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On Block Diagonal Majorization and Basic Sequences
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Abstract. In this paper we generalize (finite) block diagonal matrices to infinite dimensions and then by
using block diagonal row stochastic matrices (as a special case), we define the relation <, on ¢y, which is
said block diagonal majorization. We also obtain some important properties of Py, the set of all bounded
linear operators T : ¢g — ¢, which preserve <, . Further, it is obtained necessary conditions for a bounded
linear operator T on ¢, to be a preserver of the block diagonal majorization <,, . Also, the notion of the

basic sequences correspond to block diagonal row stochastic matrices with description of some relevant
examples will be discussed.

1. Introduction

In 1992, Pierce obtained a survey of linear preserver problemmas [8]. The standard work on the theory
of majorization and its applications is given by Marshall and Olkin in [7] and for relative papers, see [1-6].

We will make the following assumptions: ¢; is the Banach space of all real sequences converge to zero
with the supremum norm. An elemmaent x = (x,,) € ¢y can be represented by Y ¥ie;, where e; : N — R
is defined by e;(j) = 0;j, the Kronecker delta. Also, M,, denotes the set of all # X n real matrices.

Recently, Armandnejad and Passandi [2] considered the notion of block diagonal majorization on ¢y and
find the possible structure of the bounded linear operator T : ¢g — ¢y which preserve <, block diagonal
majorization on ¢p. We denote the set of such operators by Pp,;.

In the next section, we introduce the notion of the basic sequence corresponds to a block diagonal row
stochastic matrix. Also, we investigate some important properties of s, and we show for any block
diagonal row stochastic matrix, there corresponds uniquely a bounded linear operator with norm 1 on ¢
which is called block diagonal row stochastic operator. We obtain necessary conditions for a bounded linear

operator T : ¢g — ¢o to be a preserve of block diagonal majorization. Moreover, some relevant examples are
given.

2. Main results

For the convenience of the reader, we repeat the relevant material. We recall that a square matrix with
nonnegative entries is called row stochastic if all its row sums equal 1. For x,y € ¢y, we say that x is row
stochastic majorized by y, denoted by x <_ vy if there exists a row stochastic matrix R such that x = Ry.
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Definition 2.1. [2] (i) Let (n;)ien be a sequence in IN and for any i € N let R,, € M, be a row stochastic matrix.
Then R = &2 Ry,, that is

-
Rl’l1 Oﬂl X1y On1Xn3 On1 X1y
OHzXn1 RVlz OHzXVlj, Ol’lzXH4

O‘rl3><‘rll On3><n2 RVl3 On3><n4

L

is called a block diagonal row stochastic matrix, where Oy, xn ;18 the zero nj X nj matrix.
(ii) For x, y € ¢o, we say that x is block diagonal majorized by y, denoted by x <,, vy if there exists a block diagonal
row stochastic matrix R such that x = Ry. Also, x is said to be block diagonal equivalent to y, and denoted by x ~,, v,

whenever x <, yand y <,, X.

In what follows, we denote My, for the set of all N x IN block diagonal row stochastic matrix.

Example 2.2. The following matrix

1000000
01 10000
0 20000
00013+ 1 1o
000t 1o
000131 1 2o

is a block diagonal row stochastic matrix.

In this part, we introduce the basic sequence of any block diagonal row stochastic matrix and obtain that it
is not unique. Also, the supersequence of any real sequence is defined. Some important properties of the
basic sequences will be investigated.

Definition 2.3. Let (x,,) and (y,) be two real sequences. If there exists a sequence (k,) in IN such that
Yyr=x1+-+Xg,

yZ = xk1+1 +oeet xk1+k21

Y3 = Xy tkp+1 T 0t Xy ko ks s

Then we say that the real sequence (y,) is a supersequence of (x,) and denoted by (x,) << (Yn).
Remark 2.4. Let x = (x,) and y = (y,) be two real sequences. If (x,) << (y»), then we have the following assertions.
(i) Ifx >0, then y > 0. Also, in this case, Y >4 x, converges if and only if Y7 y, converges.
(i) llylh < llxllz.
(iii) Let (np)ken be a sequence in N and e = (1,1,1,...) be the constant sequence. Then e << (ny).

(iv) (xn) < (xy,); (which implies by considering (k,) = e).
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Remark 2.5. The relation < is a partial ordering on the set of all sequences in IN.

Proof. Reflexivity follows from (iv), Remark 2.4. Suppose that (1m;) and (#;) are both two sequences in IN
with (m;) < (n;) and (n;) < (m;). Then there are natural numbers k; and s such that m; = ny + -+ + 1y,
and ny = my + -+ + mg,. So, we have m; < ny < my and therefore m; = ny. A similar argument show
that my = ny. This implies (m;) = (n;), i.e., the relation < is antisymmetric. To show transitivity of <, let
]f1+~--+k,' ll+"-+l] m;.
]=k1+"'+kl‘,1+1 t211+---+l7_1+1

vkt R o1 SRS L+l . ‘ ‘
Thus we have p; = Z]':k1+~.+k,,1+1 nj = Z]-:k1+..i+k,;l+1 Zt=11+---+z,_1+1 m;, which shows (m;) < (p;). O

(m;) < (n;) < (pi). Then each p; is of the form }, nj and each n; is of the form },

Definition 2.6. Let R € My,,. Then we say (n;)ien is a basic sequence of R if there is a sequence of matrices (R,)
such that R = &7, Ry, and each Ry, € My, is a row stochastic matrix. If (n;)ieN is a constant sequence, we say R is of
constant basic sequence.

Obviously, the basic sequence of any matrix R € My, is not unique.
For example, the constant sequence e = (1,1,1,...) is a basic sequence of the identity matrix I. Also,
(2,2,2,...),(3,3,3,...)and (1,2, 3, ...) are all basic sequences of I.

Theorem 2.7. Suppose that (m;) is a basic sequence of the matrix R € Myg, and (m;) << (n;). Then (n;) is a basic
sequence of R, but not vice versa.

Proof. By using the assumptions it follows that there is a sequence of natural numbers (k;) such that

n1:m1+~-+mk1,

n2 :mk]+1 +..‘+mkz/

Since (m;) is a basic sequence of R, so

Ry O
R=| O R

where any R; is an m; X m; row stochastic matrix. Put
y

R O O Ry O O
S1 = o . 0] , Sy = 0] O PN

Clearly, we have

Sy O
R=| O %

and so (n;) is a basic sequence of R.
The converse is not true, for example, the matrix

(1 3 00
1100
R=|0 01 0 ,
0 0 01
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is a block diagonal row stochastic matrix with the basic sequence (2,1,1,...) and (1,1,1,...) < (2,1,1,..)),
but (1,1,1,...) is not a basic sequence of R. [

Theorem 2.8. Let (1;) be a basic sequence of the matrix R € My, such that the sequence (n;) from somewhere on, is
constant. Then R has the constant basic sequence.

Proof. Let (n;) be a basic sequence of the matrix R € My, and for k € N, we have
m = MNpp1 = Nj = 00

Put N = lem(m, ny + - - - + n), the least common multiple. It is easy to show that the constant sequence (N)
is a constant basic sequence of R. [J

Remark 2.9. Let R, S € My, have a common basic sequence (k;). Then RS, SR
€ Mgy Also, R" € Mgy, for anyn € N. If R = &2 Ry, and S = &;°, Sy, then RS = &2, Ry, Sy,

Theorem 2.10. Let (n;) be a sequence in IN. Then there exists R € My, with basic sequence (n;). Also, the set of
all matrix with the basic sequence (n;) is a convex and closed (with respect to the pointwise convergence) and closed
(with respect to the composition) subset of Mpg,.

Proof. Let R; be an n; X n; matrix as the following

1 1
n; n;
Ri=| + -,
B
n; n;

Now we put

Ry O
R=| O R

thus (1;) is a basic sequence of R € My,;,.
Let the matrices R, S € My, be as the following

Ri O - Te)
R=| O R | 5-|0 %

both have (1;) as a common basic sequence. For 0 < A < 1, we have

ARy + (1 = A)Sq @)
AR+ (1-21)S = O ARy + (1 = A)S,

and so AR + (1 — A)S € My, has (n;) as a basic sequence.
To prove closedness with respect to the pointwise convergence, let (R,) be a sequence in My, such that

Ry, O

Rn — O RZ,n = [rij,n]/
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and (n;) is a basic sequence of R,, and so each R;, is the n; X n; row stochastic matrix. Assume that the
sequence (R,) is pointwise convergent to R = [r;;].
Let (i, /) ¢ {1,...,m}*U{n +1,...,m}*U--- . Clearly, for all n € N, we have r;;, = 0, and so

lim }’,']',n =0= 7’1‘]‘.

n—oo

Thus R is a block diagonal matrix with blocks (11,15, ...).
On the other hand, for all n € IN and i € IN, we have

Z Tijn = 1. )
=

In the above summation, there are finitely nonzero elemmaents. So, it follows from letting n — oo in (1)
that

0 o 0
1= lim Z Tijn = Z lim Tijn = Z Tij. (2)
n—-oo n—-oo
j=1 j=1 j=1

Therefore (2) implies that R € My, with the basic sequence (1;).
Remark 2.9 follows that the set of all matrices in My, with the basic sequence (1;) is closed under the
composition. [J

Example 2.11. Let N € IN. The matrix

A O O
O A O
O 0O A 3)

is block diagonal row stochastic, where O is the N X N zero matrix and A is the N X N matrix
10 --- 0
A=1oo0 o
10 --- 0
The operator T : ¢g — ¢o corresponds to the matrix (3) is

Tx = (x1, . ~-/xl/xN+1/~--/xN+1/x2N+1/-~-/x2N+1/~--)/
————

N-times N-times N-times

for x = (x) € ¢.

In general, for any block diagonal row stochastic matrix, there corresponds a unique bounded linear
operator on ¢y which its norm is one, as in the next theorem.

Theorem 2.12. Let [dyy]munen be a block diagonal row stochastic matrix. Then there is a unique bounded linear
operator R : ¢g — ¢g such that

<Ren1 em> = (Ren)(m) = dmnr

where {(a,), (by)) denotes the dual pairing of (a,) and (b,) which is defined by {(a,), (bx)) = Y.iq a;b;. Moreover,
IRl = 1.
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Proof. By assumption, for all m € IN we have }, dy, = 1 and in any row and column there are at most
neN

finitely many nonzero entries. Also, for f € ¢g and m € IN the series }, d.f, is absolutely convergent and
nelN
we have
Y o < Y dunlful SUANY e = L (4)
neN neN neN

Since f € «, for given ¢ > 0, there is N € IN such that for all n > N, we have |f,| < 5. As the sequences
() meN, @m2)meN, - - -, (@nN)men tend to zero, there is M € IN such that

0<dy< forallm>M, j=1,...,N.

£
2N(Ifll+ 1)

Thus for m > M, we have

i dmnfn < i dmn'fn|
n=1

n=1
N

< dmnlfnl"‘ Z dmn|fn|

n=1 n=N+1

)

N
& &
< 47 2

n=N+1
L eNIAl e
2N(IfIl+1) 2
< E&.

The above relations show that lim ) d,, f, = 0. So, the operator R : ¢p — ¢y which is defined by
m—e0 -1

Rf = Y () dufi)en.

melN nelN

is clearly linear. Also, (4) implies that R is bounded, [|Rf]| < ||f||, and then
IRl < 1. ®)

For k € N, it follows that

i=1 melN n=1 i=
and so
k k k k
IR = [R(Y €)= [ X (X dmn)en 2| Y] = Y,
i=1 melN n=1 n=1 n=1

k
Thatis |[R]| > }. di,. As k tends to infinity, we get ||R|| > 1. Together (5) it implies that ||R|| = 1.
n=1
The definition of R follows that

Re, = Z dyn€m, forn € N,
melN
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and for m € IN, we get (Rey,, e;,) = (Rey,)(m) = dypp.
Now we show that R is unique, suppose that T : ¢c — ¢g be a bounded linear operator such that

(Te,, en) = (Te,) (M) = dyy, for all m,n € IN.

Thus for f € ¢p and k € N, since T is continuous and linear, we have

(THE = (T( Y, fren))®)

nelN

=( ) AiTes)®)
nelN

=Y fu(Teu) (k)
neN

=Y, fudin
nelN

Therefore
Tf =Y @Hmen= Y (Y, fuun)en = Rf.
melN melN nelN

It follows the uniqueness of R. [

In the next example, we consider two elemmaents in ¢y, which are block diagonal equivalent.

Example 2.13. Let x, y € ¢ be as follows:

=
I
foey = NI E N S TR T
~
<
Il
’,:;|>—n :lbﬂ @I= Nl= = Q= =

We show that x ~,, y. Put

1 0 00 00
13 00 00
00 £ Z 00

R=00 § § 00 ,
o0 00 ¥ 2
o0 oo £ 4
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then x = Ry and so x <,,, y. Also, let
(1 0 0 0 0 0 O
% % % 0 0 0 0
0 4 2 0 0 0 0
000 £ 2 0 o0
5=lo 00 2 2 0 o0 ’
0 0 0 O % %
0 0 0 O % %

then we have y = Sx and so y <,, x. Therefore x ~,, y.

Let T : ¢ — ¢o be a bounded linear operator with matrix representation [t;;]; e where t;; = (Te;)(i). We will
incorporate T to its matrix form. Therefore,

(Tx)(i) = Z tix(j), forx € qgand i€ N.
jEN
Definition 2.14. A bounded linear operator T : ¢o — ¢ is called block diagonal row stochastic operator on ¢ if the

matrix representation of T, i.e. [t;;]; jen belongs to My

Definition 2.15. A linear operator T : ¢g — < is called a preserver of <,,, if for x, y € ¢ the relation x <
Tx <, Ty. We denote by Pra, the set of all bounded linear operators T : ¢g — ¢ which preserve <, .

W Y implies

Now we investigate some important properties of all bounded linear operators T : ¢g — ¢y which preserves
<, - It is clear that for such an operator and for each k € IN, because e; ~,, ey, it follows that Tey ~,, Te.
Therefore, we can consider a = sup Te, = sup Te; and b = inf Tey = inf Te;.

Definition 2.16. [2] Let T € Pyg,. For any k € N, let a > 0, and b < 0. We define
I={ieN; ty = aj, Je={jeN; tx =1},

where t;; = (Te;)(i).

Lemma 2.17. Let T € Py If k € N and a > 0, then a = max Tey, and for any ng # k,
sup{Tex + Te,,} = a = max{Te; + Te,,}.

Proof. As Tey is a sequence in ¢y, with sup Te > 0, then it has some positive elemmaents and so, Tey attains
the maximum. Thus a = max Tey, thatis Iy # 0.

Now let ip € IN be such that t;x = a. As the sequence (t,,x)men converges to zero, for any 0 < ¢ < 7, there
is M € N such that for all m > M,

|tmk| < E&.

On the other hand, since the sequences (t1,1)neN, (t2,1)neN, - - -, (Em-1,1)nen belong to ¢ = ¢!, all of them
converge to zero and so one can choose N € IN such that forall 1 <i <M —1,and n > N, we have

|tin] < €.

Since 1 < iy <M —1and tjy =a > ¢itfollows that1 <k <N -1.
Let ng # k. Since e + ey, ~,,, € + e, it follows that

Tey + Tey, ~,. Tex + Tey.
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Thus

sup{Tex + Tey,,)
= sup{Tex + Tey}

= max {sup{tmk +tun; 1 <m <M =1}, supfty + tmn; m 2> M}}
< max {a + &, supfe + tyun; m > M}}
=max{a+¢e,a+¢el=a+e.
Hence for 0 < ¢ < 5, we see that
sup{Ter + Te,,} <a+e,
and so
sup{Tex + Te,,} < a. (6)
On the other hand, for all n € IN, we have
a+ tiyn = tijx + tiyn < sup{Tex + Te,} = sup{Ter + Te,,},

and as (tj,n)neN is @ sequence in £, it tends to zero. Now, in the above inequality when n — oo we obtain
that

a < sup{Te; + Tey,,}. (7)

The inequalities (6) and (7) imply that sup{Tex + Te,,} = a. In the same manner, we can prove that sup{Te; —
Te,,} = a.

Because Tey + Te,, converges to zero with sup{Tex + Te,,} = a > 0, it follows that some of the values of
these sequences are positive. So, max{Te; + Te,,} =a. 0O

Lemma 2.18. Let T € Py Let k € N and b = inf Tey < 0. Then b = min Tey, and for any ng # k, we have
inf{Te; + Te,,} = min{Te; + Te,,} = b.
Proof. Put S = —T and apply Lemma 2.17 for the operator S. [

Corollary 2.19. Let T € Py and k € IN. Let [t;;]; jen be the matrix representation of T. Then the following assertions
hold.

(i) Ifa > 0, then Iy is a nonempty finite set and therefore, for all i € I, and for any n # k, we have
(Ten, €i) = tin = (Tey)(i) = 0.

(if) Ifb < 0, then Ji is a nonempty finite set and for all j € Ji, and for any n # k, we have
(Tey, ej) = tjn = (Tey)(j) = 0.

Proof. (i) Leta > 0. According to Lemma 2.17, we have a = max Tey, and so Iy # 0. On the other hand, since
the sequence (t,x)men tends to zero, the set I, = {i € IN; tj = a} is a finite set. Now leti € I. Let n # k be
such that (Te,, e;) = t;, # 0, then we consider the following two cases:

Case I. If t;;, > 0, according to Lemma 2.17, we get

a=sup{Ter + Te,} > tyx +tyy =a+ty, >a.
Case II. If t;, < 0, according to Lemma 2.17, we obtain
a =sup{Te,—Te,} > tix — tiy =a—ti, >a.

In both cases, we get a contradiction. So t;, = 0.
(i) One can apply part (i) for =T instead of T. O
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Lemma 2.20. Let f, g € ¢ be such that f <,, g. Then ||f]| < ||gll.

Proof. According to
{f(n); ne ]N} - co{f(n); ne IN} - co{g(n); ne ]N} C [b,a],

where b = ir}l{T g(n), a = sup g(n), for all n € N, it follows that b < f(n) < a and
ne neN

—max{a, —b} = min{b, —a} < b < f(n) < a < maxi{a, —b}.
Sincea > 0, b < 0, we have max{a, —b} > 0 and for all n € IN, we have
|[f(n)| < |max{a, —b}| = max{a, —b}.
Therefore ||f|| < max{a, b} =|lgll. O
Lemma 2.21. If T € Py, then for all distinct m,n € N,
[|ITe,, — Te,|| = max{a, —b}.

Proof. Since for all distinct m, n € IN, we have Te,, — Te,
ITe; — Tey||. Hence it remains to prove

Te; — Tey, Lemma 2.20 implies [|Te,, — Te,l| =

~
bdr

[|Te; — Tes|| = max{a, —b}. (8)

To this end, we consider the following two cases.
Case I. If max{a, —b} = 0, thena = b = 0, and so for all n € IN, we have Te, = 0. Hence T = 0, and (8) satisfies.
Case II. If c = max{a, —b} > 0, then for any 0 < ¢ < c, there exist M, N > 2 such that

[t < €, forall m > M,
and

|tin] < €, forall ie{l,..., M—1} and n > N.
So, for all ¢ > 0, we have

ITe;—Tey|
= ||Te; — Tenl|

= max {ltu —tinl - lEm-11 = tv—a ) sup{ltn — me|}}
m=>=M

< max {|t11| + vl o -] + [t ] suplltm | + |tmN|}}
m>M

=Cc+eE.
It follows that
ITe; — Tea|| < c. )

On the other hand, as ¢ > 0 and the sequence Te; converges to zero, there is i € IN such that |t;;| = c. Hence
foranyn > 2,

ltih — tin| < [ITer — Teyll = [|Ter — Teal.
Since lim t;, = 0, the latter inequality implies that

n—oo

¢ <||Tey — Tey||. (10)
Therefore (9) and (10) imply that ||Te; — Te;|| = max{a,—b}. O
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Lemma 2.22. Let T € Pyyr. Then ||T|| = max{a, —b}.

Proof. Suppose that f € ¢ such that ||f]| = sup |f(n)| < 1. Then
neN

f i €1 ~ €2,
and so Tf <,, Te; — Te;. Thus Lemmas 2.20 and 2.21 imply that
ITfIl < ITex — Tez|| = max{a, =b}.

It follows that ||T|| < max{a, —b}. On the other hand, Definition 2.16, ||Te;|| = max{a, —b}. This follows the
assertion. [

Theorem 2.23. Let T € Py, and [ti]; jen be the matrix representation of T. If for any n € N, a, € [-1, 1], then for
m € IN, the series Yy~ q ntun converges and its absolute value is at most max{a, —b}.

Proof. Let m € IN. Since

i |t < i [t1n

n=1

n=1
=Y KTeyen)l =) Kew Ten = Y KT e el
n=1 n=1 n=1

I(T"enw)(m)] = IT" el

<ITN =Tl < oo,

thus this series is absolutely convergent and so converges. Therefore, Lemma 2.22 implies }Z:’:l antmnl <
Z:o:1 |ntyn| < ||T|| = max{a, -b}. O

Theorem 2.24. If a, f € IR, then the operator
0

OO OO™R
OCO™®™”WR OO
TR OO0 O

on ¢q preserves <, .

Proof. Suppose that f, g € ¢o and f <y g. So, there is a matrix D = [d;;]; jen € Mg, such that f = Dg. Let D

be the following matrix

diy 0 dp 0 diz 0 dy
0 d]l 0 d12 0 d13 0

dn 0 dp 0 dy 0 dy
0 d21 0 dzz 0 d23 0

e}
1l

Obviously, D € My, and Tf = DTg, which follows that Tf <u4, Tg. Therefore T preserves <,, . [J
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Theorem 2.25. If T € Py, then each columns of T attains the values a = supTe; and b = infTey; and so
a =maxTe; and b = min Te;.

Proof. Let n € IN. We consider the n-th column of T. Since Te, ~
b = inf Te,. We need only consider four cases:
Case I. Let b < 0 < a. Since Te, € ¢, clearly

w Lei, it follows that a = sup Te, and

a=maxTe,, b =minTe,.

Case II. Let b = 0 < a. Then a = maxTe,, and also a = maxTe,;1, and so there is m € NN such that
(Teys1)(m) = a. Thus m € I,.1. Now part (i) of Corollary 2.19 implies that (Te,)(m) = 0 = b. Therefore
b=minTe,.

Case IIl. Let b < 0 = 4. Then b = minTe, and also b = minTe,,;, and so there is m € N such that
(Teys1)(m) = b. Thus m € J,41. Now part (ii) of Corollary 2.19 implies that (Te,)(m) = 0 = a. Therefore
a =maxTe,.

CaseIV.Leta=0b=0.Then Te, =0, and as T is continuous, we have T = 0 and the assertion holds. O

Theorem 2.26. Let T € Py Then exactly one of the following assertions hold.
(i) In all columns of T, there are finitely many nonzero entries.

(ii) In all columns of T, there are infinitely many nonzero entries.

Proof. On the contrary, suppose that there are m,n € IN such that in the mth column of T, there are finitely
many nonzero entries and in the nth column there are infinitely many nonzero entries. Therefore all entries
of Te,, are zero except for finitely many, and so the relation Te,, ~,, Te, can not be satisfied. [

In the following, we obtain some examples of bounded linear operators on ¢y which preserve <,,, and

these operators need not to be block diagonal row stochastic operators (as Theorem 2.24).

bdr

Example 2.27. The operator D : ¢y — o defined by the matrix form

O = Ol
—_ O Owi=

>}
Il
O O FNI-

(o]
: 1
that is (x1,x2,X3,...) — ( Y, ﬁxn,xl,xz,xg,,...), preserves <, .
n=1

Example 2.28. The bounded linear operator D : ¢g — ¢y with the matrix form

O = OO
—_ o O O

1
1
D=|"Y
0

that is (x1,x2,x3,...) — (x1,X1,X2,X3,...), preserves <,,, .
Remark 2.29. If D € Py, then

(i) One can add finitely many zero rows to the matrix form of D and it still preserves <, .
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(ii) One can repeat finitely many of any row of D, and it still preserves <,,, .
In Example 2.28, the first row of the identity operator is repeated.

Example 2.30. The bounded linear operator D : ¢g — ¢y with the matrix form

10 0
1o
p=|0 1 0 ,
00 1

; 1 1
that is (x1,x2,%3,...) — (xl, 5X1 + 53X2,X2,X3, .. .), preserves <, .

Example 2.31. The bounded linear operator D : ¢g — ¢ with the matrix form

100
100
p=|0 10 )
0 0 1

that is (x1,x2,x3,...) (%xl,xl,xz,x3, ... ), preserves <,,., by the following reason.

Suppose that x,y € ¢ and x <, y. Since x, — 0and y, — 0, there are ny,ny € IN such that

1 1
Exl € cofxy, ..., xy} and Eyl €colyr, -, Yny)-
Omne can choose the integer n > max{ni, na} such that

cofxy, ..., xn} S colyr, ..., Ynl

Remark 2.32. Let f = (f1,fo,...), 9 = (91,92,...) € coand f <, g. Then there is a sequence of natural numbers
(n)ien such that

F}’l,‘ <T Gni/
where Fn,' = (fni,1+1/ s rfn,;1+n,') and Gni = (gni,1+lr s rg71,;1+ni)'
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