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Abstract. Let a(x) : \/g, \/g, \/é, \/g, ... be a sequence with a real variable x > 0 and let W, be the

associated weighted shift with weight sequence a(x). In [17], Exner-Jung-Park provided an algorithm to
distinguish weak k-hyponormality and k-hyponormality of weighted shift Wy, and obtained s, > 0 for

some low numbers n = 4, ..., 10, such that W,,) is weakly n-hyponormal but not n-hyponormal. In this

paper, we obtain a formula of s,, (for all positive integer 1) such that W, is weakly n-hyponormal but not
n-hyponormal, which improves Exner-Jung-Park’s result above.

1. Introduction and preliminaries

Let H be an infinite dimensional complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H. An operator T € B(H) is subnormal if it is (unitarily equivalent to) the restriction of
a normal operator to an invariant subspace; T € B(H) is hyponormal if T*T > TT*. In 1950, P. Halmos gave
a characterization for the subnormality of T ([18]), and it was successively simplified by Bram ([3]), which
states that T is subnormal if and only if }'; ]-(Ti fir T/ f;) > 0 for all finite collection {f;} in . This is referred

as Bram-Halmos criterion. For k € IN, where IN is the set of positive integers, an operator T is (strongly)
k-hyponormal if the operator matrix

I T ™ ... T
T TT T2T ... T*T
T2 T*TZ T*2T2 . T*kT2
TF Tk T2T7% ... TUkTk
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is positive. The Bram-Halmos criterion says that T is subnormal if and only if T is k-hyponormal for all
k € N. For k € IN, an operator T is weakly k-hyponormal if p(T) is hyponormal for every polynomial p of
degree k or less ([5],[6],[17]). An operator T € B(H) is polynomially hyponormal if T is weakly k-hyponormal
for all k € IN ([13],[14]). Sometimes weak 2-, 3- and 4-hyponormality are referred to as quadratic, cubic
and quartic hyponormality, respectively. Obviously, 1-hyponormal [or weakly 1-hyponormal] operator
T € B(H) is hyponormal. It holds that every subnormal operator is polynomially hyponormal and every
k-hyponormal operator is weakly k-hyponormal for each k € IN. Also it is well known that subnormal = #n-
hyponormal = weakly n-hyponormal = hyponormal for every n > 2; many operator theorists have studied
the converse implications; for example, see [1],[4],[6-10],[21],[23], etc. In [14, Theorem 2.1], Curto-Putinar
proved theoretically that there exists a polynomially hyponormal operator which is not 2-hyponormal.
Thus, obviously there exists a polynomially hyponormal operator but not subnormal, which solves a long-
standing open problem negatively ([13],[14]). Hence it follows from [24, Theorem 3.4] that there exists
a unilateral weighted shift (whose definition will be appeared below) that is polynomially hyponormal
but not subnormal yet. But it is not known whether a polynomially hyponormal weighted shift but not
2-hyponormal exists ([14, p.489]. Furthermore, one does not know any concrete example of weighted shift
that is polynomially hyponormal but not subnormal yet. For more than 30 years, several operator theorists
have studied the distinction between k-hyponormality and weak I-hyponormality of weighted shifts via
various models of weight sequences for k,/ € IN ([11],[12],[15],[16],[17],[20]). This paper is contained in
such a study being distinct these classes of weighted shifts above.

For a sequence a = {a;};? of positive real numbers, the weighted shift W, acting on the usual Hardy

space £2, with an orthonormal basis {ei}fio, is defined by W,e; = ajej;1 for all j € Z,, where Z., is the set of

nonnegative integers. Consider a sequence a(x) : Vx, \/g, \/g, \/g,... with a real variable x > 0 and let W

be the associated weighted shift. In [24, Theorem 4.1], McCullough-Paulsen showed thatif 0 < x < ‘;g—(l), then
W) is weakly 2-hyponormal but not 2-hyponormal. In [5, Proposition 7], Curto proved that Wy, is weakly
2-hyponormal but not 2-hyponormal if and only if % < x < 2. In [20, Corollary 3.5], Jung-Park showed that
Wa(%) is weakly 3-hyponormal but not 3-hyponormal. Also, in [17], Exner-Jung-Park considered a weight

sequence a(x) as following

X 2 n+1
Oé(JC) : \/;, \/;, m (Tl > 2) (11)

and obtained values s, for some low numbers n = 2, 3, ..., 10 such that W, is weakly n-hyponormal but not
n-hyponormal. Hence it is interesting to find a formula of s, for arbitrary positive integer n > 2 such that
W, is weakly n-hyponormal but not n-hyponormal, which improves Exner-Jung-Park’s result in [17]. In
this paper we establish a formula for finding such values s, for n > 2 (see Theorem 4.1 and Corollary 4.2).

Some of the calculations in this paper were aided by using the software tool Mathematica ([25]).

2. Technical lemmas

We begin this section by giving a known equivalent condition for the weak n-hyponormality on con-
tractive weighted shifts as following.

Theorem 2.1. ([17, Theorem 2.3]) Let W, be a contractive hyponormal weighted shift with weight sequence
a = {aj};2,. Then W, is weakly n-hyponormal if and only if the following condition holds:
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83000 = ol + (| Tt || G | [ G )

Vn Vn+l ¢nP1
YioY2 otV P1po $1po
o+ )/.2 7/.3 . 7/”'+1 ¢2.p1 p ¢2.p1 (2.1)
VYn Vnsl Von-1 anpn—l (Pnpn—l
Yk Vi+1 tee Vi+n Jk Jk
o || Vet V2 ot Viens P1Pr+1 P1Pr+1
+ Z 7/k+2 Vk+3 o Viane2 PP | | P2Pki2
k=0 : - : : :
)/k+n Vi+n+1 ¢ Vi+2n ¢npk+n ¢npk+n

is positive, for any ¢ := {qbi}?:l = {piling, and q == {gi}2 in C, where yo := 1 and y, := a2 _ yu_1 (n 2 1).

Recall Cauchy’s double alternant ([22, p.6]) that the determinant of an n X n matrix with (i, j)-entry X’+Y]
is expressed by

( 1 ) HlSi<j§n (Xi - Xj) (Yi - Yj)
det = .
Xi+Yi) g e T jen (X3 + V)

2.2)

By Cauchy’s double alternant in (2.2) we have the following Lemma (cf. [8, p.460], [16, Lemma 2.1]).
Lemma 2.2. Suppose n € IN. Let H,({) be the n X n matrix with (i, j)-entry ﬁ (1<i,j<mn). Then

G(n +1)*G(f +n +1)?

deth() = Cr G an+ 1)’

where G(-) is Barnes G-function".

Proof. 1t follows from (2.2) that

r¢+nre¢+2)---r€+n)
TrC+n+1D)IT(+n+2)---T(€+2n)

detH,,({’) = (]'2' ce (I’l _ 1)|)2

Since G(n + 1) = Z;ll I'(k) for n € N, G(n + 1) = I'(n)G(n) obviously, which proves the lemma. O

By using Lemma 2.2, we obtain two elementary formulas of the Hankel matrices as following.

Lemma 2.3. Forx > 0, let A,(x) := [alﬂ] be an (n + 1) X (n + 1) matrix with

0<<

1

i1 (1 <k<2n).

1
ag = —, Ay =
X

Then

(1)’ Q, 1 2
detA,(¥) = o e (( 1)(n+ 1) +1), 2.3)

DThe Barnes G-function is presented by G(n) = 112! --- (n — 2)! ([2]).
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where
G(n+1)Gn+5)
G(2n + 3)

In particular, if we write M,,_1(x) for the submatrix obtained by deleting the second row and column of A,(x), then
we have

3 n?Q, 1 )
detMn_l(x) = W)(H-{—l) ((; - 1) (71 + 1) + 4) . (25)

Q, = (n>3) with O = Q, = 1. 2.4)

The following lemma follows from two formulas (2.3) and (2.5).

Lemma 2.4. Forn > 6 and 2 < k < n, if Wy is the k X k matrix given by

=1 1 1 1
[ R £
2 atell g Rl
1 1 1 1
W, = 3 1 5 2 |,
1 1 1 1
k k+1 k+2 2k—1

then we have

B 1 n? — k2 5 (k+1)4n? — k2
det W, = 6, (k2 (k ~ 1)2 (k N 1) ( 2 ) + €y |M| T 2 , (26)

where
=L g o GkHIPGKHD) o e, 1,
(n+2)(n+1)>° ((k —2))* G(2k + 1)

3. Ranges for weak n-hyponormalities

Let a(x) be a sequence as in (1.1) and let W,y be the associated weighted shift. We give a modified
formula for weak n-hyponormality of W, for n > 4 (cf. [17, Theorem 2.3]) below.

Theorem 3.1. Suppose that n > 4 is an arbitrary integer. Let a(x) be the sequence as in (1.1). Then the following
conditions are equivalent:

(i) W is weakly n-hyponormal,

(ii) for any given 6, > 0 and €, > 0,

1 1 2 1 L Ou-1P0 Pu-1P0
Zpe - + 1 n+1 " " + {(n — 2) terms
x n((Prpr Q) n+1 '(Pnp0| n_fl nl? —€, ¢np1 ’ ¢np1 {( ) }
[l 1 1 1 Pn 1
x 3 n n+1 [ 17T
I i lef 1 S i o
2 3 n [%¥'n 4 n+1 n(g—Z P1 P1
1 1 1 1 "
3 I 5 e, e P2p2 Pa2p2
+ . . . . . , . + {(n — 2) terms}
1 1 1 1 Pu
E @ @ e m % , (Pﬂ—lpﬂ—l (Pn—lpn—l
By By e L I L L
n+1 n+2 n+3 2n n 2n+1
1 1 1 1
n n+1 n+2 2n qn-1 dn-1
11 B
gl 2 O 3 211 Pn Pn
+|| w2 w3 i e Oapust || P2Purr ||+ {Remaining terms) (3.1)
1 1 1 1
L 20 2n+1 w2 T B Pup2n-1 Pub2u-1
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is positive for any ¢ := {qb,-}?zz,p = {pilig and q = {qi}~, in C, where “Remaining terms” is the tail of series in

(2.1) corresponding to a(x).

Proof. Use Theorem 2.1 with ¢»; = 1 and observe that the expansions of right parts in (2.1) and (3.1) coincide.

O
We take the values
— 1 ~ m-1)Pn?n+2)

i me? " @n+1)?

satisfying the following two equations

1 1
det| M |=0
L n+1  n+2 n
and
1 1 1 1
n n+l __ n+2 2n
4 1 1 1
n+l  n+2 n n+3 2n+1
1 1 1
n+ n+ n+ n+ =
det 2 3 1 ez | =0
€1 _1_ 1 ... 1
L 2n 2n+1 2n+2 3n

For brevity we denote

1 1 1 Pn
X 2 ) 3 rgl
1 1.,= 1 Pn_
2 3tén |¢”| 1 42
1 1 1 P
v, (x, qbn) = 3 i 5 n+3 ’

— — - - 2
by ¢, S 1|

L n+1 n+2 n+3 n 2n+1

where ¢, € C, €, and gﬂ are given as in (3.2). Then we obtain the following lemma.

Lemma 3.2. Suppose n > 4. Then detV,, (x, ¢n> > 0 for all ¢, € Cifand only if 0 < x < s,,, where

(n-+2—2)(n3—52n2+5n+10)
I ifn>e.

n*=50n3-95n%-60n-12 lf n=45

s — 4 4
n2-1

Proof. Observe that

n!Q,
(n+3)!

det W, (x,¢,) = @l + g @l + ],

where (), is as in (2.4) and

n? n+3)n-1)
fn(x)zﬁ(l_ (n+ 172 'x)r
13 +20n% +21n + 6 — (1> + 191 — 2)(n + 1)x
12(n +1)22n + 1)
n? —(n?—1)x
n2(n+12Q2n+1)

In (x) =

4

hy (x) =

(3.2)

(3.3)

(3.4)



C. Li et al. / Filomat 35:15 (2021), 5293-5301 5298

Since % -1> 0, obviously it holds that

det W, (x,¢u) 2 0 &= fu (@) |pu]' + 90 00| + 1 ) 20, ¢ €C.
For our convenience, we denote
Pu(x, ) = fu ()£ + gy () £+ By (%)

with t = |¢n|2. We now claim that ¢,(x,t) > 0 for all t > 0 if and only if 0 < x <'s, (n > 4), where s, is given
as in (3.4). We recall an elementary discriminant test as following:

Let p (t) = at*> + bt + ¢ be the quadratic polynomial in t. Then p (t) > 0 for ¢ > 0 if and only if any of the
following two cases holds:

i)a>0,b>0andc >0,

ii)a>0,b<0and b* —4ac < 0.
To obtain the equivalent conditions for y,(x, t) > 0 (t > 0) in x, we use the above discriminant tests i) and ii)
in t. First we observe that for all n > 2,

(n+1)>
n+3)(n-1)
n+20n2 +21n+6

(n+1)(n2+19n -2)’
2

A=f(0) 20 0<x<r(n):=

B=g,(x) 20 0<x<r{):=

n
n2-1

C=h,(x)20c=0<x<r;3(n):=

It follows some simple computations that
rp(n) <rs(n) <ri(n) forn =4,5;r3(n) < ry(n) <ry(n) forn > 6. (3.5)

By using (3.5), we obtain the equvalent conditions for {,(x, t) > 0 concerning to the case i) as following

0<x<rm) forn=4,5,

3.6
0<x<r3n) for n=6. (36)

Azo,Bzo,sz:»{

We now consider the case ii) to obtain equivalent conditions for y,,(x, ) > 0. Since r1(n) > r2(n) > r3(n)
(n > 6) and B < 0, we get C < 0, which implies that B> — 4AC > 0. Hence the case ii) for n > 6 does not
happen. Thus we only consider the case ii) for n = 4,5. By a direct computation, we get

(x = x1(m) (x — x2(n))

D := B> -4AC = ,
144(n + 1)*(2n + 1)2
where
n>—6n-23
x1(n) =

mn+1)(n-7)
n* —50n% — 95n% — 60n — 12
(n+2) (3 —52n% + 51 + 10)

It follows from a computation that x; (1) < r2(n) < x2(n) < r1(n), which implies that

A>0,B<0,D<0e rn)<x<x), n=4,65. (3.7)

x2 (1) =

Combining (3.6) and (3.7), we obtain that

0<x<xn) for n=4,5,

3.8
0<x<rs3n) fornz=6. (38)

Yu(x,t) >0 (t>0,x > 0) (:){

Therefore the right sides of (3.4) and (3.8) coincide, and so the proof is complete. |
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Lemma 3.3. For n > 4, let (n + 1) X (n + 1) matrix V,,(x, ¢,,) be given as in (3.3). Then VY, (s,, ¢n) = 0 for all
¢, € C.

Proof. Using Lemma 3.2 and the Sylvester’s criterion (which is called the Nested Determinant Test, see
[6]), we will prove W, (s,, ¢,) = 0 for all n > 4. To do so, we claim that det \I’,[f] >0fork=1,..,n and
det \I/L”H] > 0, where \I/Lk] = \I/Lk] (Sn, Pn) is the k X k upper-left corner submatrix of W, (s, ¢n), 1 <k <n+1.
By (2.6), we have det \I/Lk] >0fork=1,..,n(n>6). And also, by Lemma 3.2 we have det ‘I/,[fH] > 0. Hence
W, (54, ¢Pn) = 0 foralln > 6.

We now claim that W,,(s,, ¢») > 0 for n = 4,5. To do so, we first observe that

12’6\ 2 +4 — 35
det\I/,[}] = l >0, det\y[z] — ”|¢"| n

Sy " 12s, !
488,29 — Bs,) + 9 — 8s,,
det Wl = —"
&= 2160s, ’
12008, |2 (4 — 3s,,) + 16 — 155,
det Wit = - ,
e 60480005,
_ 2
eyl _ 12008 |s|” (25 — 21s5) + 25 — 24s5
5 266716800000s5
For each n = 4,5, we see easily that k> — (k> — 1)s, > 0 for all k = 2,...,n (with 54 = S; and ss5 = %8;? in
Lemma 3.2). This implies that det ‘I’,Ek] >0fork=1,..n(n=4,5). Thus it follows from Lemma 3.2 that
W, (su, Pn) = 0 forn =4,5. O

Recall that {x > 0 : Wy is weakly k-hyponormal} is connected ([17, Proposition 3.2]). By this fact and
Lemma 3.3, we arrive at the main result of this section.

Theorem 3.4. Let Wy be the weighted shift with a(x) as in (1.1). If 0 < x <'s, (n > 4), where s, is given as in
(3.4), then Wy is weakly n-hyponormal.

4. Main result for distinctions

In this section we improve Exner-Jung-Park’s reasult which was mentioned in the introduction part by
using the formula in Theorem 3.4. Below, we give the ranges for being distinct between the n-hyponormality
and weak n-hyponormality of weighted shift Wyy).

Theorem 4. 1 Let Wy be the weighted shift with a(x) as in (1.1). Then the following assertions hold.
Q) If 2 5 < x < 3, then Wey is quadratically hyponormal but not 2-hyponormal.

(ii) If 18 < x < 132, then Wy is cubically hyponormal but not 3-hyponormal.

(iii) If 53 3 <x < Bl then Wy is quartically hyponormal but not 4-hyponormal.

(1V) If 32 < x < 338, then Wy is quintically hynormal but not 5-hyponormal.

I’H—l) n
Ifn(n+2) <x= n2—1’

then Wy is weakly n-hyponormal but not n-hyponormal for n > 6.

Proof. For (i) and (ii), see [5, Proposition 7] and [20, Corollary 3.5], respectively. For (iii), (iv) and (v), we can

obtain results by combining Theorem 3.4 with [16, Corollary 3.3]. m]
Let a(x) be as in (1.1) and let W,y be the associated weighted shift. Now we denote

SHi = {x > 0: Wy is (strongly) k-hyponormal}

and let ¢ := sup SH. Then it follows from [16, Corollary 3.3] that f; = (k,:; for k € IN, and that W) is
k-hyponormal if and only if 0 < x < ;. Note that if f, < x < t,_;, then Wy is weaky n-hyponormal (n > 6).
For n = 2,3,4,5, the intervals (f,, t,—1] are contained in the ranges of x in (i),(ii),(iii),(iv) in Theorem 4.1,
respectively. Hence we have the following corollary.
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Corollary 4.2. Let Wy be the weighted shift with a(x) as in (1.1). Suppose n > 2. Then Wyyy is weakly

n-hyponormal but not n-hyponormal for all x € (t,, t,—1], where t; = ,((IE;;; fork>1.

Let us set
WH := {x > 0 : Wy is weakly k-hyponormal}

and set’s, := sup WH,,. Obviously s, <'s, for all n. Recall that for any 1 < k < oo, the set {0} U W®Hj is a
connected closed interval ([17, Proposition 3.2]). Thus, obviously

[SSHI

W is weakly k-hyponormal < 0 < x <5 <

Hence we have the following corollary.

Corollary 4.3. Under the above notations, it holds that Wy is weakly k-hyponormal but not k-hyponormal if and
only if0 <ty <x <5 < 2.

We give a remark which is closely related to the study of gaps among subnormal, polynomially hy-
ponormal, and 2-hyponormal operators.

Remark 4.4 It is known that’s; = % (see [5, Proposition 7]). For n > 3, the values’s, and S¢ := lim,_,c s, are
not known yet for more than 30 years (cf. [5, Remark 16]). Note that se := limy,. sx = 1. Let W) be the
associated weighted shift of a(s.). Then the following assertions hold:

(i) if % <'Se, then W,z is polynomially hyponormal but not 2-hyponormal,

(ii) if 1 <Se < 3, then W,z is polynomially hyponormal and 2-hyponormal, but not subnormal,

(iii) if 5o = 1, then the polynomially hyponormal weighted shift W, ) is subnormal.

Hence it is important to search the exact value of 5.

We close this note with an open problem which is arisen by Corollary 4.3.

Problem 4.5 Let f : fo < 1 < --- be an arbitrary sequence of positive real numbers and let S(x) : x < fy <
p1 < --- with a positive real variable x. Suppose Wj is non-recursively subnormal. As above we denote
SHj for the set of x > 0 such that Wpy is k-hyponormal. Then there exist the numbers? () := sup SH
such that t1(8) < t2(f) < t3(B) < ---. In particular, if W, is Bergman shift, then the #(«) coincides with f; in
Corollary 4.2; cf. [19, Example 3.1]. We now give a question as following:

Is it true that Wy, is weakly n-hyponormal but not n-hyponormal for all x € (t,(B), t-1(B)]?

This question is closely related to [17, Problem 5.1]; if this question is true, the open problem, Problem 5.1
in [17], should be solved affirmatively.

Acknowledgements. The authors would like to express their gratitude to the referee for careful reading
of the paper and helpful comments.
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