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Abstract.In the present paper we establish a link between the Lupaş operators and its Kantorovich type
integral modification, by applying the methods of finite differences, also the difference between two op-
erators is established in weighted spaces. Further, we consider a modification of the Kantorovich variant,
which preserve the test functions eν jx, j = 1, 2 and estimate a Voronovskaja type convergence estimate.

1. Introduction

In the recent years several problems concerning convergence of operators have been discussed by
researchers, see for example [1], [2], [3], [4], [5], [10], [13] and [16] etc. In the recent book [12] a collection
of moments of some operators is provided, based on different methods. A distinguished Romanian
mathematician Alexandru Lupaş in [14] proposed an important discrete operator, which for x ≥ 0,n ∈N is
defined by

(Ln f )(x) =

∞∑
k=0

lk(nx)Fn,k( f ) =

∞∑
k=0

lk(nx) f
(

k
n

)
, (1)

where

lk(nx) =
(nx)k

2k · k!
· 2−nx

and the rising factorial is given by (y)m =
∏m−1

i=0 (y + i),m ≥ 1; (y)0 = 1. These operators are different
from the other operators of exponential type (see [15]), as we can not find a function p(x), such that
p(x)(Ln f )′(x) = n(Lnψ1

x f ), ψm
x = (e1 − xe0)m, ei(t) = ti, i = 0, 1, 2, 3, ..., which is the necessary condition for an

operator to be of exponential type. If we denote bFn,k = Fn,k(e1) = k
n , then µFn,k

r = Fn,k
(
e1 − e0Fn,k(e1)

)r = 0.

Remark 1.1. Using the identity 1
(1−a)β =

∑
∞

k=0
(β)k

k! ak, |a| < 1, we have

Ln(eλt, x) = (2 − eλ/n)−nx,
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which provides the moment generating function (abrv. m.g.f.) of the Lupaş operators, and if we denote the r-th order
moment of the operators (1) are given by (Lner)(x), er(t) = tr, then, few moments are given by

(Lne0)(x) = 1
(Lne1)(x) = x

(Lne2)(x) = x2 +
2x
n

(Lne3)(x) = x3 +
6x2

n
+

6x
n2

(Lne4)(x) = x4 +
12x3

n
+

36x2

n2 +
26x
n3 .

The Kantorovich variant of Lupaş operators defined by Agratini [6] is defined as follows:

(Kn f )(x) =

∞∑
k=0

lk(nx)Gn,k( f ), x ≥ 0 (2)

where

Gn,k( f ) = n
∫ (k+1)/n

k/n
f (t)dt.

Remark 1.2. By simple computation, we have Gn,k(e1) = 2k+1
2n and

µ
Gn,k

2 = Gn,k
(
e1 − e0Gn,k(e1)

)2 =
1

12n2 ,

µ
Gn,k

6 = Gn,k
(
e1 − e0Gn,k(e1)

)6

= Gn,k(e6) − 6Gn,k(e5)Gn,k(e1) + 15Gn,k(e4)
(
Gn,k(e1)

)2
− 20Gn,k(e3)

(
Gn,k(e1)

)3

+15Gn,k(e2)
(
Gn,k(e1)

)4
− 6Gn,k(e1)

(
Gn,k(e1)

)5 + Gn,k(e0)
(
Gn,k(e1)

)6

=

(
(k + 1)7

− k7
)

7n6 − 6

(
(k + 1)6

− k6
)

6n5

(
2k + 1

2n

)
+ 15

(
(k + 1)5

− k5
)

5n4

(
2k + 1

2n

)2

−20

(
(k + 1)4

− k4
)

4n3

(
2k + 1

2n

)3

+ 15

(
(k + 1)3

− k3
)

3n2

(
2k + 1

2n

)4

−6

(
(k + 1)2

− k2
)

2n

(
2k + 1

2n

)5

+

(
2k + 1

2n

)6

=
1

448n6 .

Remark 1.3. By simple computation, the moment generating function of the Lupaş-Kantorovich operators (2) is
given by

(KneAt)(x) =
n(eA/n

− 1)
A

(
2 − eA/n

)−nx
.

The r-th order moment of (2) satisfy

(Kner)(x) =

[
∂r

∂λr
n(eλ/n − 1)

λ

(
2 − eλ/n

)−nx
]
λ=0

.
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Using this expression, some of the moments are given by

(Kne0)(x) = 1

(Kne1)(x) = x +
1

2n

(Kne2)(x) = x2 +
3x
n

+
1

3n2

(Kne3)(x) = x3 +
15x2

2n
+

10x
n2 +

1
4n3

(Kne4)(x) = x4 +
14x3

n
+

50x2

n2 +
43x
n3 +

1
5n4 .

We may point out that there was a minor misprint in the first moment given in [6, pp. 48]. Also, it is seen
from Remark 1.3 that the operators

(
Kn f

)
preserve only constant function.

The link between the Lupaş operators (1) and its Kantorovich variant was not established earlier,
as standard differential operator does not work for such operators. In the present article we establish a
connection between the two operators, using the methods of finite differences. We also provide the difference
between Lupaş operator and its Kantorovich variant. In the last section, we modify the Kantorovich variant
in such a way that exponential functions are preserved and for such operators, we establish a Voronovskaja
type convergence result.

2. Link between Lupaş and its Kantorovich variant

Theorem 2.1. We have the following link between Lupaş and its Kantorovich variant

(Kn f ) = (∇ ◦ Ln ◦ F), (3)

where F(x) = n
∫ x

0 f (t)dt, and ∇ is the backward difference operator for the function f (nx) with unit step length.

Proof. Obviously, we have
∇(nx)k = k(nx)k−1

and
∇2−nx = 2−nx

− 2−nx+1.

Thus using the identity
∇( f1) = f (∇1) + 1(∇ f ) − (∇ f )(∇1),

we can write

∇((nx)k2−nx) = (nx)k.(2−nx
− 2−nx+1) + k(nx)k−12−nx

− k(nx)k−1(2−nx
− 2−nx+1)

= (nx)k(2−nx
− 2−nx+1) + k(nx)k−12−nx+1

= (nx)k2−nx
− 2−nx+1[(nx)k − k(nx)k−1]

= 2−nx+1k(nx)k−1 − 2−nx(nx)k,

implying

∇(lk(nx)) = lk(nx) − 2lk(nx) + lk−1(nx)
= lk−1(nx) − lk(nx).
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We start with

(∇ ◦ Ln ◦ F) (x) = ∇ ((LnF)(x)) = ∇

 n∑
k=0

lk(nx)F
(

k
n

)
=

∞∑
k=0

(∇lk(nx))F
(

k
n

)

=

∞∑
k=0

[lk−1(nx) − lk(nx)] F
(

k
n

)

=

∞∑
k=0

lk(nx)
(
F
(

k + 1
n

)
− F

(
k
n

))

= n
∞∑

k=0

lk(nx)
∫ (k+1)/n

k/n
f (t)dt = (Kn f )(x).

This completes the proof of the theorem.

Remark 2.2. Using the link between the backward difference ∇ with the unit step length and the differential operator
D, in our Theorem 2.1, ∇ can be replaced by 1 − e−D/n.

Remark 2.3. Here we provide the application of Theorem 2.1, to verify the link between two operators for calculating
few moments. By (3) and applying Remark 1.1, we have

(∇ ◦ Ln ◦ Fe0)(x) = ∇ ◦ Ln ◦ nx
= ∇ ◦ nx = nx − (nx − 1) = 1 = (Kne0)(x).

Next, we have

(∇ ◦ Ln ◦ Fe1)(x) = ∇ ◦ Ln ◦
nx2

2

=
n
2
∇ ◦

(
x2 +

2x
n

)
=

1
2n

[
n2x2

− (nx − 1)2
]

+
1
n

[nx − (nx − 1)]

= x −
1

2n
+

1
n

= x +
1

2n
= (Kne1)(x).

Also, we can write

(∇ ◦ Ln ◦ Fe2)(x) = ∇ ◦ Ln ◦
nx3

3

=
n
3
∇ ◦

(
x3 +

6x2

n
+

6x
n2

)
=

1
3n2

[
n3x3

− (nx − 1)3
]

+
2
n2 [n2x2

− (nx − 1)2] +
2
n2 [nx − (nx − 1)]

= x2 +
3x
n

+
1

3n2 = (Kne2)(x).

Thus by knowing the moments of Lupaş operators, one can find the other moments of Lupaş-Kantorovich operators in
a similar manner.
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3. Differences between Lupaş and its Kantorovich variant

Let B2[0,∞) be the set of all functions f defined on positive real line with some constant C( f ) depending
only on f , satisfying the condition

∣∣∣ f (x)
∣∣∣ ≤ C( f )

(
1 + x2

)
. Let C2 [0,∞) = C [0,∞)∩ B2 [0,∞) and by C∗2 [0,∞),

we denote subspace of all continuous functions f ∈ B2 [0,∞) for which lim
x→∞
| f (x) |(1 + x2)−1 < ∞.

Following [7], [11] (see also [8]), the difference between Ln and Kn is given by:

Theorem A. Let f ∈ C2 [0,∞) with f ′′ ∈ C∗2 [0,∞) . Then

∣∣∣(Ln − Kn)( f , x)
∣∣∣ ≤ 1

2

∣∣∣∣∣∣ f ′′∣∣∣∣∣∣
2
β(x) + 8Ω

(
f ′′, δ1

)
(1 + β(x)) + 16Ω

(
f , δ2

)
(γ(x) + 1),

where

β(x) =

∞∑
k=0

ln,k(x)
{(

1 +
(
Fn,k(e1)

)2
)
µ

Fn,k

2 +
(
1 +

(
Gn,k(e1)

)2
)
µ

Gn,k

2

}
,

γ(x) =

∞∑
k=0

ln,k(x)
(
1 +

(
(FG)n,k(e1)

)2
)
,

δ4
1(x) =

∞∑
k=0

ln,k(x)
{(

1 +
(
Fn,k(e1)

)2
)
µ

Fn,k

6 +
(
1 +

(
Gn,k(e1)

)2
)
µ

Gn,k

6

}
and

δ4
2(x) =

∞∑
k=0

ln,k(x)
(
1 +

(
(FG)n,k(e1)

)2
) (

Fn,k(e1) − Gn,k(e1)
)4 ,

where (FG)n,k(e1) = min{Fn,k(e1),Gn,k(e1)} we suppose that δ1(x) ≤ 1, δ2(x) ≤ 1 and Ω( f , δ) is the weighted
modulus of continuity given by

Ω( f , δ) = sup
|h|<δ,x∈[0,∞)

| f (x + h) − f (x)|
(1 + h2)(1 + x2)

,

for each f ∈ C2[0,∞).

Quantitative estimates for differences of Lupaş operators and Lupaş-Kantorovich operators are given
as:

Theorem 3.1. Let f ∈ C∗2 [0,∞) with f ′′ ∈ C∗2 [0,∞) . Then

∣∣∣(Ln − Kn)( f , x)
∣∣∣ ≤ 1

8

(
x2

3n2 +
x
n3 +

4n2 + 1
12n4

)
|| f ′′||2

+8
(
1 +

x2

12n2 +
x

4n3 +
4n2 + 1

48n4

)
Ω

(
f ′′,

x2

448n6 +
3x

448n7 +
4n2 + 1
1792n8

)
+16

(
x2 +

2x
n

+ 2
)
Ω

(
f ,

(x2 + 1)
16n4 +

x
8n5

)
.
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Proof. Using Remark 1.1 and Remark 1.2, we get

β(x) =

∞∑
k=0

ln,k(x)
{(

1 +
(
bFn,k

)2
)
µ

Fn,k

2 +
(
1 +

(
bGn,k

)2
)
µ

Gn,k

2

}
=

∞∑
k=0

ln,k(x)

1 +

(
2k + 1

2n

)2 ( 1
12n2

)
=

x2

12n2 +
x

4n3 +
4n2 + 1

48n4 ,

and b(FG)n,k = min
{

k
n
,

2k + 1
2n

}
=

k
n
, thus

γ(x) =

∞∑
k=0

ln,k(x)
(
1 +

(
b(FG)n,k

)2
)

= x2 +
2x
n

+ 1.

Also

δ4
1(x) =

∞∑
k=0

ln,k(x)
{(

1 +
(
bFn,k

)2
)
µ

Fn,k

6 +
(
1 +

(
bGn,k

)2
)
µ

Gn,k

6

}
=

∞∑
k=0

ln,k(x)

1 +

(
2k + 1

2n

)2 ( 1
448n6

)
=

x2

448n6 +
3x

448n7 +
4n2 + 1
1792n8

and

δ4
2(x) =

∞∑
k=0

ln,k(x)
(
1 +

(
b(FG)n,k

)2
) (

bFn,k − bGn,k
)4

=

∞∑
k=0

ln,k(x)

1 +

(
k
n

)2 ( k
n
−

2k + 1
2n

)4

=
(x2 + 1)

16n4 +
x

8n5 .

Arrange these terms as in Theorem A, we get the proof of the theorem.

Example 1. The following graph represents the difference between two operators.

1 2 3 4 5

-5

0

5

Figure 1: The difference between (Ln f ) (Blue) and (Kn f ) (Red) for the function f = x9 + x3 + 3x2. (Green) and n = 10.
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4. Preservation of eν jx, j = 1, 2

In order to preserve exponential function, we start with the following form of Lupaş-Kantorovich
operators

(K̂n f )(x) = n
∞∑

k=0

(nbn(x))k

2k · k!
· 2−nbn(x)

∫ (k+1)/n

k/n
f (t)dt (4)

Suppose these operators preserve eνx, then

(K̂neνt)(x) = eνx = n
∞∑

k=0

(nbn(x))k

2k · k!
· 2−nbn(x)

∫ (k+1)/n

k/n
eνtdt

=
n(eν/n − 1)

ν

(
2 − eν/n

)−nbn(x)
,

implying

bn(x) =
log n(eν/n − 1) − log ν − νx

n log(2 − eν/n)
.

Obviously lim
n→∞

bn(x) = x. Now based on this we define the following operators

(K̃n f )(x) = n
∞∑

k=0

eνx (nbn(x))k

2k · k!
· 2−nbn(x)

∫ (k+1)/n

k/n
e−νt f (t)dt. (5)

These operators (5) reproduce eνx and e2νx, but loose to preserve the constant function.

Lemma 4.1. Let ν > 0, for each n ∈ N and x ∈ [0,∞), the following identities hold

K̃n(e0, x) = eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n ) ,

K̃n(e3νt, x) = eνx n(e2ν/n
− 1)

2ν

(
2 − e2ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n ) ,

K̃n(e4νt, x) = eνx n(e3ν/n
− 1)

3ν

(
2 − e3ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n ) .

Proof. By using Remark 1.3, we obtain

K̃n(e0, x) = eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

)−nbn(x)

= eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n) .

Next

K̃n(e3νt, x) = eνx n(e2ν/n
− 1)

2ν

(
2 − e2ν/n

)−nbn(x)

= eνx n(e2ν/n
− 1)

2ν

(
2 − e2ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n ) .

Finally Next

K̃n(e4νt, x) = eνx n(e3ν/n
− 1)

3ν

(
2 − e3ν/n

)−nbn(x)

= eνx n(e3ν/n
− 1)

3ν

(
2 − e3ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n ) .
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Remark 4.2. Let us consider expν,x(t) = eνt
− eνx, then

K̃n(exp1
ν,x(t), x) = eνx

1 − eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )

 .
K̃n(exp2

ν,x(t), x) = K̃n(e2νt, x) − 2eνxK̃n(eνt, x) + e2νxK̃n(e0, x)

= e2νx

eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )

− 1

 .
and

K̃n(exp4
ν,x(t), x) = K̃n(e4νt, x) − 4eνxK̃n(e3νt, x)

+6e2νxK̃n(e2νt, x) − 4e3νxK̃n(eνt, x) + e4νxK̃n(e0, x)

= eνx
[n(e3ν/n

− 1)
3ν

(
2 − e3ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )

−4eνx n(e2ν/n
− 1)

2ν

(
2 − e2ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )

+2e3νx + e4νx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )

]
.

Remark 4.3. By simple computation using the mathematical software, we have

lim
n→∞

n

eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n)

− 1

 = 2ν2x

and

lim
n→∞

n2
{
eνx

[n(e3ν/n
− 1)

3ν

(
2 − e3ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n)

−4eνx n(e2ν/n
− 1)

2ν

(
2 − e2ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )

+2e3νx + e4νx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n)

]}
= 0.

The space C∗ [0,∞) is a small subspace of C [0,∞) of real-valued continuous functions on x ≥ 0 where
lim
x→∞

f (x) exists and is finite.

We consider for a fixed ν > 0 the exponential function expν(t) = eνt and its inverse logν is the logarithmic
function with base eν.

Theorem 4.4. If f ∈ C∗[0,∞) has a second derivative at a point x ∈ (0,∞), then

lim
n→∞

n
(
(K̃n f )(x) − f (x)

)
= 2ν2x f (x) − 3νx f ′(x) + x f ′′(x).

Proof. By Taylor’s theorem, we obtain

f (t) =
(

f ◦ logν
) (

eνt
)

=
(

f ◦ logν
)

(eνx) +
(

f ◦ logν
)′

(eνx) expν,x(t)

+

(
f ◦ logν

)′′
(eνx)

2
exp2

ν,x(t) + hx (t) exp2
ν,x(t),
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where hx (t) := h
(
eνt
− eνx) and h continuous function, which vanishes at 0. Applying the operator L̃n and

then evaluating at the point x, we get

(K̃n f )(x) = f (x) (K̃ne0)(x) +
(

f ◦ logν
)′

(eνx) (K̃n exp1
ν,x(t))(x)

+

(
f ◦ logν

)′′
(eνx)

2
K̃n

(
exp2

ν,x(t); x
)

+ K̃n

(
hx (t) exp2

ν,x(t); x
)
.

Since (
f ◦ logν

)′
(eνx) = e−νxν−1 f ′ (x)

and (
f ◦ logν

)′′
(eνx) = e−2νx

(
ν−2 f ′′ (x) − ν−1 f ′ (x)

)
,

we have

(K̃n f )(x) − f (x) = f (x)
(
(K̃ne0)(x) − 1

)
+ e−νxν−1 f ′ (x) (K̃n exp1

ν,x(t))(x)

+
e−2νx

(
ν−2 f ′′ (x) − ν−1 f ′ (x)

)
2

(K̃n exp2
ν,x(t))(x) + (K̃nhx (t) exp2

ν,x(t))(x)

= f (x)

eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n)

− 1


+e−νxν−1 f ′ (x) eνx

1 − eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )


+

e−2νx
(
ν−2 f ′′ (x) − ν−1 f ′ (x)

)
2

e2νx

eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n )

− 1


+(K̃nhx (t) exp2

ν,x(t))(x)

=

eνx n(1 − e−ν/n)
ν

(
2 − e−ν/n

) log ν+νx−log n(eν/n−1)
log(2−eν/n)

− 1

 [ f (x) −
3
2ν

f ′(x) +
1

2ν2 f ′′(x)
]

+(K̃nhx (t) exp2
ν,x(t))(x).

Using Cauchy-Schwarz inequality, we can write

n
∣∣∣(K̃nhx (t) exp2

ν,x(t))(x)
∣∣∣ ≤ √

(K̃nh2
x (t))(x)

√
n2(K̃n exp4

ν,x(t))(x).

Also, we have lim
n→∞

(K̃nh2
x (t))(x) = h2

x (x) = 0, by simple computations, it follows that:

lim
n→∞

n
∣∣∣(K̃nhx (t) exp2

ν,x(t))(x)
∣∣∣ = 0.

This completes the proof of the theorem.
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