an-m} # Xi \ Xim) of X \ Xy and ¢ € S(Xi) such that  can be expressed
as

fm+1} - {n}
a 7 -

B, -+ By
S
Since A is a generating set of 7, there are B1,---,fs € A (s = 2) such that B = f1f2---Bs. By
Lemma 3.10, im(f;) = im(B). Then there exists a k-partition {Cy,Cy, -+, Ci} of X, such that X,/ ker(Bs) =
{C1,Co -+ ,Cr, {m + 1},--- ,{n}}). Now, we assert that there exists p € S(Xi) such that ip € C; where
i =1,---,k (if not, there are p,q,j € Xy (p # q) such that p,q € C;. Clearly, p,q € im(fs-1) and so
im(B)| = im(B1B2 - Bs)| < n —m + k. This is a contradiction). Thus, f; € LE. However, Bs € A. Therefore
AN LE +0,asrequired. O
Lemma3.14. Letn—-m > 2,andleta € J;_ .  suchthat Xy = Xy and (Xy\Xm)aNXy = 0. Thena ¢J_ )
Proof. Assume that a € (J k) Then there are ay,--- ,a5 € J;_ .. (s > 2) such that formula (14) holds.
We can assert that (X, \ X;)a; = X, \ X, for all 1 < i < s -1 (if not, there exists 1 < j < s — 1 such
that (X, \ X;)a; # (Xi \ Xi), that is, there exists xg € X, \ X, such that xoa; € X;,. (a) If j = 1. Then
Xoa = Xpa1 -+ s € Xy -+ - a5 € Xy and so contradicting the fact that (X, \ Xy)a N Xx = 0; (b) If j = 2. By
(a), we have (X, \ X;)a = (X, \ Xp)ar -+ as = (X, \ Xip)an - - - as. However, xpa; - - - a5 € X, this contradicts
the fact that (X, \ X,;)a N X; = 0; Introduce contradictions in this way). By as; € 7 ok there exists a
(n — m)-element subset V of X, \ Xj such that (X, \ X;))a = (X, \ Xp)ar---as = (X, \ Xip)as = V. From
Xma = X, it follows that a € 7 contradicting the fact that o € I O

—m+k’ —m+k-1"
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Theorem 3.15. Let |X| =n, |Y| = mand |Z| = k such that k < m < n. Then

Smk)y+n—-k-1, ifn-m=1;
rank(7(X,Y,2)) ={ (12,) +2, ifk=Tandn—m>3;
S(m, k) + (7F), otherwise.

Proof. Since Theorem 2.2 and Corollary 3.9, we only need to prove that

Smk)y+n—-k-1, ifn-m=1;

Al={ (I +2, ifk=1andn-m>3;
S(m, k) + ("F), if (k,n—m)=(1,2)ork>2and n—m> 2.

for any generating set A of 7, .. Let
S={H,:aeJ, .., im@)=XUX,\Xp), A= {1;;5 BET i IM(B) # Xi U (X, \ X))

With above notation, we have the following simple observation:

% = 12| = S(m, k), |A|:|m|:( ) )—1and(UP)ﬂ(UQ)=0 (16)

n—k
n—m Pex QeA

We distinguish three cases:
Case 1:n—m = 1. Combining Lemma 3.11, Lemma 3.13 and formula (16), we have |A| > S(m, k) +n—k-1.

Case2:k=1and n—m > 3. Combining Lemma 3.12, Lemma 3.13 and formula (16), |A| > (::,}1) +1. In
fact, |A| > (:__,}1) +2 (ifnot, AC S By Lemma 3.14, a ¢ (J,_, .,) where a be defined as in Lemma 3.14.

n—m+k’

Hence, a ¢ (A), contradicting the fact that A is a generating set of 77, . ).
Case 3 :(k,n—m) = (1,2) ork > 2 and n—m > 2. Combining Lemma 3.11, Lemma 3.13 and formula (16),

|A| = S(m, k) + (:—_:}:1) — 1. Using a similar proof of case 2, |A| > S(m, k) + M. o

n—m
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