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Available at: http://www.pmf.ni.ac.rs/filomat

A Distinction of k-Hyponormal and Weakly k-Hyponormal Weighted
Shifts

Chunji Lia, Mi Ryeong Leeb, Yiping Xiaoc

aDepartment of Mathematics, Northeastern University, Shenyang 110819, P. R. China
bInstitute of Liberal Education, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Korea

cSchool of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Abstract. Let α(x) :
√

x
2 ,

√
2
3 ,

√
3
4 ,

√
4
5 , ... be a sequence with a real variable x > 0 and let Wα(x) be the

associated weighted shift with weight sequence α(x). In [17], Exner-Jung-Park provided an algorithm to
distinguish weak k-hyponormality and k-hyponormality of weighted shift Wα(x), and obtained sn > 0 for
some low numbers n = 4, ..., 10, such that Wα(sn) is weakly n-hyponormal but not n-hyponormal. In this
paper, we obtain a formula of sn (for all positive integer n) such that Wα(sn) is weakly n-hyponormal but not
n-hyponormal, which improves Exner-Jung-Park’s result above.

1. Introduction and preliminaries

Let H be an infinite dimensional complex Hilbert space and let B(H) be the algebra of all bounded
linear operators onH . An operator T ∈ B(H) is subnormal if it is (unitarily equivalent to) the restriction of
a normal operator to an invariant subspace; T ∈ B(H) is hyponormal if T∗T ≥ TT∗. In 1950, P. Halmos gave
a characterization for the subnormality of T ([18]), and it was successively simplified by Bram ([3]), which
states that T is subnormal if and only if

∑
i, j〈Ti f j,T j fi〉 ≥ 0 for all finite collection { fi} inH . This is referred

as Bram-Halmos criterion. For k ∈ N, where N is the set of positive integers, an operator T is (strongly)
k-hyponormal if the operator matrix

I T∗ T∗2 · · · T∗k

T T∗T T∗2T · · · T∗kT
T2 T∗T2 T∗2T2

· · · T∗kT2

...
...

...
. . .

...
Tk T∗Tk T∗2Tk

· · · T∗kTk
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is positive. The Bram-Halmos criterion says that T is subnormal if and only if T is k-hyponormal for all
k ∈ N. For k ∈ N, an operator T is weakly k-hyponormal if p(T) is hyponormal for every polynomial p of
degree k or less ([5],[6],[17]). An operator T ∈ B(H) is polynomially hyponormal if T is weakly k-hyponormal
for all k ∈ N ([13],[14]). Sometimes weak 2-, 3- and 4-hyponormality are referred to as quadratic, cubic
and quartic hyponormality, respectively. Obviously, 1-hyponormal [or weakly 1-hyponormal] operator
T ∈ B(H) is hyponormal. It holds that every subnormal operator is polynomially hyponormal and every
k-hyponormal operator is weakly k-hyponormal for each k ∈N. Also it is well known that subnormal⇒ n-
hyponormal⇒weakly n-hyponormal⇒ hyponormal for every n ≥ 2; many operator theorists have studied
the converse implications; for example, see [1],[4],[6-10],[21],[23], etc. In [14, Theorem 2.1], Curto-Putinar
proved theoretically that there exists a polynomially hyponormal operator which is not 2-hyponormal.
Thus, obviously there exists a polynomially hyponormal operator but not subnormal, which solves a long-
standing open problem negatively ([13],[14]). Hence it follows from [24, Theorem 3.4] that there exists
a unilateral weighted shift (whose definition will be appeared below) that is polynomially hyponormal
but not subnormal yet. But it is not known whether a polynomially hyponormal weighted shift but not
2-hyponormal exists ([14, p.489]. Furthermore, one does not know any concrete example of weighted shift
that is polynomially hyponormal but not subnormal yet. For more than 30 years, several operator theorists
have studied the distinction between k-hyponormality and weak l-hyponormality of weighted shifts via
various models of weight sequences for k, l ∈ N ([11],[12],[15],[16],[17],[20]). This paper is contained in
such a study being distinct these classes of weighted shifts above.

For a sequence α = {αi}
∞

i=0 of positive real numbers, the weighted shift Wα acting on the usual Hardy
space `2, with an orthonormal basis {ei}

∞

i=0, is defined by Wαe j = α je j+1 for all j ∈ Z+, where Z+ is the set of

nonnegative integers. Consider a sequence α(x) :
√

x,
√

2
3 ,

√
3
4 ,

√
4
5 ,... with a real variable x > 0 and let Wα(x)

be the associated weighted shift. In [24, Theorem 4.1], McCullough-Paulsen showed that if 0 < x < 450
791 , then

Wα(x) is weakly 2-hyponormal but not 2-hyponormal. In [5, Proposition 7], Curto proved that Wα(x) is weakly
2-hyponormal but not 2-hyponormal if and only if 9

16 < x ≤ 2
3 . In [20, Corollary 3.5], Jung-Park showed that

Wα( 141
250 ) is weakly 3-hyponormal but not 3-hyponormal. Also, in [17], Exner-Jung-Park considered a weight

sequence α(x) as following

α(x) :

√
x
2
,

√
2
3
,

√
n + 1
n + 2

(n ≥ 2) (1.1)

and obtained values sn for some low numbers n = 2, 3, ..., 10 such that Wα(sn) is weakly n-hyponormal but not
n-hyponormal. Hence it is interesting to find a formula of sn for arbitrary positive integer n ≥ 2 such that
Wα(sn) is weakly n-hyponormal but not n-hyponormal, which improves Exner-Jung-Park’s result in [17]. In
this paper we establish a formula for finding such values sn for n ≥ 2 (see Theorem 4.1 and Corollary 4.2).

Some of the calculations in this paper were aided by using the software tool Mathematica ([25]).

2. Technical lemmas

We begin this section by giving a known equivalent condition for the weak n-hyponormality on con-
tractive weighted shifts as following.

Theorem 2.1. ([17, Theorem 2.3]) Let Wα be a contractive hyponormal weighted shift with weight sequence
α := {αi}

∞

i=0. Then Wα is weakly n-hyponormal if and only if the following condition holds:
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∆α
n(φ, p, q) = γn

∣∣∣φnp0

∣∣∣2 +

([
γn−1 γn
γn γn+1

] [
φn−1p0
φnp1

]
,

[
φn−1p0
φnp1

])
+ · · ·

· · · +



γ1 γ2 · · · γn
γ2 γ3 · · · γn+1
...

...
. . .

...
γn γn+1 · · · γ2n−1



φ1p0
φ2p1
...

φnpn−1

 ,

φ1p0
φ2p1
...

φnpn−1


 (2.1)

+

∞∑
k=0




γk γk+1 · · · γk+n
γk+1 γk+2 · · · γk+n+1
γk+2 γk+3 · · · γk+n+2
...

...
. . .

...
γk+n γk+n+1 · · · γk+2n




qk

φ1pk+1
φ2pk+2
...

φnpk+n


,


qk

φ1pk+1
φ2pk+2
...

φnpk+n




is positive, for any φ :=

{
φi

}n

i=1
, p :=

{
pi
}∞
i=0, and q :=

{
qi
}∞
i=0 in C, where γ0 := 1 and γn := α2

n−1γn−1 (n ≥ 1).

Recall Cauchy’s double alternant ([22, p.6]) that the determinant of an n× n matrix with (i, j)-entry 1
Xi+Y j

is expressed by

det
(

1
Xi + Y j

)
1≤i, j≤n

=

∏
1≤i< j≤n

(
Xi − X j

) (
Yi − Y j

)
∏

1≤i, j≤n

(
Xi + Y j

) . (2.2)

By Cauchy’s double alternant in (2.2) we have the following Lemma (cf. [8, p.460], [16, Lemma 2.1]).

Lemma 2.2. Suppose n ∈N. Let Hn(`) be the n × n matrix with (i, j)-entry 1
`+i+ j−1 (1 ≤ i, j ≤ n). Then

det Hn(`) =
G(n + 1)2G(` + n + 1)2

G(` + 1)G(` + 2n + 1)
,

where G(·) is Barnes G-function1).

Proof. It follows from (2.2) that

det Hn(`) = (1!2! · · · (n − 1)!)2 Γ (` + 1) Γ (` + 2) · · · Γ (` + n)
Γ (` + n + 1) Γ (` + n + 2) · · · Γ (` + 2n)

.

Since G(n + 1) =
∏n−1

k=1 Γ(k) for n ∈N, G(n + 1) = Γ(n)G(n) obviously, which proves the lemma. �

By using Lemma 2.2, we obtain two elementary formulas of the Hankel matrices as following.

Lemma 2.3. For x > 0, let An(x) :=
[
ai+ j

]
0≤i, j≤n

be an (n + 1) × (n + 1) matrix with

a0 :=
1
x
, ak :=

1
k + 1

(1 ≤ k ≤ 2n).

Then

det An(x) =
(n!)3 Ωn

(n + 1)! (n + 2)! (n + 3)!

((1
x
− 1

)
(n + 1)2 + 1

)
, (2.3)

1)The Barnes G-function is presented by G(n) = 1!2! · · · (n − 2)! ([2]).
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where

Ωn =
G(n + 1)3 G(n + 5)

G(2n + 3)
(n ≥ 3) with Ω1 = Ω2 = 1. (2.4)

In particular, if we write Mn−1(x) for the submatrix obtained by deleting the second row and column of An(x), then
we have

det Mn−1(x) =
n2Ωn

12 (n + 3) (n + 1)

((1
x
− 1

)
(n + 1)2 + 4

)
. (2.5)

The following lemma follows from two formulas (2.3) and (2.5).

Lemma 2.4. For n ≥ 6 and 2 ≤ k ≤ n, if Ψk is the k × k matrix given by

Ψk =



n2
−1

n2
1
2

1
3 · · ·

1
k

1
2

1
3 + εn |u|2 1

4 · · ·
1

k+1
1
3

1
4

1
5 · · ·

1
k+2

...
...

...
. . .

...
1
k

1
k+1

1
k+2 · · ·

1
2k−1


,

then we have

det Ψk = θk

(
1

k2 (k − 1)2 (k + 1)

(
n2
− k2

n2

)
+ εn |u|2

(k + 1)
12

4n2
− k2

n2

)
, (2.6)

where

εn =
1

(n + 2) (n + 1)2 , θk =
G(k + 1)3 G(k + 3)

((k − 2)!)2 G(2k + 1)
(k ≥ 3) with θ2 = 1.

3. Ranges for weak n-hyponormalities

Let α(x) be a sequence as in (1.1) and let Wα(x) be the associated weighted shift. We give a modified
formula for weak n-hyponormality of Wα(x) for n ≥ 4 (cf. [17, Theorem 2.3]) below.

Theorem 3.1. Suppose that n ≥ 4 is an arbitrary integer. Let α(x) be the sequence as in (1.1). Then the following
conditions are equivalent:
(i) Wα(x) is weakly n-hyponormal,
(ii) for any given δn > 0 and εn > 0,

1
x

∆α
n(φ, p, q) =

1
n + 1

∣∣∣φnp0

∣∣∣2 +

([
1
n

1
n+1

1
n+1

1
n+2 − εn

] [
φn−1p0
φnp1

]
,

[
φn−1p0
φnp1

])
+ {(n − 2) terms}

+





1
x

1
2

1
3 · · ·

1
n

φn

n+1
1
2

1
3 + εn

∣∣∣φn

∣∣∣2 1
4 · · ·

1
n+1

φn

n+2
1
3

1
4

1
5 · · ·

1
n+2

φn

n+3
...

...
...

. . .
...

...
1
n

1
n+1

1
n+2 · · ·

1
2n−1

φn

2n
φn

n+1
φn

n+2
φn

n+3 · · ·
1

2n δn +
|φn|

2

2n+1





q0
p1
φ2p2
...

φn−1pn−1
pn


,



q0
p1
φ2p2
...

φn−1pn−1
pn




+ {(n − 2) terms}

+





1
n

1
n+1

1
n+2 · · ·

1
2n

1
n+1

1
n+2 − δn

1
n+3 · · ·

1
2n+1

1
n+2

1
n+3

1
n+4 · · ·

1
2n+2

...
...

...
. . .

...
1

2n
1

2n+1
1

2n+2 · · ·
1

3n




qn−1
pn

φ2pn+1
...

φnp2n−1


,


qn−1
pn

φ2pn+1
...

φnp2n−1




+ {Remaining terms} (3.1)
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is positive for any φ :=
{
φi

}n

i=2
, p :=

{
pi
}∞
i=0 and q :=

{
qi
}∞
i=0 in C, where “Remaining terms” is the tail of series in

(2.1) corresponding to α(x).

Proof. Use Theorem 2.1 with φ1 = 1 and observe that the expansions of right parts in (2.1) and (3.1) coincide.
�

We take the values

ε̂n =
1

(n + 2) (n + 1)2 , δ̂n =
(n − 1)!2n!2 (n + 2)

(2n + 1)!2
(3.2)

satisfying the following two equations

det
[

1
n

1
n+1

1
n+1

1
n+2 − ε̂n

]
= 0

and

det



1
n

1
n+1

1
n+2 · · ·

1
2n

1
n+1

1
n+2 − δ̂n

1
n+3 · · ·

1
2n+1

1
n+2

1
n+3

1
n+4 · · ·

1
2n+2

...
...

...
. . .

...
1

2n
1

2n+1
1

2n+2 · · ·
1

3n


= 0.

For brevity we denote

Ψn

(
x, φn

)
:=



1
x

1
2

1
3 · · ·

φn

n+1
1
2

1
3 + ε̂n

∣∣∣φn

∣∣∣2 1
4 · · ·

φn

n+2
1
3

1
4

1
5 · · ·

φn

n+3
...

...
...

. . .
...

φn
n+1

φn
n+2

φn
n+3 · · · δ̂n +

|φn|
2

2n+1


, (3.3)

where φn ∈ C, ε̂n and δ̂n are given as in (3.2). Then we obtain the following lemma.

Lemma 3.2. Suppose n ≥ 4. Then det Ψn

(
x, φn

)
≥ 0 for all φn ∈ C if and only if 0 < x ≤ sn, where

sn :=

 n4
−50n3

−95n2
−60n−12

(n+2)(n3−52n2+5n+10) i f n = 4, 5,
n2

n2−1 i f n ≥ 6.
(3.4)

Proof. Observe that

det Ψn

(
x, φn

)
=

n!Ωn

(n + 3)!
·

1
x

[
fn (x)

∣∣∣φn

∣∣∣4 + 1n (x)
∣∣∣φn

∣∣∣2 + hn (x)
]
,

where Ωn is as in (2.4) and

fn (x) =
n2

12

(
1 −

(n + 3)(n − 1)
(n + 1)2 x

)
,

1n (x) =
n3 + 20n2 + 21n + 6 − (n2 + 19n − 2)(n + 1)x

12(n + 1)2(2n + 1)
,

hn (x) =
n2
− (n2

− 1)x
n2(n + 1)2(2n + 1)

.



C. Li et al. / Filomat 35:15 (2021), 5293–5301 5298

Since n!Ωn
(n+3)! ·

1
x > 0, obviously it holds that

det Ψn

(
x, φn

)
≥ 0⇐⇒ fn (x)

∣∣∣φn

∣∣∣4 + 1n (x)
∣∣∣φn

∣∣∣2 + hn (x) ≥ 0, φn ∈ C.

For our convenience, we denote

ψn(x, t) := fn (x) t2 + 1n (x) t + hn (x)

with t =
∣∣∣φn

∣∣∣2. We now claim that ψn(x, t) ≥ 0 for all t ≥ 0 if and only if 0 < x ≤ sn (n ≥ 4), where sn is given
as in (3.4). We recall an elementary discriminant test as following:

Let p (t) = at2 + bt + c be the quadratic polynomial in t. Then p (t) ≥ 0 for t ≥ 0 if and only if any of the
following two cases holds:

i) a ≥ 0, b ≥ 0 and c ≥ 0,
ii) a ≥ 0, b < 0 and b2

− 4ac ≤ 0.
To obtain the equivalent conditions for ψn(x, t) ≥ 0 (t ≥ 0) in x, we use the above discriminant tests i) and ii)
in t. First we observe that for all n ≥ 2,

A := fn (x) ≥ 0⇐⇒ 0 < x ≤ r1 (n) :=
(n + 1)2

(n + 3) (n − 1)
,

B := 1n (x) ≥ 0⇐⇒ 0 < x ≤ r2 (n) :=
n3 + 20n2 + 21n + 6

(n + 1) (n2 + 19n − 2)
,

C := hn (x) ≥ 0⇐⇒ 0 < x ≤ r3 (n) :=
n2

n2 − 1
.

It follows some simple computations that

r2 (n) < r3 (n) < r1 (n) for n = 4, 5; r3(n) < r2 (n) < r1 (n) for n ≥ 6. (3.5)

By using (3.5), we obtain the equvalent conditions for ψn(x, t) ≥ 0 concerning to the case i) as following

A ≥ 0,B ≥ 0,C ≥ 0⇐⇒

0 < x ≤ r2(n) for n = 4, 5,
0 < x ≤ r3(n) for n ≥ 6.

(3.6)

We now consider the case ii) to obtain equivalent conditions for ψn(x, t) ≥ 0. Since r1(n) > r2(n) > r3(n)
(n ≥ 6) and B < 0, we get C < 0, which implies that B2

− 4AC > 0. Hence the case ii) for n ≥ 6 does not
happen. Thus we only consider the case ii) for n = 4, 5. By a direct computation, we get

D := B2
− 4AC =

(x − x1(n)) (x − x2(n))
144(n + 1)4(2n + 1)2 ,

where

x1 (n) =
n2
− 6n − 3

(n + 1) (n − 7)
,

x2 (n) =
n4
− 50n3

− 95n2
− 60n − 12

(n + 2) (n3 − 52n2 + 5n + 10)
.

It follows from a computation that x1(n) < r2(n) < x2(n) < r1(n), which implies that

A ≥ 0, B < 0, D ≤ 0⇐⇒ r2(n) < x ≤ x2(n), n = 4, 5. (3.7)

Combining (3.6) and (3.7), we obtain that

ψn(x, t) ≥ 0 (t ≥ 0, x > 0)⇐⇒

0 < x ≤ x2(n) for n = 4, 5,
0 < x ≤ r3(n) for n ≥ 6.

(3.8)

Therefore the right sides of (3.4) and (3.8) coincide, and so the proof is complete. �
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Lemma 3.3. For n ≥ 4, let (n + 1) × (n + 1) matrix Ψn(x, φn) be given as in (3.3). Then Ψn(sn, φn) ≥ 0 for all
φn ∈ C.

Proof. Using Lemma 3.2 and the Sylvester’s criterion (which is called the Nested Determinant Test, see
[6]), we will prove Ψn(sn, φn) ≥ 0 for all n ≥ 4. To do so, we claim that det Ψ[k]

n > 0 for k = 1, ...,n, and
det Ψ[n+1]

n ≥ 0, where Ψ[k]
n := Ψ[k]

n (sn, φn) is the k × k upper-left corner submatrix of Ψn(sn, φn), 1 ≤ k ≤ n + 1.
By (2.6), we have det Ψ[k]

n > 0 for k = 1, ...,n (n ≥ 6). And also, by Lemma 3.2 we have det Ψ[n+1]
n ≥ 0. Hence

Ψn(sn, φn) ≥ 0 for all n ≥ 6.
We now claim that Ψn(sn, φn) ≥ 0 for n = 4, 5. To do so, we first observe that

det Ψ[1]
n =

1
sn
> 0, det Ψ[2]

n =
12̂εn|φn|

2 + 4 − 3sn

12sn
,

det Ψ[3]
n =

48̂εn|φn|
2(9 − 5sn) + 9 − 8sn

2160sn
,

det Ψ[4]
n =

1200̂εn|φn|
2(4 − 3sn) + 16 − 15sn

6048000sn
,

det Ψ[5]
5 =

1200̂ε5

∣∣∣φ5

∣∣∣2 (25 − 21s5) + 25 − 24s5

266716800000s5
.

For each n = 4, 5, we see easily that k2
− (k2

− 1)sn > 0 for all k = 2, ...,n (with s4 = 131
123 and s5 = 2078

1995 in
Lemma 3.2). This implies that det Ψ[k]

n > 0 for k = 1, ...,n (n = 4, 5). Thus it follows from Lemma 3.2 that
Ψn(sn, φn) ≥ 0 for n = 4, 5. �

Recall that {x > 0 : Wα(x) is weakly k-hyponormal} is connected ([17, Proposition 3.2]). By this fact and
Lemma 3.3, we arrive at the main result of this section.

Theorem 3.4. Let Wα(x) be the weighted shift with α(x) as in (1.1). If 0 < x ≤ sn (n ≥ 4), where sn is given as in
(3.4), then Wα(x) is weakly n-hyponormal.

4. Main result for distinctions

In this section we improve Exner-Jung-Park’s reasult which was mentioned in the introduction part by
using the formula in Theorem 3.4. Below, we give the ranges for being distinct between the n-hyponormality
and weak n-hyponormality of weighted shift Wα(x).

Theorem 4.1. Let Wα(x) be the weighted shift with α(x) as in (1.1). Then the following assertions hold.
(i) If 9

8 < x ≤ 4
3 , then Wα(x) is quadratically hyponormal but not 2-hyponormal.

(ii) If 16
15 < x ≤ 141

125 , then Wα(x) is cubically hyponormal but not 3-hyponormal.
(iii) If 25

24 < x ≤ 131
123 , then Wα(x) is quartically hyponormal but not 4-hyponormal.

(iv) If 36
35 < x ≤ 2078

1995 , then Wα(x) is quintically hynormal but not 5-hyponormal.

(v) If (n+1)2

n(n+2) < x ≤ n2

n2−1 , then Wα(x) is weakly n-hyponormal but not n-hyponormal for n ≥ 6.

Proof. For (i) and (ii), see [5, Proposition 7] and [20, Corollary 3.5], respectively. For (iii), (iv) and (v), we can
obtain results by combining Theorem 3.4 with [16, Corollary 3.3]. �

Let α(x) be as in (1.1) and let Wα(x) be the associated weighted shift. Now we denote

SH k := {x > 0 : Wα(x) is (strongly) k-hyponormal}

and let tk := supSH k. Then it follows from [16, Corollary 3.3] that tk =
(k+1)2

k(k+2) for k ∈ N, and that Wα(x) is
k-hyponormal if and only if 0 < x ≤ tk. Note that if tn < x ≤ tn−1, then Wα(x) is weaky n-hyponormal (n ≥ 6).
For n = 2, 3, 4, 5, the intervals (tn, tn−1] are contained in the ranges of x in (i),(ii),(iii),(iv) in Theorem 4.1,
respectively. Hence we have the following corollary.
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Corollary 4.2. Let Wα(x) be the weighted shift with α(x) as in (1.1). Suppose n ≥ 2. Then Wα(x) is weakly

n-hyponormal but not n-hyponormal for all x ∈ (tn, tn−1], where tk =
(k+1)2

k(k+2) for k ≥ 1.

Let us set

WH k := {x > 0 : Wα(x) is weakly k-hyponormal}

and set ŝn := supWHn. Obviously sn ≤ ŝn for all n. Recall that for any 1 ≤ k ≤ ∞, the set {0} ∪WH k is a
connected closed interval ([17, Proposition 3.2]). Thus, obviously

Wα(x) is weakly k-hyponormal ⇐⇒ 0 < x ≤ ŝk ≤
4
3
.

Hence we have the following corollary.

Corollary 4.3. Under the above notations, it holds that Wα(x) is weakly k-hyponormal but not k-hyponormal if and
only if 0 < tk < x ≤ ŝk ≤

4
3 .

We give a remark which is closely related to the study of gaps among subnormal, polynomially hy-
ponormal, and 2-hyponormal operators.

Remark 4.4 It is known that ŝ2 = 4
3 (see [5, Proposition 7]). For n ≥ 3, the values ŝn and ŝ∞ := limn→∞ ŝn are

not known yet for more than 30 years (cf. [5, Remark 16]). Note that s∞ := limk→∞ sk = 1. Let Wα(̂s∞) be the
associated weighted shift of α(̂s∞). Then the following assertions hold:
(i) if 9

8 < ŝ∞, then Wα(̂s∞) is polynomially hyponormal but not 2-hyponormal,
(ii) if 1 < ŝ∞ < 9

8 , then Wα(̂s∞) is polynomially hyponormal and 2-hyponormal, but not subnormal,
(iii) if ŝ∞ = 1, then the polynomially hyponormal weighted shift Wα(̂s∞) is subnormal.
Hence it is important to search the exact value of ŝ∞.

We close this note with an open problem which is arisen by Corollary 4.3.

Problem 4.5 Let β : β0 < β1 < · · · be an arbitrary sequence of positive real numbers and let β(x) : x < β0 <
β1 < · · · with a positive real variable x. Suppose Wβ is non-recursively subnormal. As above we denote
SH k for the set of x > 0 such that Wβ(x) is k-hyponormal. Then there exist the numbers2) tk(β) := supSH k
such that t1(β) < t2(β) < t3(β) < · · · . In particular, if Wα is Bergman shift, then the tk(α) coincides with tk in
Corollary 4.2; cf. [19, Example 3.1]. We now give a question as following:

Is it true that Wβ(x) is weakly n-hyponormal but not n-hyponormal for all x ∈ (tn(β), tn−1(β)]?
This question is closely related to [17, Problem 5.1]; if this question is true, the open problem, Problem 5.1
in [17], should be solved affirmatively.

Acknowledgements. The authors would like to express their gratitude to the referee for careful reading
of the paper and helpful comments.
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