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Abstract. We establish a new iterative method for solving a class of large and sparse linear systems
of equations with three-by-three block coefficient matrices having saddle point structure. Convergence
properties of the proposed method are studied in details and its induced preconditioner is examined for
accelerating the convergence speed of generalized minimal residual (GMRES) method. More precisely, we
analyze the eigenvalue distribution of the preconditioned matrix. Numerical experiments are reported to
demonstrate the effectiveness of the proposed preconditioner.

1. Introduction

Consider the following three-by-three block system of linear equations,

Ax ≡

 A BT 0
B 0 CT

0 C 0


 x

y
z

 =

 f
1

h

 , (1)

where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rl×m, f ∈ Rn, 1 ∈ Rm and h ∈ Rl are known, and x =
(
x; y; z

)
is an unknown

vector to be determined. Here, the Matlab symbol (x; y; z) is utilized to denote the vector (xT, yT, zT)T.
In the sequel, we assume that the matrix A ∈ Rn×n is a symmetric positive definite and the matrices

B ∈ Rm×n and C ∈ Rl×m have full row rank, where n ≥ m and m ≥ l. These assumptions guarantee the
existence of a unique solution of (1); see [31] for further details. Evidently matrix A can be regarded as a
2 × 2 block matrix using the following partitioning strategy,

A =

 A BT 0
B 0 CT

0 C 0

 . (2)

As seen, the above block matrix has a saddle point structure. Hence, we call Eq. (1) by three-by-three block
saddle point problem.
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Linear system of the form (1) arises from various practical scientific and engineering application back-
grounds, e.g., the discrete finite element methods for solving time-dependent Maxwell equation with
discontinuous coefficient [1, 14, 16, 17], the least squares problems [32], the Karush-Kuhn-Tucker (KKT)
conditions of a type of quadratic program [20] and so on. In practice, stationary iterative methods for
solving (1) tend to converge too slowly or even the produced sequence of approximations may fail to be
convergent. For this reason, they are usually combined with acceleration schemes such as the Krylov sub-
space methods [26]. More precisely, preconditioners extracted from the convergent splittings of coefficient
matrixA in Eq. (1) may be a suitable candidate to speed up the convergence of Krylov subspace methods.
Here, we mainly consider on the preconditioned GMRES method.

As seen, the coefficient matrixA in Eq. (1) can be considered as a two-by-two block form given by (2).
The observation was used in the literature for constructing preconditioners to improve the convergence
speed of Krylov subspace methods for solving (1), such as block triangular preconditioners [2–5, 7, 13, 18],
shift-splitting preconditioners [11, 12, 15, 28–30] and parameterized preconditioners [25]; for more details
see also [5, 6, 27]. Recently, Huang and Ma [22] proposed the following block diagonal preconditioner,

PD =

 A 0 0
0 S 0
0 0 CS−1CT

 , (3)

for solving (1) in which S = BA−1BT. They also derive all the eigenpairs of preconditioned matrix. Xie and
Li [31] presented the following three preconditioners

P1 =

A 0 0
B −S CT

0 0 CS−1CT

 , P2 =

A 0 0
B −S CT

0 0 −CS−1CT

 , P3 =

A BT 0
B −S 0
0 0 −CS−1CT

 ,
and analyzed spectral properties of corresponding preconditioned matrices in the case S = BA−1BT. The
reported numerical results in [31] show that the above preconditioners can significantly improve the
convergence speed of GMRES method. It can be observed that the preconditioner P1 outperforms other
preconditioners in terms of both required CPU time and number of iterations for the convergence.

Here, we consider the following equivalent form of (1):

Bx ≡

 A BT 0
−B 0 −CT

0 C 0


 x

y
z

 =

 f
−1

h

 = b. (4)

Although the coefficient matrix of the system (4) is not symmetric, it has some desirable properties. For
instance, the matrix B is positive semidefinite, i.e., B + BT is symmetric positive semidefinite which can
have a good effect on the performance of the GMRES method. In fact, the restarted version of GMRES(m)
converges for all m ≥ 1. Recently, some iterative schemes have been extended in the literature for solving
(4). For instance, Cao [10] presented the shift-splitting (SS) method for block three-by-three saddle point and
discussed on the performance and implementation of the following induced shift-splitting preconditioner.
We comment that the preconditioner takes the following form when it is exploited for (4),

PSS =

 αI + A BT 0
−B αI −CT

0 C αI

 , (5)

here α > 0 is given and I stands for the identity matrix with suitable dimension. In [23, 24], the Uzawa-type
methods were developed. In this work, we present a new type of iterative method for solving three-by-three
block saddle point problem (4). Next, we extract a preconditioner from the presented iterative method and
examine its performance for speeding up the convergence of GMRES.

The remainder of this paper is organized as follows. Before ending this section, we present notations
and review some basic preliminaries used in the following sections. In Section 2, we propose a new iterative
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method for solving (4) and study its converges properties. In Section 3, we extract a preconditioner from
the proposed method and analyze the spectrum of preconditioned matrix. Brief discussions are given in
Section 4 about practical implementation of the preconditioner. In Section 5, we report some numerical
results and brief concluding remarks are included in Section 6.

Throughout this paper, the identity matrix is denoted by I. The symbol x∗ is used for the conjugate
transpose of the vector x. For any square matrix A with real eigenvalues, the minimum and maximum
eigenvalues of A are indicated by λmin(A) and λmax(A), respectively. The notation ρ(A) stands for the
spectral radius of A. The matrix A ∈ Rn×n is called symmetric positive definite (SPD), if AT = A and
xTAx > 0 for all nonzero x ∈ Rn. Similarly, the matrix A is called symmetric positive semidefinite (SPSD), if
AT = A and xTAx > 0 for all x ∈ Rn. We write A � 0 (A � 0), if A is SPD (SPSD). For two given matrices A
and B, A � B (A � B) means that A − B � 0 (A − B � 0). The matrix A ∈ Rn×n is said to be positive (semi-)
definite, if A + AT symmetric positive (semi-) definite. For any matrix W, we shall write its null space as
null(W). The norm ‖ . ‖ indicates the 2-norm.

2. The proposed iteration scheme

Let us first consider the following splitting for the coefficient matrix B in (4):

B = P − R, (6)

where

P =

 A BT 0
0 S −CT

0 C 0

 , R =

 0 0 0
B S 0
0 0 0

 ,
in which S is a given symmetric positive definite matrix. It is not difficult to verify that the matrix P is
nonsingular. The iteration scheme associated with splitting (6) is given by

x(k+1) = Gx(k) + c, k = 0, 1, 2, . . . , (7)

where x(0) is an initial guess, G = P−1
R is the iteration matrix and c = P−1b.

Now, we present sufficient conditions under which the iterative scheme (7) is convergent. To this end,
we first need to recall the following theorem.

Theorem 2.1. [21, Theorem 7.7.3] Let E and F be two n × n real symmetric matrices such E is positive definite and
F is positive semidefinite. Then E � F if and only if ρ(E−1F) ≤ 1, and E � F if and only if ρ(E−1F) < 1.

Theorem 2.2. Let A � 0, S � 0 and B and C be full row rank matrices. If 2S � BA−1BT then the iterative method
(7) converges to the unique solution of (4) for any initial guess.

Proof. Let λ be an arbitrary eigenvalue ofG = P−1
R with the corresponding eigenvector w =

(
x; y; z

)
. Consequently,

we have Rw = λPw which is equivalent to say that
λ(Ax + BT y) = 0, (8)
λ(Sy − CTz) = Bx + Sy, (9)
λCy = 0. (10)

Without loss of generality, we may assume that λ , 0. Obviously y , 0, otherwise in view of the positive definiteness
of A and the assumption that C has full row rank we conclude that x and z are both zero vectors which is in contradiction
with the fact that (x; y; z) is an eigenvector. From Eqs. (8) and (10) we can deduce that

x = −A−1BT y, y∗CT = 0.
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Multiplying both sides of Eq. (9) on the left by y∗ and substituting the preceding equalities, we derive

λ = 1 −
y∗BA−1BT y

y∗Sy
.

This shows that the eigenvalues ofG are all real. By Theorem 2.1, it is immediate to conclude that λmax(S−1BA−1BT) =
ρ(S−1BA−1BT) < 2 if and only if 2S � BA−1BT. This fact together with Courant-Fisher inequality [26] can deduce
that

0 <
y∗BA−1BT y

y∗Sy
≤ λmax(S−1BA−1BT) < 2.

Therefore, we have

|1 −
y∗BA−1BT y

y∗Sy
| < 1,

which completes the proof.

We complete this section with a remark providing alternative sufficient conditions for convergence of
iterative method (7) which are stronger than 2S � BA−1BT, however, it might be easier to check the following
sufficient conditions in some cases. To do so, we first remind the following two lemmas. The first one is a
consequence of Weyl’s Theorem, see [21, Theorem 4.3.1].

Lemma 2.3. Suppose that E and F are two Hermitian matrices. Then,

λmax(E + F) ≤ λmax(E) + λmax(F),
λmin(E + F) ≥ λmin(E) + λmin(F).

Lemma 2.4. [33] Suppose that E is a Hermitian negative definite matrix and F is Hermitian positive semidefinite.
Then the eigenvalues of EF are real and satisfy

λmin(E)λmin(F) ≤ λmax(EF) ≤ λmax(E)λmin(F),

λmin(E)λmax(F) ≤ λmin(EF) ≤ λmax(E)λmax(F).

Remark 2.5. Notice that 2S � BA−1BT is equivalent to say that all eigenvalues of 2S − BA−1BT are positive, i.e.,
λmin(2S − BA−1BT) > 0. From Lemma 2.3, it can be seen that

λmax

(
BA−1BT

)
< 2λmin(S), (11)

implies that 2S � BA−1BT. Using Lemma 2.4, one can deduce that the condition (11) is satisfied as soon as

‖B‖2 < 2λmin(A)λmin(S),

which follows from the fact that

λmax

(
BA−1BT

)
= λmax

(
A−1BTB

)
≤ λmax

(
A−1

)
λmax

(
BTB

)
=
‖B‖2

λmin(A)
.



H. Aslani et al. / Filomat 35:15 (2021), 5181–5194 5185

3. The induced preconditioner and its spectral analysis

From the splitting (6) we have

P
−1
B = I − P−1

R = I − G.

Therefore, under the conditions of Theorem 2.2 the eigenvalues of P−1
B are contained in the interval (0, 2].

Thus,

P =

 A BT 0
0 S −CT

0 C 0

 , (12)

can be used as a preconditioner to accelerate the convergence of Krylov subspace methods like GMRES for
solving the system (4).

In the succeeding theorem, we investigate the spectral properties of P−1
B in more details.

Theorem 3.1. Let A be symmetric positive definite and B and C be of full row rank. Then all the eigenvalues ofP−1
B

are real and nonzero. Furthermore, λ = 1 is an eigenvalue of algebraic multiplicity at least n + l and its corresponding
eigenvectors are of the form (x;−S−1Bx; z) where x ∈ Rn and z ∈ Cl such that x, z are not simultaneously zero.
The remaining eigenvalues of P−1

B are of the form

λ =
y∗BA−1BT y

y∗Sy
,

and the corresponding eigenvectors are of the form (−A−1BT y; y; z) for all 0 , y ∈ null(C) and arbitrary z.

Proof. Let λ be an arbitrary eigenvalue of P−1
B with the corresponding eigenvector (x; y; z), i.e.,

Ax + BT y = λ(Ax + BT y), (13)
−Bx − CTz = λ(Sy − CTz), (14)
Cy = λCy. (15)

Let x = 0. If λ , 1, then BT y = 0 by (13) which implies y = 0. This along with (14) leads to CTz = 0. Since C is a full
row rank matrix, then z = 0. Consequently, we have (x; y; z) = (0; 0; 0) which contradicts with the fact that (x; y; z)
is an eigenvector. Now, we assume that λ = 1. By (14) and the positive definiteness of S, we derive y = 0. In fact,
λ = 1 is an eigenvalue of P−1

B with multiplicity l corresponding eigenvector (0; 0; z) for any arbitrary 0 , z ∈ Cl.
In the following, we consider the case that x , 0. If y = 0, then Eqs. (13) and (14) are reduced to

Ax = λAx and − Bx − CTz = −λCTz, (16)

respectively. The first relation shows that λ = 1. By substituting it into the second equality of (16), we have Bx = 0.
Therefore, the corresponding eigenvectors are of the form (x; 0; z) with 0 , x ∈ null(B) and z ∈ Rl. Notice that,
in general, we can observe that λ = 1 and (x; 0; z) is an eigenpair of P−1

B where x ∈ null(B) and x, z are not
simultaneously zero.

In summary, using (14) and in view of the positive definiteness of S, we can conclude that λ = 1 and (x;−S−1Bx; z)
is an eigenpair of P−1

B.
It is immediate to see that if x and y are both zero vectors then λ = 1 and z must be a nonzero vector. In rest of

the proof, we assume that x , 0 and y , 0. If λ , 1, then from Eqs. (13) and (15), we observe that x = −A−1BT y and
Cy = 0, respectively. Pre-multiplying both sides of (14) from left by y∗ and substituting deduced x and z into (14),
we get

λ = −
y∗Bx
y∗Sy

=
y∗BA−1BT y

y∗Sy
.

Hence, the corresponding eigenvectors are of the form (−A−1BT y; y; z) for all 0 , y ∈ null(C) ⊆ Rm and arbitrary
z.
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Remark 3.2. Let S be an arbitrary symmetric positive definite matrix. From Theorem 3.1, we see that the non-unit
eigenvalues of the preconditioned matrix P−1

B satisfies

0 <
λmin(BA−1BT)
λmax(S)

≤ λ =
y∗BA−1BT y

y∗Sy
≤
λmax(BA−1BT)

λmin(S)
.

Theorem 3.3. Under the assumptions of Theorem 3.1, if S = BA−1BT, then all the eigenvalues of preconditioned
matrixH = P−1

B are equal to 1 and its minimal polynomial is of degree 2.

Proof. Consider the matrix PD defined in Eq. (3) with S = BA−1BT. Obviously, PD is symmetric positive definite,

therefore there is a symmetric positive definite matrix P
1
2
D such that PD = P

1
2
DP

1
2
D. Similar to the proof of Theorem 3.1

in [31], we see that the matrixH is similar to the matrix

Ĥ := P
1
2
DHP

−
1
2

D (17)

= P
1
2
DP
−1
BP

−
1
2

D (18)

=
(
P
−

1
2

D PP
−

1
2

D

)−1 (
P
−

1
2

D BP
−

1
2

D

)
(19)

=

 I MT 0
0 I −NT

0 N 0


−1  I MT 0
−M 0 −NT

0 N 0

 , (20)

where M = S−
1
2 BA−

1
2 and N = (CS−1CT)−

1
2 CS−

1
2 . It straightforward to verify that MMT = I, NNT = I and

Ĥ = I +

 MT(I −NTN)M MT(I −NTN) 0
(NTN − I)M NTN − I 0

NM N 0

 .
Direct computation reveals that (Ĥ − I)2 = 0. This shows that the minimal polynomial of Ĥ , as well asH is 2.

Remark 3.4. Theorem 3.3 shows that the complete version of the GMRES method for solving the system P−1
Bx =

P
−1b will converge in two iterations in exact arithmetic.

4. Implementation of the preconditioner

In the implementation of the preconditioner P in a Krylov subspace method like GMRES, in each
iteration, a vector of the form v = P−1w should be computed. To this end, all we need is to solve Pv = w
for v. If we set v = (v1; v2; v3) and w = (w1; w2; w3) in which v1,w1 ∈ Rn, v2,w2 ∈ Rm and v3,w3 ∈ Rl, then we
need to solve the system A BT 0

0 S −CT

0 C 0


 v1

v2
v3

 =

 w1
w2
w3

 .
The following algorithm is given for solving the above linear system of equations.

Algorithm 4.1. Computation of (v1; v2; v3) = P−1(w1; w2; w3).
1: Set t1 = w3 − CS−1w2;
2: Solve (CS−1CT)v3 = t1 using the Cholesky factorization of CS−1CT;
3: Set t2 = w2 + CTv3;
4: Solve Sv2 = t2 ;
5: Set t3 = w1 − BTv2;
6: Solve Av1 = t3 by the Cholesky factorization of A.
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In the implementation of the preconditioner P using the above algorithm, two systems with the coefficient
matrix S and two systems with the coefficient matrices CS−1CT and A should be solved. Whereas, in
the implementation of the peconditioners PD, P1, P2 and P3 three systems with the coefficient matrices
S, CS−1CT and A need to be solved. On the other hand, the preconditioner P differs by the original
matrix B in less blocks in comparison with the preconditioners such as PD, P1, P2 and P3. It is natural
to expect that among the above mentioned preconditioners, the one given by P tend to provide a better
approximation forB. Therefore, using a suitable approximation of S, one can expect that the new proposed
preconditioner outperforms the preconditioners PD, P1, P2 and P3. This is the main advantage of our
proposed preconditioner.

We end this section by pointing out to the choice of SPD matrix S. As seen, Remark 3.4 shows that
S = BA−1BT leads to an ideal case. However, by this choice, the resulting algorithm can be costly in
general cases. Basically, a preconditioner is called “optimal”, if the number of preconditioned iterations
is independent of the size of the problem and the amount of work per iteration scales linearly with the
size of the problem. Notice that for our test problems, total work (and, approximately, the corresponding
CPU-time) should grow by a factor of 4 each time the value of p doubles.

In view of Remark 3.4 and the above discussions, in the numerical experiments, we are particularly
inspired to set S = I, with I being the identity matrix or S = diag(B diag(A)−1BT). For these choices, the
proposed preconditioners, while not quite optimal, scales well with increasing the size of problem for our
test examples. For more details, we further set S = I or S = diag(B diag(A)−1BT) while working with the
preconditioners PD and P1. In this work, we examine the exact versions of preconditioners in conjunction
with complete version of GMRES.

In general cases, for approximating BA−1BT by S, similar to [2–4], one can possibly avoid forming
BA−1BT and CS−1CT. Instead, using a prescribed tolerance, few steps of the (P)CG method can be used for
the actions of A−1, (BA−1BT)−1 and (CS−1CT)−1. For this inexact implementation, the preconditioner should
be used in conjunction with flexible GMRES (FGMRES). For some problems, we may have access to the
sparse matrix M, being spectrally equivalent to BA−1BT. In this case we can set S = M and implement the
preconditioner either exactly in conjunction with GMRES or inexactly in conjunction with FGMRES.

5. Numerical experiments

In this section, we numerically solve the three-by-three saddle point problem (4) to examine the perfor-
mance of proposed preconditioner in Section 3. In order to compare the performance of our preconditioner
with the recently proposed ones in the literature, test problems are taken from [22, 23, 31]. In all the test
examples, we use the complete version of GMRES method with right preconditioning. All runs were started
from the initial zero vector and terminated once the relative residual 2-norm satisfies,

Res :=
‖b − Bx(k)

‖

‖b‖
< 10−7,

where x(k) is the current approximate solution. The maximum number of iterations is set to be 5000. For
the preconditioner PSS, we set α = 0.01 (see [10]). In all the tests, the right-hand side vector b is set to be
b = Be, where e ∈ Rn is a vector of all ones and n = n+m+ l. Numerical results are presented in the tables in
which “IT” and “CPU” denote the number of iterations and elapsed CPU times in second, respectively. The
symbols “†” and “‡” are used to indicate that the method has not converged in the maximum number of
iterations and in 500 seconds, respectively. To show the accuracy of the methods we also report the values

Err :=
‖x(k)
− x∗‖
‖x∗‖

,

in the tables, where x∗ stands for the exact solution of the system (4). All runs were performed in Matlab
R2017a with a personal computer with 2.40 GHz central processing unit (Intel(R) Core(TM) i7-5500), 8 GB
memory and Windows 10 operating system.
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Table 1: Numerical results for Example 5.1 with S = I.

Precon.
p 64 128 256 512
n 16384 65536 262144 1048576

I

IT † † † †

CPU - - - -
Err - - - -
Res - - - -

PD

IT 36 39 41 47
CPU 0.38 1.90 13.73 114.90
Err 1.46e-05 1.33e-05 1.08e-04 1.13e-04
Res 5.16e-08 7.92e-07 2.14e-05 5.70e-05

P1

IT 28 30 30 32
CPU 0.26 1.24 10.99 86.42
Err 2.08e-06 6.50e-06 2.95e-05 5.79e-05
Res 6.56e-08 1.60e-08 3.81e-06 6.12e-07

PSS

IT 3 3 3 -
CPU 0.98 3.55 39.30 ‡

Err 2.05e-04 1.50e-04 3.05e-03 -
Res 3.15e-8 1.61e-07 1.12e-7 -

P

IT 2 2 2 6
CPU 0.06 0.39 2.61 34.05
Err 1.16e-11 6.50e-11 6.84e-10 5.02e-09
Res 7.62e-13 2.37e-12 4.01e-12 7.44e-10

Example 5.1. [22, 31] Consider the saddle point problem (4) with

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2

×2p2
,

B = (I ⊗ F F ⊗ I) ∈ Rp2
×2p2

and C = E ⊗ F ∈ Rp2
×p2

where

T =
1
h2 · tridiag(−1, 2,−1) ∈ Rp×p, F =

1
h
· tridiag(0, 1,−1) ∈ Rp×p,

and E = diag
(
1, p + 1, 2p + 1, . . . , p2

− p + 1
)

in which ⊗ denotes the Kronecker product and h = 1/(p + 1)
stands for the discretization meshsize.

In this example, we set S = I, where I is the identity matrix. Table 1 shows the iteration counts
and the elapsed CPU time for the GMRES method with the preconditioner PD, P1, PSS and P. To see
the effectiveness of preconditioners, we have also reported the numerical results of the GMRES method
without preconditioning. Numerical results illustrate that the preconditioners can significantly reduce the
number of iterations and elapsed CPU time of the GMRES method without preconditioning. As seen, P is
superior to the other examined preconditioners. An interesting observation which can be posed here is that
the GMRES method with the preconditioner P gives the best accuracy among the preconditioners. As we
see in many cases the GMRES of Matlab stagnated for other preconditioners and two consecutive iterates
are the same. In these cases the reported value of Res is greater than 10−7 (the chosen tolerance). We also
see that, S = I presents a good approximation of the matrix S = BA−1BT.
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Table 2: Numerical results for Example 5.2 for the first choice with S = I.

Precon.
p 32 48 64 128
n 8256 9216 32896 131328

I

IT 557 1180 1815 2128
CPU 5.22 38.50 133.15 209.50
Err 5.22e-06 5.67e-05 1.84e-04 6.61e-04
Res 9.89e-08 9.99e-08 2.66e-07 3.90e-07

PD

IT 348 314 284 197
CPU 10.97 13.51 14.84 21.75
Err 4.87e-06 2.34e-05 7.51e-05 1.14e-03
Res 9.92e-08 9.84e-08 9.84e-08 9.62e-07

P1

IT 171 159 144 103
CPU 2.73 3.74 4.09 7.24
Err 3.48e-06 2.19e-5 7.43e-05 1.07e-03
Res 9.96e-08 9.26e-08 9.26e-08 9.47e-08

PSS

IT 9 7 7 -
CPU 18.25 64.21 188.42 ‡

Err 1.19e-06 4.92e-06 5.12e-06 -
Res 3.40e-08 2.54e-08 4.23e-08 -

P

IT 2 2 2 2
CPU 0.08 0.17 0.06 0.40
Err 5.64e-09 1.00e-08 2.06e-08 1.82e-08
Res 2.15e-10 7.65e-10 2.69e-10 1.98e-10
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Figure 1: Eigenvalue distributions of B, P−1
D B, P

−1
1 B, P−1

SSB and P−1
B (from the left to right) with S = I and p = 16 for

Example 5.1.

Figure 1 plots the eigenvalues of the matrices B , P−1
D B, P

−1
1 B, PSS and P−1

B for p = 16 with S = I. It is
seen that the eigenvalues of P−1

B are more clustered than the others.
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Figure 2: Eigenvalue distributions of B, PD
−1
B, P−1

1 B, P−1
SSB and P−1

B for the first choice with S = I and p = 16 for
Example 5.2.

Example 5.2. [22, 31] Consider the three-by-three block saddle point problem (1) for which

A = bldiag
(
2WTW + D1,D2,D3

)
∈ Rn×n,

is a block-diagonal matrix,

B =
[
E,−I2p̃, I2p̃

]
∈ Rm×n and C = ET

∈ Rl×m,

are both full row-rank matrices where p̃ = p2, p̂ = p(p + 1); D1 = Ip̂ is an identity matrix; Di = diag(d(i)
j ) ∈

R2p̃×2p̃, i = 2, 3, are diagonal matrices, with

d(2)
j =

{
1, for 1 ≤ j ≤ p̃,
10−5( j − p̃)2, for p̃ + 1 ≤ j ≤ 2p̃,

d(3)
j = 10−5( j + p̃)2 for 1 ≤ j ≤ 2p̃,

and

E =

(
Ê ⊗ Ip

Ip ⊗ Ê

)
, Ê =


2 −1

2 −1
. . .

. . .
2 −1

 ∈ Rp×(p+1).

Moreover, W = vvT
∈ Rp̂×p̂, where v ∈ Rp̂ is an arbitrary vector. According to the above definitions, we

have n = p̂ + 4p̃, m = 2p̃ and l = p̂. We consider two choices for the vector v. In the first choice, the ith entry
of the vector v is set to be vi = e−2(i/3)2

, i = 1, 2, . . . , l, and in the second one the vector v is set to be a random
sparse vector of order l with approximately 0.05l uniformly distributed nonzero entries (such a vector can
be generated using the “sprand” command of Matlab).

For both of the choices we set S = I. Numerical results for the first choice are presented in Table 2
and for the second choice in Table 3. All the other notations are as the previous example. As seen, the
proposed preconditioner outperforms the others in terms of the iteration counts, the elapsed CPU time
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Table 3: Numerical results for Example 5.2 for the second choice with S = I.

Precon.
p 64 128 256 512
n 32896 131328 524800 2098176

I

IT † † † †

CPU - - - -
Err - - - -
Res - - - -

PD

IT 279 193 125 119
CPU 14.36 21.92 93.29 201.56
Err 1.31e-04 2.19e-03 2.19e-02 3.72e-02
Res 5.22e-05 8.42e-05 4.71e-04 3.92e-04

P1

IT 143 103 70 59
CPU 4.08 8.02 56.08 149.11
Err 1.30e-04 1.94e-03 2.17e-04 2.12e-03
Res 6.33e-05 2.74e-05 5.84e-05 1.40e-4

PSS

IT 3 3 - -
CPU 108.51 146.19 ‡ ‡

Err 2.20e-08 7.01e-08 - -
Res 3.11e-09 3.34e-09 - -

P

IT 2 2 2 4
CPU 0.08 0.78 30.92 66.42
Err 1.33e-09 4.09e-09 3.20e-09 2.41e-09
Res 2.20e-10 5.51e-10 2.04e-10 1.68e-10

and the accuracy of computed solution. Figures 2 and 3 display the eigenvalue distribution of the original
coefficient matrix, P−1

D B, P
−1
1 B, PSS and P−1

B for S = I and p = 16 for the two choices, respectively. As
observed, eigenvalues of PSS are more clustered around the point (1, 0) than the others.

Example 5.3. We consider the three-by-three block saddle point problem (4) with (see [23, 31])

min
x∈Rn,y∈Rl

1
2

xTAx + rTx + qT y (21)

s.t. : Bx + CT y = b,

where r ∈ Rn and q ∈ Rl. To solve the above problem we define the Lagrange function

L(x, y, λ) =
1
2

xTAx + rTx + qT y + λT(Bx + CT y − b),

where the vector λ ∈ Rm is the Lagrange multiplier. Then the Karush-Kuhn-Tucker necessary conditions of
(21) are as follows (see [9])

∇xL(x, y, λ) = 0, ∇yL(x, y, λ) = 0 and ∇λL(x, y, λ) = 0.

It is easy to see that these equations give a system of linear equations of the form (1). In this example, we
chose the matrices A, B and C from the CUTEr collection [19]. To do so, we have selected four matrices. In
this example, we set S = diag(B diag(A)−1BT) (see [8]). Numerical results are presented in Table 4. As we
see the proposed preconditioner outperforms the others from the iteration counts, elapsed CPU time and
accuracy of the computed solution point of view.
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Figure 3: Eigenvalue distributions of B, PD
−1
B, P−1

1 B, P
−1
SSB and P−1

B for the second choice with S = I and p = 16 for
Example 5.2.

Table 4: Numerical results for Example 5.3 with S = diag(B diag(A)−1BT).

Precon.
Matrix AUG2DC AUG3DC LISWET12 YAO
n 50400 8746 30004 6004

I

IT 94 99 92 99
CPU 2.12 0.93 1.52 0.67
Err 4.82e-07 2.37e-07 5.80e-07 5.93e-07
Res 9.86e-08 8.13e-08 9.32e-08 9.54e-08

PD

IT 101 136 52 57
CPU 2.62 1.85 0.66 0.31
Err 3.41e-07 1.84e-07 4.40e-07 3.11e-07
Res 9.13e-08 9.80e-08 9.84e-08 6.79e-08

P1

IT 55 80 34 37
CPU 0.92 0.65 0.32 0.14
Err 3.68e-07 1.90e-7 3.88e-07 3.10e-09
Res 8.44e-08 6.14e-08 9.33e-08 7.29e-09

PSS

IT 10 12 9 11
CPU 13.56 0.91 0.07 0.08
Err 1.08e-07 9.29e-8 8.13e-8 6.10e-8
Res 9.34e-08 1.39e-08 8.85e-8 7.52e-08

P

IT 22 29 4 4
CPU 0.30 0.14 0.07 0.04
Err 1.33e-07 1.14e-7 1.68e-14 1.69e-14
Res 9.28e-08 6.14e-08 3.60e-15 2.89e-16

6. Conclusions

A new stationary iterative method was constructed for solving a class of three-by-three block saddle
point problems. We analyzed the convergence properties of the elaborated stationary method. We further
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examined the performance of induced preconditioner from the proposed method. More precisely, the
eigenvalue distribution of the preconditioned matrix was studied. Our numerical tests illustrated that the
proposed preconditioner is more effective than the other tested preconditioners in the literature.
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