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Abstract. In this paper, we consider a g-circulant matrix A,(T), whose the first row entries are generalized

Tribonacci numbers Tf”). We give an explicit formula of the spectral norm of this matrix. When g = 1, we
also present upper and lower bounds for the spread of the 1-circulant matrix A; (T).

1. Introduction and preliminaries

Let g be a nonnegative integer. A matrix A, € M, is called a g-circulant matrix if it is of the form

ap m a T an-1
An-g  On-g+1  On-g+2  *°°  Op—g-1
ﬂg =| n-2g9 On-2g+1 OAn-2g+2 *°° On-2g9-1 1)
ag ag+1 ag+2 e ag—l

where each of the subscripts is understood to be reduced modulo n. Obviously, wheng=1org=n+1,
the g-circulant matrix A, reduces to the standard circulant matrix.

Circulant type matrices not only have many connections to problems in physics, statistics and numerical
analysis, but also have important applications in signal and image processing [1], networks engineering
[2,3], solving ordinary and partial differential equations [4, 5]. In recent years, there are several papers focus
on the norms and spread of some special matrices [6-21]. For example, Solak [6] gave upper and lower
bounds for the spectral norms of circulant matrices whose entries are Fibonacci and Lucas numbers. Ipek [7]
improved the estimation for the spectral norms of these matrices. Kizilates and Tuglu [14] established upper
and lower bounds for the spectral norms of geometric circulant matrices involving generalized Fibonacci
and hyperharmonic Fibonacci numbers. Zhou and Jiang [16] derived some explicit formulas for the spectral
norms of g-circulant matrices whose the first row entries are Fibonacci number, Lucas number and their
powers. In addition, Johnson et al. [19] derived some lower bounds for the spread of a normal matrix. Li

2020 Mathematics Subject Classification. Primary: 15B05; Secondary: 15A60, 11B39

Keywords. g-circulant matrix, spectral norm, spread, generalized Tribonacci number

Received: 10 January 2021; Accepted: 14 July 2021

Communicated by Dijana Mosié¢

Research supported by NSFC (Nos. 12071484, 11871479), Hunan Provincial Natural Science Foundation (2020J]J4675, 2018]]2479)
and the Research Fund of Beijing Information Science and Technology University (No. 2025030).

Email addresses: shenshouqiang@126.com (Shougiang Shen), wj1iu6210@126.com (Weijun Liu), fenglh@163.com (Lihua Feng)



S. Shen et al. / Filomat 35:15 (2021), 5271-5278 5272

et al. [21] investigated the norms and spread of circulant matrices with Tribonacci and generalized Lucas
numbers.

Let a,u, v and w be arbitrary positive integers. The generalized Tribonacci sequence (T} is defined by
the following recurrence relations:

TV =uT® +oT?, +wl?,, 2)

where ng) =0, Tia) =a, Tgﬂ) = qu. Some results concerning this sequence were given in [22-24]. When
a=u=v=uw =1, the generalized Tribonacci sequence reduces to the Tribonacci sequence {T,} in [25]. Let
y1,72 and y3 be the roots of the characteristic equation x> — ux?> — vx — w = 0. Then we have

Yity2+ys=1u,

Y1y2 ty1ys + 723 = -0,

V1)y2)y3 =w.

Throughout this paper, we assume that )4, ), and y3 are distinct. The sequence {Tff)} can be defined for
negative values of n by using the recurrence (2) to extend the sequence backwards, that is

(a) _ (a) (a) (a)
== (_UTfnJrl - uT—n+2 + T—n+3)/w'

In this paper, let A,(T) be a g-circulant matrix, whose the first row entries are (T(()”), Tg”), e, Tff_)l). We give

an explicit formula of the spectral norm of this matrix, which is only related to the generalized Tribonacci
numbers. Afterwards, we also present upper and lower bounds for the spread of the circulant matrix A; (T).

Now we give some preliminaries related to this paper. For any A = [a;;] € M,, the well-known Frobenius
(or Euclidean) norm of the matrix A is

n n 1
1= | Y Y il |
i=1 j=1

the spectral norm of A is

1Al = Jmax A;(ALA),

and the spread of A is
s(A) = max |Ai(A) = A;(A),

<i,j<n

where A;(A) is eigenvalue of A and A is conjugate transpose of A. Then the following inequality holds
[26]:

1
4

2 2
() < (200 - SR ) - 2R - AAR ©
where trA is trace of A.

Lemma 1.1. [19] Let A = [a;;] be an n X n matrix.
(i) If A is real and normal, then s(A) > ﬁl Z#j aijl;
(ii) If A is Hermitian, then s(A) > 2 maxix; |aij|.

Lemma 1.2. [27] Let Q, be an n X n g-circulant matrix with the first row (1,0,---,0). Then
(i) Qg is unitary if and only if (n,g) = 1;
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(it) A is a g-circulant matrix with the first row (ap, a1, -+ ,a,-1) if and only if A = Q,C, where C is a circulant
matrix with the first row (agp, a1, -+ ,an-1).

Lemma 1.3. [28] Let A = [a;j] € M, be a nonnegative matrix. Then its spectral radius p(A) satisfies the following
inequality
min }» a;; < p(A) < maxz ajj. 4)

1<i<n 4 1<i<n &
=1 j=1

2. Main results
We consider three sequences {X,}, {Y,,} and {Z,}, which satisfy the recurrence (2) and the following initial
conditions:
Xo=0, X;1=0, X,=1;
YOZO, lel, YQZO,'
Zo=1, Z1 =0, Z, =0.
Then Tz@ = aX;;1, and the Binet formulas of these sequences are given by [23]:
X, = Alyg’ + Azyg + A37/§,
Yy = B1y| + Bay; + Bays, )
Z,, = Cl)/'f + Cz)/g + ngg,
where

1 1 1
A = , Ay = , Az = ;
! (y1=72)(y1—73) 2 (2 =y3)(y2—71) ’ (y3=y)(ys—72)

__ —(rn+tys) B, — —(ys +71) Ba < -(y1+72)
1 =701 -7 2 a—ra2—y1) o (s y)(a-y2)

V2V3 C Y3V1 C Y1)2

0 T =y T e =)

By solving the equations in (5), we obtain
ylil = V%Xn + VlYn + Zn/
Vs = V3Xu +y2Yu + Zn, (6)
Va = YiXn +y3Yn + Zn.

Next we give an explicit formula of the spectral norm of the matrix A,(T), which is only related to the
generalized Tribonacci numbers TI@.

Theorem 2.1. Let Ay(T) be as the matrix in (1), with a; = Tl@(i =0,1,---,n = 1) in the first row of Ay (T). If
(n,g9) =1, then we have

(a) _ (a) (@) _
(T = T ., +A-wl," +wTl " a.
7 u+ov+w-1
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Proof. Applying the results from Lemma 1.2, we obtain
(ﬂg(T))Hﬂg(T) = (QgC)HQgC = CH(Qg)HQgC = CHC/

where C = [c;;] is an n X 1 circulant matrix with the first row (Tg’), TY'), s, Tﬁf’zl). Hence the spectral norm
of the matrix Ay(T) is the same as that of C.

Since the circulant matrix C is normal, there exists a unitary matrix U € M, such that ufcu =
diag(A1, Az, - -+, Ay), where A; is eigenvalue of C, hence

ucr'c = diag(AiP 102, - 1AalP).
Therefore, the spectral norm of C is given by its spectral radius. Note that C is nonnegative, hence its
spectral radius p(C) satisfies the following inequality:
min }» ¢; < p(C) < maxz Cij-

1<i<n 4 1<i<n 4
=1 =1

Moreover, for eachi € {1,2,...,n}, we have

n n-1 n—-1 n—1
Z Gij = Z TI(:?) =a Z Xip1 =4 Z‘(Al)/llﬁl + Az)/g_"1 + A3)/§+1)
j=1 k=0 k=0 k=0

_ a[Aﬂ/l(l -1 . Axy2(1—975) N Azys(1 -4
1-9y4 1- 1-vys
a[ X2 + (1 — u) X1 + wX, — 1]
u+v+w-1
+(1-w)T? + waq”jl -a
u+v+w-1

T(“)

n+1

It follows that ) i .
a " "

WAD, = [Cllp = ~wn P A0 + T,y —a

I B - .

u+ov+w-1
Thus the proof is completed. [

If we takea = u = v = w = 1 in Theorem 2.1, then we obtain the spectral norm of a g-circulant matrix
involving the Tribonacci numbers.

Corollary 2.2. Let B,(T) be a g-circulant matrix with the first row (To, T1,- -+ , Ty-1). If (n, 9) = 1, then we have

T Ty1—1
1B, = 2

In the sequel of this paper, we will investigate the spread of the circulant matrix A; (T). Before presenting
our main theorem, we need the following several lemmas.

Lemma 2.3. For arbitrary integer k > 0, we have

3
2(v* = 3uw) Xy — (uv + 9w) Yy + 2(u? + 3v)Z
YA = R " )
i=1
uwHy_, — 2w?Hy_, — H
Z AAy ) = k-1 - k-2 = Hin ®)

1<i<j<3
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where
A% = 1?0 = 27w + 40° — 4uPw — 18uvw,

(0* = 2uw)X? — (uv + 3w)X, Y, + 2(u? + 20)X,Z, + 2uY,Z,
—0Y?+372 (r=-2,-1,0,1,2,---).

=
Il

Proof. Since

1 1 1
(1= y2)* (1 —y3)? i (r2 = 73)*(y2 = y1)? ’ (3 = 71)*(y3 — y2)?

A2+ A2+ A3

2003+ 73 +73) = (1y2 + 723 + 7173)]
(r1 = 72)%(r2 = v3)*(ys — y1)?

_ 2(u®+3v)
T A
and
uo + 9w 2(v? — Buw
V14T + 7245 + V34 = %z V2A2 +93A3 + y2AL = 2(v” — 3uw) = ),

the formula (7) is valid for k = 0,1, 2. In the case k > 3, according to (6), we obtain

3

Y Ay

i=1

3
Z A2 Xk + yiYe + Zg)
im1

- (i yfA,?)xk + (ZS‘ yl-Af)Yk ; (i A%)zk
=1 i1 i1

2(0? = 3uw) Xy — (uv + 9w) Yy + 2(u? + 3v)Zx
A2 )

Next we will prove the formula (8). Since (6) is valid for r > -2, we have

Y, Gy

Y O+ Yo+ Z)0R X + Y+ Z)

1<i<j<3 1<i<j<3
= (X oo Y odreradxy+( Y o)
1<i<j<3 1<i<j<3 1<i<j<3

3 3
+2( Y y?)x,zr + 2( Y yi)YrZr +3272
i=1 i=1

1=
= (0 = 2uw)X? — (uv + 3w)X, Y, + 2(u? + 20)X,Z,
+2uY,Z, —vY? + 372
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It follows that

nyars L OFWi+viih - L i Yt = yas)? L riy)?
k 1<i<j<3 1<i<j<3 1<i<j<3
Y, Ay = ¥

1<i<j<3

uw Y, (i)t -2 Y o) r- L ()t

1<i<j<3 1<i<j<3 1<i<j<3

AZ
uwHi_1 — 2w?Hi— — Hin
AZ

Thus the proof is completed. [

For the convenience of the discussion, we denote

M = 2(v* = 3uw)X; — (uv Zz9w)Yi +2(u? + 30)Z,~/ o)

H,_1 — 2w?H;_» — H;
Ni = UWITi Xz i-2 1+1' (10)

Lemma 2.4. For the generalized Tribonacci sequence (T, TY) Lifo#u+w+1and v # w? — uw — 1, then we have

nZ_l(T(u))z _ IZZ[ZUZ(M() - MZn) + (1 —u? - 20)(M2 - M2n+2) + (M4 - M2n+4)]
j B (v —1)2 = (u + w)?
2ﬂlz[w (No = Ny) + (1 + 0)(N1 = Nyy1) + (N2 = Nyi2)]
140+ uw—w? '

Proof. Sincev # u+w+1and v # w? —uw -1, y;y; # 1 forany i, j € {1,2,3}. Applying Binet formula of the
sequence {X,}, then we obtain

n—1 n-1 n—1
Z (Tﬁu))2 = 2 X]+1 2 (Z Az)/f”)
j=0 j=0 j=0
n—1 3 ] '
— aZ Z ZAlZ,)/ZZ(]+1) +2 Z AiAk(Vin)]H)
j=0 =1 1<i<k<3
3 2n
- AiA i 1- i n
_ 2 Z yi =y o iyl = iyl
i=1 1-y2 1<i<k<3 1=7iyi
By Lemma 2.3, we get
i ADAL=y) W EL AN -+ (=12 = 20) B AR -y + B ARy - )
i=1 1 yz (1 71)(1 - )(1 - y%)

w (Mo — May) + (1 — u? — 20)(My — Mous2) + (Ms — Moyss)
(v=1)2 = (u+w)?
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and
w? Zk AALL = (yiy"] + Zk Ay 1 = (yiyo)"] +
1<i<k<3 1<i<k<3
1+v) Y AAWivoll = iyl
AiA iyl = (i)' _ ( )1si<ks3 iylh = (i)
L= L—yire (1 =71y2)(1 = 72y3)(1 = 71y3)

w*(No — Ny) + (1 + 0)(N1 — Nys1) + (N2 = Nyuio)
1+ 0+ uw — w? ’

Thus the proof is completed. O

Theorem 2.5. For the circulant matrix Ay(T), ifv #u+w+land v # w? — uw — 1, then we have

TO + 1 -wT? + wT®. -4
n n+1 n n—1
>
sA(T) = n—l[ u+v+w-1 ]'
and
w (Mo — M) + (1 — 1 = 20)(Ma — Mayi2) + (My — Moyps)
T < 2

ST < Vo o1 - ot of

+mﬂM—MHO+MM—MMHM—MmT
1+ 0+ uw—w? ’

where M;, N; are given by (9) and (10).

Proof. Since A;(T) is a real and normal matrix, applying the results from Lemma 1.1 and Theorem 2.1, we
have

n-1 (a) (a) (a)
T +1-wT,’ +wl’. —a
SAUT)) = L[ZTI(;;)_T(()@]: n [ w )T n-1 ]
n-—1 p n—1 u+tv+w-1

On the other hand, since (A (T))? A (T) = A (T)(A(T))", by using (3) and Lemma 2.4, we obtain

s(A(T))

IN

n—-1 1
\/2||~7{1(T)||12.- - %Itrﬂl(T)P = V2| A(T)|Ir = \/E[nz(Tl(ca))z]
k=0

w (Mo — May) + (1 — u? — 20)(Ma — Mous2) + (Ms — Moyss)
m”[ @ -1 (u+ wp

+MWM—MHO+WM—MM+Wrme%
1+ 0+ uw—w? '

Thus the proof is completed. [

If we take a = u = v = w = 1 in Theorem 2.5, then we obtain upper and lower bounds for the spread of
a circulant matrix involving the Tribonacci numbers.

Corollary 2.6. Let B1(T) be a circulant matrix with the first row (To, T1,- -+ , Tu-1). Then we have

n Tn+1 + Tn—l - 1)
T >
(BT) > ()
and
1
SB(T) < @[11 + 7Xons1 — 2Xon + Xop1 — Egma +2H,4» +3H, 1 + 2Hn—2)]2/

where Hy = —=X2 — 4X,Y, + 6X,Z, +2Y,Z, - Y2 + 372 (r=0,1,2,---).
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