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On A-Numerical Radius Inequalities for 2 x 2 Operator Matrices-II

Satyajit Sahoo?

*P.G. Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar-751004, India.

Abstract. Rout et al. [Linear Multilinear Algebra 2020, DOI: 10.1080/03081087.2020.1810201] presented cer-
tain A-numerical radius inequalities for 2 x 2 operator matrices and further results on A-numerical radius of
certain 2 x 2 operator matrices are obtained by Feki [Hacet. J. Math. Stat., 2020, DOI:10.15672/hujms.730574],
very recently. The main goal of this article is to establish certain A-numerical radius equalities for operator
matrices. Several new upper and lower bounds for the A-numerical radius of 2 x 2 operator matrices has
been proved, where A be the 2 x 2 diagonal operator matrix whose diagonal entries are positive bounded
operator A. Further, we prove some refinements of earlier A-numerical radius inequalities for operators.

1. Introduction

Let £(H) be the C*-algebra of all bounded linear operators on a complex Hilbert space H with inner
product (-, -). The numerical range of T € L(#H) is defined as

W(T) = {{Tx,x): x € H, |x] = 1}

The numerical radius of T is defined as w(T) = sup{|z|: z € W(T)}. It is well-known that w(-) defines a norm
on H, and is equivalent to the usual operator norm |T| = sup{|Tx| : x € H,|x| = 1}. In fact, for every
T € L(H), the operator norm and the numerical radius is always comparable by the following inequality

STl s w(m) < |7, )

An interested reader is referred to the recent articles [4, 17, 25, 26] for different generalizations, refinements
and applications of numerical radius inequalities.

Let || - | be the norm induced from (-,-). Let the symbol I and O stand for the identity operator and the
null operator on 7. An operator A € L(H) is called selfadjoint if A = A*, where A* denotes the adjoint of A.
An operator A € L(H) is called positive if (Ax,x) > 0 for all x € H, and is called strictly positive if (Ax, x) > O for
all non-zero x € . We denote a positive (strictly positive) operator A by A > O (A > O). We denote R(A) as
the range space of A and R(A) as the norm closure of R(A) in . Let A be a 2 x 2 diagonal operator matrix
whose diagonal entries are positive operator A. Then A € L(H @ H) and A > 0. Then any such A induces
a positive semidefinite sesquilinear form, (-,-)4 : # x # — C defined by (x, y)a = (Ax, y), x, y € H. Naturally,
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this semi-inner product (-, -)4, induces a seminorm | - |4 defined by |x[|a = \/(x,x)4 for all x € . Then |x| 4
is a norm if and only if A > O. Also, (#, | - [|4) is complete if and only if R(A) is closed in . Throughout
this paper, we fix A and A for positive operators on H and H @ H, respectively.

Given T € L(H) if there exists ¢ > 0 satisfying || Tx|4 < c|x|a for all x € R(A), then A-operator seminorm
of T is defined as follows:

ITx]4

IT|a=sup
xeR(A), x+0 ”x”A
Let
LAH) ={T e L(H) : |T||a < oo}

Then £A(H) is not a sub-algebra of £(#), and |T|4 = 0 if and only if ATA = O. Moreover, for T € LA(H),
we have

ITlla = sup{[{Tx, y)al - x,y € R(A), |x]a = |yla =1}
If AT > 0, then the operator T is called A-positive. Note that if T is A-positive, then

[T =sup{(Tx,x)a:x e R(A),|x]|a =1}.

For T € L(H), an operator X € L(H) is called an A-adjoint operator of T if (Tx, y)a = (x, Xy)a forevery x, y € H,
i.e,, AX = T*A. By Douglas theorem [9, 18], the existence of an A-adjoint operator is not guaranteed. An
operator T € £(#) may admit none, one or many A-adjoints. A-adjoint of an operator T € L(H) exists if
and only if R(T*A) ¢ R(A). Let us now denote

LaA(H) = {T e L(H) : R(T*A) c R(A)}.

Note that £4(#) is a subalgebra of £(#) which is neither closed nor dense in £L(#). Moreover, the following
inclusions
La(H) <€ LAH) € L(H)
hold with equality if A is injective and has a closed range.
The Moore-Penrose inverse of A € L(#H) [21] is the operator X : R(A) @ R(A)* — H which satisfies the
following four equations:

(1) AXA=A, 2) XAX =X, (3) XA =Ppray:, (4) AX = thg(m@R(A)l.

Here N'(A) and P, denote the null space of A and the orthogonal projection onto L, respectively. The
Moore-Penrose inverse is unique, and is denoted by A'. In general, A" ¢ £(#). It is bounded if and only if
R(A) is closed. If A € L(H) is invertible, then A" = A™. If T € L4(H), the reduced solution of the equation
AX = T*A is a distinguished A-adjoint operator of T, which is denoted by T* (see [2, 19]). Note that
T = A'TT*A. If T € L4(H), then AT* = T*A, R(T*) c R(A) and N'(T*) = N'(T*A) (see [9]). An operator
T € L(H) is said to be A-selfadjoint if AT is selfadjoint, i.e., AT = T*A. Observe that if T is A-selfadjoint, then
T € Lo(H). However, in general, T # T*. But, T = T* if and only if T is A-selfadjoint and R(T) ¢ R(A).
If T € LA(H), then T € L4(H), (T*)* = P PRy, and ((T#a)#a )#A = T*. Also, T*T and TT* are
A-positive operators, and

IT*T|a = |TT*|a = |TIG = IT* 3 = wa(TT*™) = wa(T*T). (2)

An operator T is called A-bounded if there exists a > 0 such that |Tx|4 < a|x|a, ¥Yx € H. By applying
Douglas theorem [9], one can easily see that the subspace of all operators admitting A'/?-adjoints, denoted
by L 412(H), is equal the collection of all A-bounded operators, i.e.,

Lap(H)={TeL(H); 3a>0; |Tx|a < a|x|la, VxeH}.

Notice that £4(#) and L41(H) are two sub-algebras of £(#) which are, in general, neither closed nor
dense in L(#H). Moreover, we have L4(H) c L 12(H) (see [2, 3]).
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An operator U € L4(H) is said to be A-unitary if |Ux|a = [|[U*x||4 = |x| for all x € H. For T,S € La(H),
we have (TS)" = ST#, (T+ 8y = T +§%, |TS| 4 < | T4|S|4 and [Tx|s < [Tl x| for all x € . In 2012,
Saddi [24] introduced A-numerical radius of T for T € £(H), which is denoted as w4(T), and is defined as
follows:

wa(T) =sup{|(Tx,x)a| : x e H, |x]a = 1}. 3)

The A-numerical radius of an operator is one of the extensions of the numerical radius. When A = I, we
will get the usual numerical radius.
From (3), it follows that
wa(T) = wa(T*) for any T € L4 (H).

A fundamental inequality for the A-numerical radius is the power inequality (see [20]) which says that for
TeLl A(H) ’

wa(T") <wh(T), neN. 4)

Notice that the A-numerical radius of semi-Hilbertian space operators satisfies the weak A-unitary
invariance property which asserts that

wa(UMTU) = wa(T), ®)

for every T € £L4(#) and every A-unitary operator U € L4(H) (see [7, Lemma 3.8]).
An interested reader may refer [1, 2] for further properties of operators on Semi-Hilbertian space.

Let
s.RA(T) =

T+ T v
d 34(T) := ,
7 and UM=—

for any arbitrary operator T € £4 (7). Recently, in 2019 Zamani [28, Theorem 2.5] showed thatif T € L4 (H),
then

wa(T) = sup”*RA(ei@T) ||A = sup”ﬁA(eieT) ||A. (6)
OeR OeR

In 2019, Zamani [28] showed that if T € L4(H), then

eOT + (9T)
2

wa(T) =sup
OeR

~ )
A
The author then extended the inequality (1) using A-numerical radius of T, and the same is produced below:

1
5 ITla < wa(T) < [T]la- (®)

Furthermore, if T is A-selfadjoint, then w4 (T) = |T| 4. In2019, Moslehian et al. [20] again continued the study
of A-numerical radius and established some inequalities for A-numerical radius. Further generalizations
and refinements of A-numerical radius are discussed in [5, 6, 22, 29]. In 2020, Bhunia et al. [8] obtained
several A-numerical radius inequalities. For more results on A-numerical radius inequalities we refer the
reader to visit [10-15, 23, 27].

In 2020, the concept of the A-spectral radius of A-bounded operators was introduced by Feki in [16] as
follows:

i 1
ra(T) = inf [T1 = lim |71 ©)
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Here we want to mention that the proof of the second equality in (9) can also be found in [16, Theorem
1]. Like the classical spectral radius of Hilbert space operators, it was shown in [16] that r4(-) satisfies the
commutativity property, i.e.

VA(TS) = FA(ST), (10)

for all T,S € L 12(H). For the sequel, if A = I, then ||T|, r(T) and w(T) denote respectively the classical
operator norm, the spectral radius and the numerical radius of an operator T.

The first objective of this paper is to present a few new A-numerical radius equalities for 2 x 2 operator
matrices. Further, we provide some upper and lower bounds for the A-numerical radius of 2 x 2 operator
matrices. Finally, we aim to obtain some refinements of the 1st inequality in (8). In this aspect, the rest
of the paper is broken down as follows. In Section 2, we collect a few results about A-numerical radius
inequalities which are required to state and prove the results in the subsequent section. Section 3 contains
our main results, and is of three parts. In the first part, we establish A-numerical radius equalities for
2 x 2 operator matrices. Motivated by the work of Hirzallah et al. [17], the second part presents several
A-numerical radius inequalities of 2 x 2 operator matrices while the next part focuses on some A-numerical
radius inequalities. We provide several examples to demonstrate our results.

2. Preliminaries

We need the following lemmas to prove our results.

Lemma 2.1. [16, Theorem 7 and corollary 2] If T € £ ,12(H).Then
1
wa(T) < 5 (Tl + IT21). ()

Further, if AT? = 0, then

I
5

wa(T) = (12)

Lemma 2.2. [16, Corollary 3] Let T € L(H) is an A-self-adjoint operator. Then,
ITla = wa(T) = 74(T).

T, T
T3 Ty

1 T1]la ||T2||A])
ra(T)<r .
a(D (||T3||A ITala

Lemma 2.3. [7, Lemma 6] Let T = [ ] be such that Ty, T, T3, Ty € Ly12(H). Then, T € Lprp(H ® H) and

The following lemma is already proved by Bhunia et al. [8] for the case strictly positive operator A.
Very recentely the same result proved by Rout et al. [23] by dropping the assumption A is strictly positive
is stated next for our purpose.

Lemma 2.4. [23, Lemma 2.4] Let T1, T, € L4(H). Then

i wa ([ 1) -maxtacr,
w52 3)

(iii) wa eié)Tz B])zﬂ%([% g])foranyee]R.
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(iv) wa h T = max{wa(T1 + T2), wa(T1 - T2)}. In particular, wp O =wa(T?).
T, T, T, O

The following Lemma is proved by Rout et al. [23].

Lemma 2.5. [23, Lemma 2.2] Let Ty, T5, T3, Ty € La(H). Then

ous((g nf)<es(ln 7))
(if m([ﬁ %])SW\([% ])

Lemma 2.6. [7, 15, Lemma 2.4 and Lemma 3.1] Let T1, T4 € £ 412(H). Then, the following assertions hold

ofls 2lL-[l 5]

(11) Ile, Tz, T3, T4 € EA(H), then [

S5 35

=max {|T1] ., |Tall4}-
A

T, T» #A_ Tfl*A ’1"§A
T3 T - T'gA TZA'

In order to prove our result the following identity is essential for our purpose. If T € L 1(#H) and

2
[_TT _1;,] :[8 8],soby(12)

KR s

3. Results

= || T . (13)
A

We will split our results into three subsections. The first and second part deals with A-numerical radius
of 2 x 2 operator matrices. The third part concerns some upper bounds for A numerical radius inequalities.
3.1. A-numerical radius equalities of operator matrices

Here, we provide some A-numerical radius equalities of 2 x 2 block operator matrices. The first result
deals with A-numerical radius estimate of a special 2 x 2 operator matrix.

Theorem 3.1. Let T1, T, € Lo(H). Then
T1 Tz _ 1+i 1+
wA([lTZ Tl]) —max{wA(T1 +\/§T2),ZUA(T1 —WTQ .

I I
? ? and U = % [ ey _ % I]' It is not very difficult to show that U is A-unitary. So,

by using Lemma 2.6 (ii) we have

Proof. LetT = [

1
Ut~ L lpn(m \f]PR(A) ]

V2 |Pray —APR@
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Therefore, using Lemma 2.6, we have

2(1-)
ytartagr < 1|2 Prey T T Pry -
-1
O 2TfAPR(A) T2 TgAPR(A)
ﬁ Lirh o) _
1 V2 R T#A cR(A
o) Tfl?A % 2/\ - ( i )— ( )
#
B T1 + 1\7T2 O "
B O n—yn

Using the fact that wa (S) = wa(U*SU) for any S € L4(H), we get

#a
Ty + BT, @)
Wa(T) = wa(T) = wa (U TR U) = wa || V22 »
0 Ty - 4T
—w T1+1\L[’T2 O
A o) T - 2T,

= max {ZUA(T1 + 1\;21’1—‘2),7/0/‘(’1—'1 - 1\;21’1—‘2)}

O

—

+

-

Example 3.2. Let Tq = l

we have wp ([Z.F‘IT:1 ?])
2 I

Theorem 3.3. Let T1,To € LA(H). Then

5 F) ol e )

I I
Proof. LetT = [ I TZ] and U = L [ _1-i I]' Therefore, using Lemma 2.6, we have

0
2:[21] ,To = [(1) g] ,and A = [(l) 8] . Then wa (T1) =wa (T2) = 1. By Theorem 3.1,
2

2.

1 1
ZTZ T1 V2 \[ll W
1+i
U#,AT#AUZ T?A+7%T§A O
0 T# 1+i T#A
. #
_ T1 + %Tz ? 4 "
O T: - \/;%Tz

Using the fact that wa (S) = wa (U SU) for any S € L4(H), we get

. #A
T, + LLT. O
wa(T) = wa(T*) = wa (U T U) =wa || Y27 1-i
O Tl—%Tz
_ T1+%Tz O 4
wa 1o T, - 1=iT
1 V2 2

o oo )
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2-2i
= 0
Example 3.4. Let Ty = l\g 4_4i], T, = [(1) (2)], and A = [(1) 8] Then wy (T1) = 2 and ws (T2) = 1. By
V2

Theorem 3.3, we have wp ([ ITT %:2]) =max{3,1} = 3.
-1l Ih

3.2. Certain A-numerical radius inequalities of operator matrices

Here, we establish our results dealing with different upper and lower bounds for A-numerical radius
of 2 x 2 block operator matrices. The very first result is stated next.

Theorem 3.5. Let Ty, T3 € L4(H). Then

O T . . T, +T T, - T
wA([Tg Oz]) Smm{wA(Tz),wA(Tg)}+m1n{” 2 5 3”A, I 5 3”A}.

I -1

=L
Proof. LetU—ﬁ[I I

]. So, by using Lemma 2.6 (ii) we have

U - L PR Pra
J3|-P P——|

RA) T R(A)

O  Psr

P—— O
This in turn implies UU* = [ R(A)
R(A)

] = U*aU. Thus, U is an A-unitary operator. Using the identity
wa(T) =wa(U*ATU), we have
o n]\_  ([o ™
“a\lrs o]) T\ O
_ #a
_ w0 T
BN (U -T3 O] U)

1 [ ’1"§A +’1"§A ’1"3#A _’I’gA ]
= 7’(,(]A
2N\ Ty Ty - Ty

_lw [ T2+T3 Tz—T3 1™
2 A -—(Tz—T'g’) —(T2+T3)‘
1 [ T, + T, Ty-T; | _ .
T2\ [(T-T) (T4 T)) (s wa(T) =wa(T™))
1 [ T, +T; T,+T3 | [O -2T;
= -wWA +
2 -—(T2+T3) —(T2+T3)‘ 2T3 O

1 T+ T T + T O -2T
: Z{WA([—(T%;; 7%3) —(7%2++7%3)])+WA([2T3 OB])}'

Now, using identity (13) and Lemma 2.4, we have

[0 TL]\_ IT2+T
wA(-Tg ()2‘) < M +wA(T3). (14)

Replacing T3 by —T3 in the inequality (14) and using Lemma 2.4, we get

[0 T,] T,-T
WA( Ts OZ )S” 2 5 3 +wa(T3). (15)
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From the inequalities (14) and (15), we have

wA([g g])gwA(T3)+min{||Tz+T3nA ||T2—T3||A}' »

2 ’ 2

Again, in the inequality (16), interchanging T, and T3 and using Lemma 2.4(ii), we get

O T [T+ Ts)a |To=T
wA(L% Cﬂ)sum(5)+nnn{"22 ﬁAJIzz ﬁA}_ a7)

From the inequalities (16) and (17), we get

O T . . T, +T T,-T
WA([T:—; ()2]) §m1n{wA(T2),wA(T3)}+mm{” 2 5 3||A, I 5 SHA}.

This completes the proof. [

Remark 3.6. We give an example to show the bound obtained in Theorem 3.5 is better than the upper bounds

obtained in [23, Lemma 2.14] and [23, Theorem 3.2]. If we consider T, = [(2) 2] , T3 = [(1) g] ,and A = [(1) 8] .

Then Theorem 3.5 gives wa ([? 7(;2]) < min{2,1} + min{1.5,0.5} = 1.5, whereas the right hand inequality of
3

[23, Lemma 2.14] and [23, Theorem 3.2] both gives wp ([? 1(;2]) <2
3

O T

Remark 3.7. In Remark 3.6 it is calculated that wp ([T 0
3

]) =1.5. So the inequality in Theorem 3.5 is sharp.

Theorem 3.8. Let Tp, T3 € L4(H). Then

oA ( 7(?3 22) > max {wa(T2),wa(Ts)} - min{

IT2+Tslla |T2-Ts|a
2 ’ 2 '

and

[0 T,] Tr+ T34 | T2 —T5]a .
wA( T 02 )2max{” 7 ” ,” 7 ” }—mm{wA(Tz),wA(Tg)}.

Proof. Let U= -1 [I _I]. It can be shown that U is A-unitary. Then

211 I
1 Tz + T3 T2 + T3 fia _ LI#A O Tz a u- @) —T3 a (18)
2 —(T2+T3) —(T2+T3) - T3 O T3 O ’
So,
O -Ty #A_U#A o T #“u_} To+Ty  To+Ty | 19)
T3 O - T3 O 2 —(T2+T3) —(T2+T3) ’
This implies

#a #a #a
O —T3 #a 0O T, 1 T) + T3 T, + T3
wA([T3 O ] ) SwA(ll [T3 O] U)+ ZwA —(T2+T3) —(T2+T3) ’
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Which in turn implies that
#a
@) —T3 O Tz 1 T2 + T3 Tz + T3
o ([T 0 ]) =t ([T O] ) T2t ([—(Tz +To) ~(T2+T)
_ O T2 1 Tz + T3 T2 + T3
_wA([T3 O])+2wA([—(T2+T3) —(T2+T3) )
Thus, using inequality (13) and Lemma 2.4

O T, T+ T
wA(T3)SwA(|:T3 5 )+” 2 5 3||A.

Replacing T3 by —T3 in the inequality (20) we have

O T, T,—T
wA(TL’v)SwA([TS OZ )+” 2 5 3||A.

Now from inequality (20) and (21) that

[0 T,] . JIT2+T3]a |T2-Ts|a
wA(T3)swA(~T3 O‘)+m1n{ 5 , 5 .

Interchanging T, and T3 in the inequality (22), we get

[0 T,] . JIT2+T3|a |T2-Ts|a
wA(Tz)SwA(_TS O‘)+mm{ 5 , 5 .

From inequalities (22) and (23), we have

O Tz]) . {||T2+T3||A ||T2—T3||A}
+ min .

max{wa(T2), wa(T3)} < wa (|:T3 0 2 ! 2

Which proves the first inequality.
Again, by identity (18) and inequality (13) that

1 1 T2+T3 T2+T3
Ty + Tallg ==
2|| 2+ Ts)a zwﬁ([—(T2+T3) (T2 +Ts)

_lw T2+T3 T2+T3 a
- 2 A —(T2 +T3) —(Tz + T3)
#A #A
O T o -T
il 3 o2 5T)
oo Y, ([0 -T5
“TA T o M o

=wa [O 1(;2])+wA(T3) (by Lemma 2.4).

Thus,

1 O T
2||T2+T3||ASZUA(|:T3 O2:|)+ZUA(T3).

5245

(20)

(21)

(22)

(23)

(24)

(25)
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Replacing T3 by —T; in the inequality (25) and using Lemma 2.4, we get
1 O T
2||T2—T3||A3wA([T3 OZ])+wA(T3). (26)

It follows from inequalities (25) and (26) that

IT2+ Talla T2 -Ts]a [0 T]
max{ > , 5 <wa _T3 O_ + w4 (Ts3). (27)

Interchanging T, and T3 in the inequality (27) and using Lemma 2.4, we get

max{ 17> +2T3||A, IT> —2T3||A} < ( 7(?3 7(“)2 ) +wa(To). (28)
Now combining (27) and (28), we have
max{ IT: +2T3 I , IT: _2T3 |4 } -min{wa(T2), wa(T3)} < wa ([7(?3 g]) . (29)

This completes the proof. [
. O T,
Remark 3.9. Using Theorem 3.5 and Theorem 3.8 we have wp . oll= wa(Ty) (see [23, Lemma 2.4(iii)]).
2
Theorem 3.10. Let Tp,T5 € L4(H). Then

O T 1
%A ([T3 ()2:|) 2 E max {wA(T2T3 + T3T2),ZUA(T2T3 — T3T2)}

: : o 1],u_ | © Pr@].,._[0O T
Proof. Let us consider A-unitary operator U = [I O]’U# = [PR(A) 0 ;T = T, O . Now,

#a
TyT5+ T5T: (@)
#a )2 HaTHATT\2 _ 213 312
(T ) +(u T# u) _[ O T3T2+T2T3]

So,

8

TyTs + TsT, 0 ToTs + TT, o T
wa ([ 0 5T, + T2T3 A ([ T5T, + T2T3] )
((T#A)Z + (U T U)?)

((T*)? )+wA((u#AT#AU)2)
(T# ) (u#/\T#A u)

( ) A (T)

Hence by using Lemma 2.4 we obtain

wa(T2Ts + T3T,) < 2wk (T). (30)
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Using similar argument to (T#4)? — (U*AT*AU)?, we have
wa (T, T3 - T3Ty) < 24 (T). (31)

Combining (30) and (31) we get

O T 1
Wi ([T3 ()2:|) > E max {wA(TzTg + T3T2),ZUA(T2T3 - T3T2)}

O

Corollary 3.11. Let Ty, T2, T3, Ts € La(H). Then

wa ( :E % ) > max {wA(Tl),wA(T4), % (wA(TaTs + T5T))? \1& (wA(TaTs - TsT2))? }
Proof. Based on Lemma 2.5, Lemma 2.4 and Theorem 3.10 we have

5 2} emeen(([5 2] e (12 S])

75 Ty 0O T T; O
> max {wA(Tl),wA(T4), \}E (wa(TaTs + TsT2))?, \}i (Wa(ToTs - TsTy))? }
0

Theorem 3.12. Let T, T3 € L4(H). Then for n e N

or(|£ G|)2 tmaxtoa(mm warmym®. )
Proof. LetT = [72, 1(;2] Then forn e N, T = [(ng3)n (Tagz)"] and using Lemma 2.4 we obtain

max{wa ((T2T3)"), wa((T3T2)")} = wa ([(ngﬂ" (Ta%)"])

=wa(T™")

<wi(T) (by inequality (4))

(3 5)

The following lemma is already proved by Hirzallah et al. [17] for the case of Hilbert space operators. Using
similar technique we can prove this lemma for the case of semi-Hilbert space. Now we state here the result
without proof for our purpose.

O

% %] eLa(HoH)and n e N. Then T" = [g g] for some P,Q € La(H) such that

P+Q:(T1+T2)"andP—Q=(T1—T2)”.

Lemma 3.13. Let T =

The forthcoming result is analogous to Theorem 3.12
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Theorem 3.14. Let Ty, T, € L4(H). Then

wa ([_T;z TTl]) > [max{uws (T~ T2)(Ty + T2))") s (((Ty + T) (T3 - T2)))} ] (3)
for n e N and
oa([B, T2 ]) < menliTe o o)
([T )Ty = T T = ) (T + )la]* (34)

Tn Tp
-T, -Th

T2-T2 TT,-T,Ty

. Using Lemma 3.13 we have there exist
T\T,-T,T; T>-T2 &

Proof. Leth[ ]andRszz[

P,Q e L4(H) such that R" = [g %] withP+Q = ((T? - T3) +(T1Ta -T2 T1))"and P-Q = ((T3-T3) - (T1 T2 -

nn»wsq1%=[g g}mmP+Q=«E—Tﬂﬂ}+ﬂ””mdP—Q=«D+TQUH—DD?Bymmg

inequality (4), we have

wf;f(T) > wA(TZ")

P Q
”"A( Q P])
=max{wa(P+Q),wa(P-Q)} (by Lemma 2.4)
= max{wa (((T1 - T2)(T1 + T2))") ,wa (((T1 + T2)(T1 - T2))") }- (35)

This proves the inequality (33). In order to prove the inequality (34), let T = [—TYIE _];%1

#A _THA
Lemma 2.6 we have T#A = ;},}A _]T};A], so
2 1

]. Then, using

T+ TL,T3  -TWTH¥ - T,TH
H#A _ 141 2147 142 249 ]
TT™ = CT,THA T T T,TA LT, TH | Now it follows from (2) that
ITI = ITT**
= wA(TT#A)
= max{wa (T1TH + T, T8 - T\ T8 - T, T, wu (T TH + ToTHA + Ty THA + T, T4
(by Lemma 2.4)
= max{wa((T1 = T2)(T1 = T2)*), wa((Th + T2)(T1 + T2)**)}
= max{[[(T1 = T2)(T1 = T2)*la, I(T1 + T2)(T1 + T2)* [ 4}
= max{|T1 - T2|%, |T: + T2 [4}-
Thus
IT| A = max{|Ty - T2|a, | T1 + T2[|a}- (36)

Similarly we can show that

IT?|a = max{[|(T1 = T2)(T1 + T2)||a, | (T1 + T2)(T1 = T2) | a}- (37)
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From inequality (11), combining inequality (36) and (37), we obtain

1
wa(T) < S (ITha + |71
_ max{|Ty + Tz, | T — Ta|la}
2

L [max{|[(Ty + To)(T1 = To) | a, [ (T2 = T2)(T1 + T2)]a}]? .
2

O

3.3. Some A-numerical radius inequalities for operators

In this subsection we establish some upper bounds for A-numerical radius of operators. In the next
result, we derive an upper bound for A-numerical radius of product of operators on semi-Hilbertian space.

Theorem 3.15. Let T1, T, € Lo(H). Then
1
an(T) < 31T+ 1Tl )

Proof. 1t is not difficult to see that Rx (€T T,) is an A-selfadjoint operator. So, by Lemma 2.2 we have
[Ra(€°TiT2)] , = wa(Ra(e“TiT2)).
So,

[RAGOTIT)] , = 50a (T Ty 4T TS)

1 ([e"GTszJre-f@T*;ATfA O]).

A o) 0

It can observed that

A O|[eTiTy +e 0T T O] _[e9ATi T, +e AT T O

0O A 0 o] | o o
B —eiQ(T'z#AT?A)*A+€—i9(T1T2)>|—A 0
| o O
_[eoTiaris o T, O] [A O
) 0 o| [0 Al

eiQTl Ty + e—i0 T;*A T’?A 9]
@) @)
So by applying Lemma 2.2 we see that

i 1 i0 _io
”mA(eleTsz)”A:er([e T1T2+Ce) T;’AT;"A 8])

1 éoT, ’TgA T 0]
22\l o Ol o)

Hence ] is A-selfadjoint operator.
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So, by using (10) we have
; 1 T, Ol[eoT, T
ool B 8 ]
_ 17 eiGTle TzTgA
2 A TYATl T?AT’;#A

1 ([ TaTi]a | T2Tia ])
< —r by Lemmma 2.3
2 ([nﬂ‘mnA i) Y )

1
- 3(ITmla T )

So, by taking supremum over 0 € R, then using (6) we get our desired result. [

We conclude the article with the following result which is a refinement of inequality (8). To do this we
need the following lemma.

Lemma 3.16. Let z,y € H and A € R, then

lzW2 Y1 - [z y)al < 2131y - Az[.

Proof. Since|Ra(z,y)al < |(z, y)al, so the discriminant of the quadratic polynomial p(A) = |z|4A?~2R4(z, y)a |z[|5A+
|(z, y)al* is not positive, which implies that p(1) > 0 for all A € R. Hence

lzI2 115 = [z, y)al® < 12154 = 2Rafz, y)alzIZA + 120A1y15 = 12031y - Az)Z-
O

The following result is a refinement of the inequality (8).

Theorem 3.17. Let T € LAo(H), « € C - {0} and r € R are such that |T — al|| 4 < r. Then for r < |a]

||1 ”A r?
< 1-—|1 <wa(T). 38

Proof. Letx e H with |x|4 =1, putz = Tx, y = ax in Lemma 3.16, we have
ITx |3 lax]3 — (T, ax)al® < | Tx|Z1ATx - ax|3,

SO

[ATx — ax|?
ITx[% = (T, x)al® < | Tx |3 ——5—2

lad?
Taking supremum over x € H with |x||4 = 1, we have
IAT - al|?
ITI% - wi(T) < IITIIQTA
Since ||T - al|a <1, taking A =1 gives
r 2 2
1- e ITI4 < wa(T).

Which completes the proof. [
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Remark 3.18. Notice that the inequality (38) already proved by Saddi [24]. We remark here that the method we use
to prove inequality (38) is different from the methods presented in [24].

Very recentely, the following lemma is proved by Xu et al. [27]. We state here the result for our purpose
to prove another inequality.

Lemma 3.19. Let x,y,z € H & H with |x|a = 1. Then
2z, x)alx y)al < Izl alyla + [z y)al)-
Using the inequality (38), we have the following result.
Theorem 3.20. Let T € Lo(H), a € C— {0} and r e R are such that |T — al|a < r. Then for r < |a]

(2—|a||f‘|_2r2)wi(T) <wa(T?). (39)
Proof. Putting z = Tx, y = T*Ax with |x[4 = 1 in Lemma 3.19, we get
2/(Tx, x)a? < [T al T x]la + (T, 2)al.
Taking supremum over x € H with |x[4 = 1, we have

2w} (T) < wa(T?) + | T3

Using inequality (38), we have

laf?
2w’ (T) <wa(T?) + P _rzwi(T).
Hence
|af? 2 2
2 - W ZUA(T) < ZUA(T )
[
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