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Embedding Besov Type Spaces B,(A) into Tent Spaces and Volterra
Integral operators

Ruishen Qian?

?School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang 524048, Guangdong, P. R. China

Abstract. In this paper, the boundedness and compactness of embedding from Besov Type spaces B, ()
into tent spaces T, (i) are investigated (1 < p < g < coand 0 < A, s < o). Asan application, the boundedness

and compactness of Volterra integral operator T, and integral operator I, from Besov Type spaces B,(A) to
Flg,9-2+ %(1 — A),s) spaces are also studied.

1. Introduction

As usual, let ID be the unit disk in the complex plane C, JD be the boundary of ID, H(ID) be the class
of functions analytic in ID and H* be the set of bounded analytic functions in ID. The Hardy space H”
(0 < p < o0) is the sets of f € H(ID) with

27

P i0y\|p
IfIl, = sup 7 J, If (re'®)PdO < oo.

0<r<1

Suppose that 0 < p < o0 and a > —1. Let A}, denote the Bergman spaces of function f € H(DD) satisfies
i, = [ 1FePQ - efyrdAG) <.
« Jp

Let1 <p <ooand 0 < A < 1. The Besov Type spaces B,(A) consist of the function f € H(ID) satisfies

£l oy = LFOF +IFT, <o,

p-1-A

B,(A) spaces have been studied extensivly, we refer to [6, 14-16] and the paper referinthere.
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Suppose that 0 < p < 00, =2 < g < o0 and 0 < s < 0. The space F(p, g, s) is defined by those f € H(DD)
with

11,0 = 1fO)F +sup ID If' @A = 12P)(1 = la(2)P)dA(z) < oo,

F(p.qs) — e

where ¢,(z) = {=. This space was first introduced by Zhao in [38]. When p = 2 and g = 0, it gives Q;

spaces (see [35, 36]). It is well known that F(p,p — 2, s) is equivalent to Bloch space for all s > 1, where the
Bloch space B is the class of all f € H(ID) for which

Ifllz == If(O) + Su]]};(l = l2P)If'(2)] < co.

The little Bloch space By, consists of all f € H(ID) such that

Jim (1 - [2P)lf @) = 0.

Let S(I) be the Carleson box based on I with

S =lze1-l<lzl <1 andéel}.

If I = dD, let S(I) = D. For 0 < p < oo, we say that a non-negative measure y on ID is a p-Carleson measure

if -
u(S(0)) o
icop P

When p = 1, it gives the classical Carleson measure.
Let0<g,A < oo. T;"A(y) is the spaces of function f € L7 consists of

1
sup W fsa) If()dp(z) < co.

ICID

T3, (u) was first introduced by Xiao in [32]. Xiao proved that the @, space (0 < p < 1) is continuously

#(Sm)

contained in T3, (1) if and only if sup;,p, = (log %)2 < 00. Pau and Zhao studied Mobius invariant Besov

type space F(p,p — 2,s) embedding to tent spaces T (u) in [23], generalized the main results of [32]. Liu

and Lou studied the emdedding from Morrey spaces £>* to T3, (1) in [21]. For more information relate to
tent spaces, we refer to [21, 23, 31, 32] and the paper referinthere.
For any g, f € H(ID), the integral operator T, and I, are defined as

7H®=£ﬂMMMMJﬂ®:LmeMM.

For g € H(ID), the multiplication operator M, is defined by M, f(z) = f(z)g(z). It is easy to see that M, is
related with [, and T, by
M;f(z) = f(0)9(0) + I;f(2) + Ty f(2).

Aleman, Cima and Pommerenke in [1, 2, 22], showed that T, is bounded on Hardy spaces if and only if
g € BMOA. Aleman and Siskakis in [3] showed that T, is bounded on the Bergman space A? if and only if
g € B. Siskakis and Zhao in [26] proved that T, is bounded on BMOA if and only if g € BMOAg. For more
information related to these operators, we refer to [2], [3], [11], [20], [26] and [32].

00

In this paper, we prove that identity operator I : By(A) — T7%(u) is bounded (resp. compactly) if and only

if p1 is a (resp. vanishing) (s + @)-Carleson measure, when1 <p<g<o00,0<A<land0<s <oco. Asan
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application, we studying Volterra integral operator T, acting from B,(A) to F(q,q —2 + g(l —A),s). The paper
is organize as following: Section 2, we give some auxillary results. Section 3, we studied boundedness and
compactness of embedding from Besov Type spaces B,(A) into tent spaces T s(u), where 1 < p < g < oo.
Section 4, we investigated the boundedness and compactness of integral operator Ty, I, and M, acting from
B,(A) to F(q,9 -2+ g(l - A),s).

In this paper, the symbol f ~ g means that f < g < f. We say that f < g if there exists a constant C such
that f < Cyg.

2. Preliminaries

In this section, we will give some auxiliary results.

Lemma 1. Suppose that 1 <p < 00,0 <A <1land f € By(A). Then

1B, ()
Ifz) s —————, zeD.
/ (1-1R)7

Proof. By growth of Bergman spaces Ai __» We have

Fll
If'2) < ﬁ f €By(A).
(I-1z2)

Thus, we can get our desire result by integral of z on both side of above. The proof is completed. [J

Lemma 2. ([40, Lemma 3.10]) Suppose that e > 0, then we have

(1 - 2Py
— —~ dA < —_—
T —mp O S Ty

Lemma3.Let1 <p<oo,0<A<landz, welD.Then

_(—RP)
fw(Z) = W S Bp(A)
Fo(z) = M € B,(\)
v w(l —wz) P

Proof. Combine with Lemma 2, we have

f @I (1 = 2P~ 1 dA(z)

f (1- lez)” AP ppitda) < 1.

wz|?

F,, can be verified in similar way. The proof is completed.
0
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Lemma4.Let 1 <p <ocoand0< A < 1. Then

fo@a€By(A), fe€ByA).

Moreover,
lIf1lB, 1)
1f o @ally oy s —— =
PO - ap) T
and
15,1

fop.— f(a) S—-
” “Bp(/\) 1 - )7

Proof. Since

IF o Pl 0y = F@P + [ 1(F o o P = PP dAG)

Making change of variable w = ¢,(z), combine with the well known fact that

1 - |pa(2)P?
1—z2 7

lp;(2)] =
we have
fD (f o @aY @P(L - R dAG)

= fD If (@a@)F i@ (1 — 127~ dA(z)
1-|p, 2\P2
= f 'f'(ﬁoﬂ(z))|”(|_+(;)l) P, @)P(A - 2R AR)

p |w|2 " _ 2yp-1-1
If( w)| = (@) (1 = lpa(@)I" )~ dA(w)

- fD I @)P(1 - |w|2>P-2<1 ~ lpa@)P) - dAw).

Note that
1— |z 1
1-azP ~ 1—a)?

Thus,
[ ir@ra-ty2a - pe -
1 4 _ op2\p-1-4
$(1_|a|2)1_A fD|f @)P(1 = [P~ dA(w)
The proof is completed. [

3. Carleson embedded

Theorem 1. Suppose that 1 <p < 00,0 < A <land A <s < oco. Let u be a nonnegative Borel measure on ID. The
identity operator I : By(A) — T, (1) is bounded if and only if pis a (s + 1 — A)-Carleson measure.
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Proof. Suppose that the identity operator I : B,(A) — T}%(u) is bounded. For any given arc I C JID, set

(1) 7
(1-wz)

7

folz) =

where w = (1 - [I|)¢ and ¢ is the center point of I. By Lemma 3, we see that f,, € B,(1). In addition, it is
easily to see that
I1-wzl~1-|wP~ I, zeS{U).
Thus,
A-1
|fw@| = 17
when z € 5(I). By the boundedness of I : By(A) — T;‘,’s(y), we have

il = sup 77 f oD du) < o,

ie.,
u(s())

|s+1—)\

icp

Hence pis a (s + 1 — A)-Carleson measure.

Conversely. If i is a (s + 1 — A)-Carleson measure.

(1). When s = A. Then p is a Carleson measure. For any given I C dDD, denote by w = (1 — |I|)§, where &
is the midpoint of I. For any f € B,(A). Lemma 1 gives

F@) < —=I1flls, 0.
Il

Since p is a Carleson measure, by the well known fact that

f 9@\ duz) < IuPliglt,, ge H?.

We obtain

1
i P
T fsm fPdu(z)
u(S()

1
<l [ NEE f(w)l”dy(Z)) + P

S(I

e S
< |w|2>“( f 6) - ff '“jg'|2|a)+#

S(I
N Y CE f(W)I”IdéI) 0
JD
S(I
< (= BP0 0~ Sy + O

By [6, Lemma 2.4], we can deduce that
If = fOllr < IIf = fO)ll, 1)
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Thus,

1
— p
T fsm F@Pdue)

u(S(n)
I
, (s
I
u(S(D)
M

< (1= [P MIf o 9o — fF@)IF,

< A= 1wP)HIf o @ = f@I o) +

< (U= Py~ = )AL

S(I
Sl ) + %

Therefore, I : B,(A) — T5(u) is bounded.

(2). When s > A. Checking above proof, we only need to show that

1

Since p is a (s + 1 — A)-Carleson measure, by the well known fact that

fD 9@ du@ < WPlgll, , geAl .

=: W L(I) If(z) = f(w)Pdu(z) < oco.

5200

Note that B,(1) € HP C Af _;_,- Now, we consider the cases —1 -1 > 0and -1 <s -1 - A < 0 separately.

Casel.s—1-A>0. Let n = @4(z). Combine with [7, Lemma 2.1], we have

f@) - fw) |

+ =02

A~ - Py
f(l) 1- wz)i P
< (1 - Py f QSO 1~y
D

|1 oy |s+(17)\)+2

~ Py f @) - ﬁ(zf WA= RPY

du(z)

_ (1 - ) fD 1F 0 puln) - F@)PAAG)

< (1 - [Py fD (f o @u) (DP(L = [P dAG)

< (1 - [wy f | (@umIP L = (PP dAG)

2
< (1 - fwP) f F@Pa- Py S _'i”'li dA(2)
2
= - [ rera-err e
S A= [ @R - P A,

Thus, we can deduce that A < ||f||B N
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Case2. -1 <s—-1-A<0. Then
f@) - f(W)

A%(l—mffuﬁn(l I
ZUZP
f(z) = f(w)P

b - @zt
2\2—s |f(Z) - f(ZU)lp(l - |w|2)2
- |w| ) b |1 _ %lel

= (1 - |w|2)2—s j];) |f 1o (Pw(ﬂ) — f(w)|P(1 _ |(PW(n)|2)s_1_/\dA(77)

du(z)

< (1= fwP)* (1= 2Py dA(2)

<q (1~ Py dAG)

= (1 - |w|2)17/\ f |f o (Pw(n) - f o (Pw(o)lp(]. - |77|2)571*/\dA(T])
D
SO—WVV“jWUOQmeu—mH%*Mmmm
D

< (1= fwf)' f " (@umIP (1 = lpu(mP)Y (1 = Iy~ ~*dA(n)

1- I|2)

T dA@)

qlmWAfVMM|MM4%wf”

fvwmmv”%®ﬂww)

5201

Theorem 2. Suppose that 1 <p < q < o0,0< A <1and0 <s < co. Let u be a nonnegative Borel measure on D.
The identity operator I : By(A) — Tp5,(u) is bounded if and only if pis a's + q(l A)-Carleson measure.

Proof. Suppose that I : B,(1) — Tg%(u) is bounded. The proof is similar to Theorem 1, thus we omitted the

proof.
On the other hand. Combine with the proof of Theorem 1, we deduce

1
- q
uh&mmww
,H(S()

1
sWuQm%mww@+wm|w
1 - o) - £

e @)~ f(w)
z1—||2( f—
a-wp [

en
If pisas+ q(l — A)-Carleson measure, by [16, Theorem 1], we known that Z)p

(S
) + L0
[

1 -wz) v

N C L7(du). Note that
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By(A) € Dz—1—A+E‘ Hence,
q
flea) (2) = f(w)
(1= fw) f JOTD | e
SO|(1—wz) » 9

p q/p

(1 - R T dA)

=M
(1-wz) 7 "

[ £2) — f(w) J

< - o) [If(O) — fw)l + fD

< ((1 _ |w|2)277l|f(0) _ f(w)lp)q/p

’|P
+ [(1 _ |w|2)2—)\ jl; ( f(Z) B f(w) ]

N s
By growth of B,(1), we have

q/p
1- |z|2>”‘1‘“fdA<z>J .

1—-wz) v "

(1 = [w)'£(0) - fw)P < 1.

Since
( £(2) - f(w) ) FEO-w) T+ TE + (@) - f) -w2) T
(1-wz)7 *i (1 —-w2) 7+ '
We deduce that
P
M= (1 - [wP)** f [L{c“ﬂ’)] (1 - R T dA )
D\(1-wz) 7 "

Sh+1,

where
I =: (1 = JwP>™ f W—Zz)'p\w(l — 2Py M dAG)
D |1 —wz|”" Y

and

b= (1 - wf?" fD V@ ZJ@F _ pap1-avt ga ),

— 2-A+2
|1—T/UZ|2 A+q+p
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Clearly I < |IfII" B ()" Making change of variable 1 = ¢(z), combine with [7, Lemma 2.1], we have

i [ 090t = (F 0 pu)O)F e (L= P2
it AfD 1w Pl VT e A
(1= Py %
2\2-A o 14 i
= A=k [ 7o pan = o @) A
112 2p—1—)\+1
sﬂ—mﬁfALgUO%JmW(|fl%M+ A
1—1nPR p-1-A+E
< (1= fwf)*™ f |f’((Pw(77))|p(1—|(Pw(77)|2)p( l) ——dA(n)
D |1 —wmp ty

1- A+
< (1 _ |w|2)2—/\ f |fl(z)|p(1 _ |Z|2)p (1 - |§0w(2)| )}7 (1 - |Z/_U|2) dA(Z)
D

1 - TP @l

2yp-1-A+p+ B
< (1 iy f I >|P(1 =) dA()

|p+2 A+

— 172 P"’; _ 2\2-A
— j]; |f,(Z)|p(1 _ |Z|2)p—1—A (1 |Z| ) (1 |w! ) dA(Z) < ”fHB ()

n- %ZVH—Z_M—%
Thus, combine with I; and I, we get our desire results. The proof is completed. [

Theorem 3. Suppose that 1 <p < g <o00,0< A <1and 0 <s < oco. Let u be a nonnegative Borel measure on ID.
The identity operator I : By(A) — T (u) is compacted if and only if p is a vanishing s + q(l — A)-Carleson measure.

Proof. Letidentity operator I : B,(A) — T¢7,(u) is compacted. Let {I,} be a sequence arcs with limy e |I,] = 0
Denote by w;, = (1 — |[,[)&,, where &, is the midpoint of arc I,. Set

—1+1
wa2) 7

_ -
ful2) = T-wma € By(A),

Note that {f,} converges to 0 uniformly on compact subsets of ID. Then

S(I,
|‘u<| (4(1)A)) S |11|5 f |fn(Z)|qd[,l(Z) -0,
I s+ ”

. . . . . 1-A
as n — oo. Since I, is arbitrary, we see that p is a vanishing s + %—Carlesom measure.

On the other hand, suppose that y is a vanishing Carleson measure. We also assume that ||f,lls,1) < 1
and {f,} converge to 0 uniformly on compact subsets of ID. Note that if i is a vanishing Carleson measure,
by [19, Lemma 2.2], we have

Il = Hr||S+M - 0,r—>1,
P
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where p,(z) = u(z) for |z| < r and p,(z) = 0 for r < |z| < 1. Then

%j‘mwwm>
1 Jsay

1
— o
< TG f @V dp(z) + — e f @) 7d(u — 1,)(2)

1
SWJWMWWMHW Bl s Wl

1
<L f @) + =l
1 Jsqa St

Letting  — oo and then r — 1, we have limy, e || fullrs ) = 0. Therefore I : B,(A) — Tg'(u) is compact. The
proof is complete.
O

4. Boundedness and compactness of T, I, and M, operators

Theorem 4. Let p, A, q, s be the same as Theorems 1 and 2. Suppose that g € H(ID), then T, is bounded (resp. compact)
from B,(A) to F(q,9 — 2 + g(l —A),s)ifand only if g € F(q,q — 2,5 + %(1 —A)) (resp. g € Fo(q,q— 2,5 + g(l - ).

Proof. Suppose that f € B,(A) and g € F(q,9 — 2,5 + %(1 —A)). Then, duy(z) = |9'(2)1(1 - |z|2)q_2+s+%(1‘A)dA(z)

isas+ g(l — A)-Carleson measure. Combine with Theorem 1, we deduce that

f (Tof) (L~ 2P 24V A(z)
50

}lj‘WmWﬁwaﬂﬁﬁ“*“%mw
S(I)

1
=vawww>

2
S 9 sy

On the other hand. For any I € dD, let w = (1 — |I|)C € D, where C is the center of I. Then
1—|wl = |1 -wz| =|I], zeS»I).
If T, is bounded from B,(A) to F(q,q — 2 + %(1 —A),s) and f,, is defined as in Lemma 3. We have

1
mﬁg(m\)

|11|s f @I @11 = )24V A )

_ ! —2+s+21(1-2
SWI (Tyfo) @1 = P20V dA()

SITyFell]

j‘WﬁWO—MW***“WMw
S()

F(q,9- 241 (1 /\)s)

Thus, g € F(q,9 — 2,5 + 5(1 - ).
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Now, we consider the compactness. To prove T, is compact if and only if for any bounded sequence {f,}
is By(A) with f, — 0 uniformly on compact subsets of ID, we have

B 1Ty (fi)llpg -2+ 20-2)0) = O-

Hence, similar to above, we get our desire result. The proof is complete. [

Theorem 5. Let p,A,q,s be the same as Theorems 1 and 2. Suppose that g € H(ID), then I, is bounded (resp.
compact) from B,(A) to F(q,q —2 + %(1 —A),s) ifand only if g € H® (resp. g = 0).

Proof. Let f € B,(A) and g € H*. By the growth of B,(1), we have
l1£1l5,1)

1-EP)T

If'@)I <
Then
[ r@m@ra-Epries (- pr) e
“ ()1 - 2q—2+g(1—A)1_ ; 2sdA
sl [ 17 @pa-iz?) (1= lpaP) dAG)
=||g||? QPP = 12PN (1 2 o, 2)R) dA
gl fD F@PP( - [2P) (1-lp@)P) dA(z)

— ’ 2 T (1A —(q— 1-A S
SIIgII?{wIIfIIZVfA)f @I - R0 (1o )R) dag)
D
q P
<l I,

On the other hand. If I; is bounded from B,(A) to F(g,q9 — 2 + %(1 — A),s), using the function F;, as in
Lemma 3, subharmonic property of |g]7, we easy to calculate that

q
) >||Ing||F(qlq_2+g(1—A),S)

2 sup f EL @I = 2P0 (1 - 19, 2)P) dAG)
D

aeD

: fD IF @)@ = P20 (1 - pu(@P) dAE)

2 fD RN RO (1 - @) a4

1
RA—wpr fD o 9(IdA(z) 2 lg(w)I*.

Since w € D is arbitrary, we have

q q
0> WoFulll o143y % Mol
Now, we prove the compactness of ;. It is clear that if g = 0, I, is compact. Conversely. Suppose that
Iy o By(A) — F(g,9 -2+ g(l — A),s) is compact. From above, we know that g is bounded on D. If g # 0.
Follow the maximum principle, we have glopp # 0. Thus, there exists a constant 6 > 0 and a sequence
{zx} € D such that zy — b € JD and |g(zx)| > 6. Using Schwarz’s lemma for H*, we have

|9(z1) — 9(z2)| < 2||gllg=1@2, (22)I, 21,22 € D.
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The inequality shows that there is a sufficiently small number € > 0 such that |g(z)| >  holds for all k and
z with |@, (z)] < e. Notice the fact that each pseudo-hyperbolic ball {z € D : |¢,, ()| < r} is contained in a
Carleson box S(Ij) with |[Ii| ~ 1 — |z[*. Let

=L
(1= Jwel”) 7

F = .
= -
Thus, we have

Mo Frllrgq-2+21-1)5)

1 ’ 4+ 1=
S f F,(2)1g9@)I"(1 - 272V dA(z)
el* Jsao

1
Z_
I |® {zeD: lps, (2)I<r}
~o1.

lg@)I7(1 — |z dA(z)

The compactness of I, gives that ||Ig(Fk)||F(q g-2+1(1-A)s) 0. That is a contradiction with 6 > 0. Thus, g = 0.
q-2+] ,
The proof is completed. [

Theorem 6. Let p,A,q,s be the same as Theorems 1 and 2. Suppose that g € H(ID), then M, is bounded (resp.
compact) from B,(A) to F(q,q — 2 + %(1 —A),s)ifand only ifg € F(q,9 -2 + g(l = A),8) NH* (resp. g = 0).

Proof. Giveng € F(q,9—2+ %(l —A),s) N H*. It follows from Theorems Theorems 4 and 5 that both integral

operators
T, By(\) > F(g,q 2+ 2(1 —A),s), I By(A) > F(g,q -2+ g(l ~A),9)

are bounded. So M, : B,(A) — F(q,q -2 + g(l —A),s) is bounded.
On the other hand. If f € F(g,9 -2+ g(l —A),s). It easily to deduce that

1~ aP)™ I @) fD F @A~ P75 (1~ lpu@PFdAG).

Thus,
1-A
f@I1 -2 7 < ||f||F(q,q_z+g(1_A),s)-

Using the boundedness of M,, we have

1-A
(M )@= 2R)' < UM fullriyae 10

Let z = w. Hence, we have
|!](w)| < ||Mgfw||p(q,q_2+g(1_/\),s)-
That is, g € H*. Note that
T,f = Myf = f(0)g(0) - I f.
It gives the boundedness of T, thatis, g € F(g,q —2 + g(l - A),s).
Now, let us consider the compactness. If g = 0, it is clearly that M, is compact. On the other hand. Suppose

Pl
that M, : B,(A) — F(q,9—2+ ;—i(l —A),s) is compact. Let f,(z) = % and [w,| — 1. Then || fullp,1) $ 1
and f, — 0 uniformly on any compact of D. Thus, [IM fullpge—2+ 11-2)9) 0. Follow the some proof as
above, we have

|g(wn)| < ||Myfn”P(q,q72+%(lf/\),s) — 0.

Since g is bounded analytic function on D, we deduce that g = 0. The proof is completed. [
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