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Some Mathematical Properties of the Geometric–Arithmetic
Index/Coindex of Graphs
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Abstract. Let G = (V,E), V = {1, 2, . . . ,n}, be a simple connected graph of order n, size m with vertex degree
sequence d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(vi). The geometric–arithmetic topological index of G is defined as

GA(G) =
∑

i∼ j
2
√

did j

di+d j
, whereas the geometric–arithmetic coindex as GA(G) =

∑
i/ j

2
√

did j

di+d j
. New lower bounds

for GA(G) and GA(G) in terms of some graph parameters and other invariants are obtained.

1. Introduction

In this paper we are concerned with simple graphs, that is graphs without directed, weighted or multiple
edges, and without self loops. Let G = (V,E) be a such graph, where V = {v1, v2, . . . , vn} is its vertex set and
E = {e1, e2, . . . , em} is its edge set. The degree of vertex vi, denoted by d(vi) (or di if it is clear from the context)
is the number of first neighbors of vi. Denote by ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0 the set of vertex degrees of
G, and by ∆e1 = d(e1) + 2 and δe1 = d(em) + 2. The complement of G, sometimes called the edge-complement,
is the graph G = (V,E), with the same vertex set but whose edge set consists of the edges not present in
G. Since the graph sum G + G on a n-node graph G is the complete graph Kn, the number of edges in G is
m =

n(n−1)
2 −m. If vertices vi and v j are adjacent in G, we write i ∼ j, otherwise we write i / j. As usual, L(G)

denotes a line graph.
The numeric quantity associated with a graph which characterize the topology of graph and is invariant

under graph automorphism is called graph invariant or topological index. Very often in chemistry the aim
is the construction of chemical compounds with certain properties, which not only depend on the chemical
formula but also strongly on the molecular structure. That’s where various topological indices come into
consideration. A large number of topological indices have been derived depending on vertex degrees.
Most degree based topological indices are viewed as the contributions of pairs of adjacent vertices. But
equally important are degree based topological indices that consider the non-adjacent pairs of vertices for
computing some topological properties of graphs which are named as coindices.
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The first and second Zagreb indices are vertex–degree–based graph invariants introduced in [22] and
[23], respectively, and defined as

M1(G) =

n∑
i=1

d2
i and M2(G) =

∑
i∼ j

did j.

Both M1(G) and M2(G) were recognized to be a measure of the extent of branching of the carbon–atom
skeleton of the underlying molecule. Bearing in mind that for the edge e connecting the vertices i and j,

d(e) = di + d j − 2,

the index M1(G) can also be considered as an edge–degree–based topological index [27]

M1(G) =

m∑
i=1

(d(ei) + 2).

In [13] (see also [12]) it was observed that the first Zagreb index can be also represented as

M1(G) =
∑
i∼ j

(di + d j) ,

and inspired by the above identity a concept of coindices was introduced. In this case the sum runs over
the edges of the complement of G. Thus, the first and the second Zagreb coindices are defined as [13]

M1(G) =
∑
i/ j

(di + d j) and M2(G) =
∑
i/ j

did j.

In [22], another quantity, the sum of cubes of vertex degrees

F(G) =

n∑
i=1

d3
i

was encountered as well. This quantity is also a measure of branching and it was found that its predictive
ability is quite similar to that of M1(G). However, for the unknown reasons, it did not attracted any attention
until 2015 when it was reinvented in [17] and named the forgotten topological index. By analogy to the first
Zagreb index, the following equalities hold

F(G) =
∑
i∼ j

(d2
i + d2

j ) and F(G) + 2M2(G) =
∑
i∼ j

(di + d j)2 =

m∑
i=1

(d(ei) + 2)2.

The forgotten topological coindex, or F-coindex, F(G), was encountered in [18] (see also [11]) as

F(G) =
∑
i/ j

(d2
i + d2

j ).

The F-coindex has almost the same predictive ability for a chemically relevant property of a non-trivial
class of molecules as a linear combination of M1(G) and F(G) (see [43]).

Generalization of the second Zagreb index, reported in [6], known as general Randić index, Rα(G), is
defined as

Rα(G) =
∑
i∼ j

(did j)α,

where α is a real number. Some well known special cases are R(G) = R−1/2(G) (the branching index that is
nowadays known as Randić index or connectivity index [33]), R(G) = R−1(G) (general Randić index R−1(G)
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which is referred to as modified second Zagreb index in [31]), RR(G) = R1/2(G) (reciprocal Randić index
[24]), and so on.

Multiplicative versions of the first and the second Zagreb indices, Π1(G) and Π2(G), were first considered
in [37]. These indices are defined as:

Π1(G) =

n∏
i=1

d2
i and Π2(G) =

∏
i∼ j

did j.

Multiplicative variants of the first and the second Zagreb coindices were introduced in [45]

Π1(G) =
∏
i/ j

(di + d j) and Π2(G) =
∏
i/ j

did j.

In [15] the multiplicative–sum first Zagreb index, Π∗1(G), was introduced as

Π∗1(G) =
∏
i∼ j

(di + d j).

The inverse degree and harmonic indices are defined as

ID(G) =

n∑
i=1

1
di

=
∑
i∼ j

 1
d2

i

+
1
d2

j

 and H(G) =
∑
i∼ j

2
di + d j

.

These indices first attracted attention through numerous conjectures generated by the computer programme
Graffiti [16].

A family of 148 discrete Adriatic indices was introduced and analyzed in [41] (see also [42]). The so-
called inverse sum indeg index, was singled out in [42] as being a significantly accurate predictor of total
surface area of octane isomers. It is defined as

ISI(G) =
∑
i∼ j

did j

di + d j
.

The geometric–arithmetic index, GA(G) index for short, proposed in [44], is defined to be

GA(G) =
∑
i∼ j

2
√

did j

di + d j
.

In [44] it was noted that the predictive power of GA index is somewhat better than the predictive power of the
Randić connectivity index [33] for physico-chemical properties such as entropy, enthalpy of vaporization,
standard enthalpy of vaporization, enthalpy of formation, and acentric factor.

The corresponding GA-coindex could be defined as

GA(G) =
∑
i/ j

2
√

did j

di + d j
.

A number of papers have been reported in the literature dealing with bounds for GA(G), see for example
[1–3, 5, 8–10, 30, 35, 36, 40, 44, 46]. In this paper we are concerned with lower bounds for GA(G) and GA(G)
depending on some of the graph parameters and invariants introduced above.
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2. Preliminaries

In this section we recall some analytical inequalities for real number sequences that will be used subse-
quently.

Let a = (ai), i = 1, 2, . . . ,m, be positive real number sequence. In [47] (see also [26]) was proved that m∑
i=1

√
ai


2

≥

m∑
i=1

ai + m(m − 1)

 m∏
i=1

ai


1
m

. (1)

Let x = (xi) and a = (ai), i = 1, 2, . . . ,m, be two positive real number sequences. Then for any r ≥ 0 holds
[32]

m∑
i=1

xr+1
i

ar
i
≥

 m∑
i=1

xi


r+1

 m∑
i=1

ai


r . (2)

For two real number sequences, a = (ai) and b = (bi), i = 1, 2, . . . ,m, Cauchy’s inequality holds (see e.g.
[28])  m∑

i=1

aibi


2

≤

 m∑
i=1

a2
i


 m∑

i=1

b2
i

 . (3)

Let a1 ≥ a2 ≥ · · · ≥ am be positive real number sequence. Then (see [7])

m∑
i=1

ai ≥ m

 m∏
i=1

ai


1
m

+
(√

a1 −
√

am

)2
. (4)

Let p = (pi) and a = (ai), i = 1, 2, . . . ,m, be two real number sequences with the properties p1+p2+· · ·+pm =
1 and 0 < r ≤ ai ≤ R < +∞. In [34] the following inequality was proved

m∑
i=1

piai + rR
m∑

i=1

pi

ai
≤ r + R. (5)

3. New lower bounds for GA index

In the following theorem we determine lower bound for GA in terms of parameter m and invariants
H(G), R−1(G), Π∗1(G) and Π2(G).

Theorem 3.1. Let G be a simple connected graph with m ≥ 2 edges. Then

GA(G) ≥

√√√√√ H(G)2

R−1(G)
+ 4m(m − 1)

(Π2(G))
1
m(

Π∗1(G)
) 2

m

. (6)

Equality holds if and only if for any two pairs of adjacent vertices, i ∼ j and u ∼ v, i.e. for any two edges i j and uv in
graph G holds

di

d j
+

d j

di
=

du

dv
+

dv

du
.
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Proof. For ai := did j

(di+d j)2 , where summation is performed over all edges in graph G, the inequality (1) becomes∑
i∼ j

√
did j

di + d j


2

≥

∑
i∼ j

did j

(di + d j)2 + m(m − 1)

∏
i∼ j

did j

(di + d j)2


1
m

,

i.e. (1
2

GA(G)
)2

≥

∑
i∼ j

did j

(di + d j)2 + m(m − 1)
(Π2(G))

1
m(

Π∗1(G)
) 2

m

. (7)

For r = 1, xi := 1
di+d j

, ai := 1
did j

, where summation goes over all edges in G, the inequality (2) becomes

∑
i∼ j

did j

(di + d j)2 ≥

∑
i∼ j

1
di + d j


2

∑
i∼ j

1
did j

,

that is∑
i∼ j

did j

(di + d j)2 ≥
H(G)2

4R−1(G)
. (8)

According to (7) and (8) we obtain(1
2

GA(G)
)2

≥
H(G)2

4R−1(G)
+ m(m − 1)

(Π2(G))
1
m(

Π∗1(G)
) 2

m

,

wherefrom we get (6).
Equality in (1) holds if and only if a1 = a2 = · · · = am, therefore equality in (7) holds if and only if for any

two pairs of adjacent vertices, i ∼ j and u ∼ v, holds di
d j

+
d j

di
= du

dv
+ dv

du
. Equality in (2) holds if and only if

x1
a1

= x2
a2

= · · · = xm
am

, therefore equality in (8) holds if and only if for any two pairs of adjacent vertices, i ∼ j

and u ∼ v, holds di
d j

+
d j

di
= du

dv
+ dv

du
. Since the inequality (6) is obtained according to (7) and (8), equality in

(6) is attained if and only if for any two pairs of adjacent vertices, i ∼ j and u ∼ v, i.e. for any two edges i j
and uv in graph G holds di

d j
+

d j

di
= du

dv
+ dv

du
.

Corollary 3.2. Let G be a simple connected graph with m ≥ 2 edges. Then

GA(G) ≥ 2

√√√√√ RR(G)2

F(G) + 2M2(G)
+ m(m − 1)

(Π2(G))
1
m(

Π∗1(G)
) 2

m

. (9)

Equality holds if G is a regular or semiregular bipartite graph.

Proof. For r = 1, xi :=
√

did j, ai := (di + d j)2, where summation goes over all edges in G, the inequality (2)
becomes

∑
i∼ j

did j

(di + d j)2 =
∑
i∼ j

(
√

did j)2

(di + d j)2 ≥

∑
i∼ j

√
did j


2

∑
i∼ j

(di + d j)2
,
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i.e. ∑
i∼ j

did j

(di + d j)2 ≥
RR(G)2

F(G) + 2M2(G)
.

From the above and (7) we obtain (9).

Corollary 3.3. Let G be a simple connected graph with m ≥ 2 edges. Then

GA(G) ≥ 2

√√√√√ m4

(F(G) + 2M2(G))R(G)2 + m(m − 1)
(Π2(G))

1
m(

Π∗1(G)
) 2

m

.

Equality holds if G is a regular or semiregular bipartite graph.

Proof. According to the arithmetic–harmonic mean inequality for real numbers (see, for example, [28]), it
holds

RR(G)R(G) ≥ m2.

From the above and (9) we get what is stated.

In the next theorem we give lower bound for GA(G) in terms of maximal and minimal edge degrees and
indices RR(G), R(G) and H(G).

Theorem 3.4. Let G be a simple connected graph with m ≥ 2 edges. Then

GA(G) ≥
2

∆e1 + δe1

(
RR(G) +

∆e1δe1 H(G)2

4R(G)

)
. (10)

Equality holds if and only if L(G) is regular or semiregular bipartite graph.

Proof. For pi :=
2
√

did j

(di+d j)GA , ai := di + d j, r = δe1 , R = ∆e1 , where summation is performed over all edges of G,
the inequality (5) transforms into

2
m∑

i∼ j

√
did j + 2∆e1δe1

∑
i∼ j

√
did j

(di + d j)2 ≤ (∆e1 + δe1 )GA(G),

that is

(∆e1 + δe1 )GA(G) ≥ 2

RR(G) + ∆e1δe1

∑
i∼ j

√
did j

(di + d j)2

 . (11)

For r = 1, xi := 1
di+d j

and ai := 1√
did j

, where summation goes over all edges of G, the inequality (2)

becomes

∑
i∼ j

(
1

di+d j

)2

1√
did j

≥

∑
i∼ j

1
di + d j


2

∑
i∼ j

1√
did j

,

that is∑
i∼ j

√
did j

(di + d j)2 ≥
H(G)2

4R(G)
. (12)
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Based on (11) and (12) we get

(∆e1 + δe1 )GA(G) ≥ 2
(
RR(G) + ∆e1δe1

H(G)2

4R(G)

)
,

wherefrom (10) is obtained.
Equality in (11) holds if and only if for any edge in G holds di + d j = ∆e1 or di + d j = δe1 . Therefore

equality in (10) holds if and only if L(G) is regular or semiregular bipartite graph.

Corollary 3.5. Let G be a simple connected graph with m ≥ 2 edges. Then

GA(G) ≥
2

∆e1 + δe1

RR(G) + m∆e1δe1

(Π2(G))
1

2m(
Π∗1(G)

) 2
m

 .
Equality holds if and only if L(G) is a regular graph.

Corollary 3.6. Let G be a simple connected graph with m ≥ 2 edges. Then

GA(G) ≥
1

2(∆e1 + δe1 )R(G)

(
4m2 + ∆e1δe1 H(G)2

)
≥

2mH(G)
√

∆e1δe1

(∆e1 + δe1 )R(G)
.

Equalities hold if and only if G is a regular or semiregular bipartite graph.

In the next theorem we establish lower bound for GA(G) in terms of parameter m and invariants M2(G),
F(G) and R−1(G).

Theorem 3.7. Let G be a simple connected graph with m edges. Then

GA(G) ≥
2m2√

(F(G) + 2M2(G))R−1(G)
. (13)

Equality holds if and only if L(G) is a regular graph.

Proof. According to the arithmetic–harmonic mean inequality for real numbers (see, for example, [28]), we
have that∑

i∼ j

di + d j√
did j


∑

i∼ j

√
did j

di + d j

 ≥ m2. (14)

Applying the Cauchy’s inequality we get

∑
i∼ j

di + d j√
did j

≤

∑
i∼ j

(di + d j)2


1/2 ∑

i∼ j

1
did j


1/2

,

i.e. ∑
i∼ j

di + d j√
did j

≤

√
(F(G) + 2M2(G))R−1(G). (15)

The inequality (13) follows from (14) and (15).
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Remark 3.8. Since

∑
i∼ j

di + d j√
did j

=
∑
i∼ j


√

di

d j
+

√
d j

di

 ≤ m


√

∆

δ
+

√
δ
∆

 =
m(∆ + δ)
√

∆δ
,

according to (14) follows

GA(G) ≥
2m
√

∆δ
∆ + δ

.

This inequality was proven in [8].

In the following theorem we establish a lower bound for GA(G) in terms of m, Π∗1(G) and Π2(G).

Theorem 3.9. Let G be a simple connected graph with m edges. Then

GA(G) ≥
2m (Π2(G))

1
2m(

Π∗1(G)
) 1

m

. (16)

Equality holds if and only if L(G) is a regular graph.

Proof. According to the arithmetic–geometric mean inequality (see e.g. [28]), we have

GA(G) =
∑
i∼ j

2
√

did j

di + d j
≥ m

∏
i∼ j

2
√

did j

di + d j


1
m

= 2m


∏

i∼ j
√

did j∏
i∼ j(di + d j)


1
m

=
2m (Π2(G))

1
2m(

Π∗1(G)
) 1

m

,

which completes the proof.

Corollary 3.10. Let G be a simple connected graph with m ≥ 2 edges. Then

GA(G) ≥
2m2 (Π2(G))

1
2m

M1(G) −
(√

∆e1 −
√
δe1

)2 . (17)

Equality holds if and only if L(G) is a regular graph.

Proof. For ai := di + d j, a1 = ∆e1 and am = δe1 , where summation goes over all edges in G, the inequality (4)
transforms into ∑

i∼ j

(di + d j) ≥ m

∏
i∼ j

(di + d j)


1
m

+
(√

∆e1 −
√
δe1

)2
,

i.e.
M1(G) ≥ m

(
Π∗1(G)

) 1
m

+
(√

∆e1 −
√
δe1

)2
.

From this and inequality (16) we arrive at (17).

Remark 3.11. Since
(√

∆e1 −
√
δe1

)2
≥ 0, according to (17) follows

GA(G) ≥
2m2 (Π2(G))

1
2m

M1(G)
. (18)
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Also, since M1(G) ≤ m∆e1 ≤ 2m∆, the following is valid

GA(G) ≥
2m (Π2(G))

1
2m

∆e1

≥
m (Π2(G))

1
2m

∆
.

The second inequality was proven in [35].
Since (Π2(G))

1
2m ≥ δ, according to (18) we get

GA(G) ≥
2m2δ

M1(G)
.

This inequality was proven in [35].

4. New lower bounds for GA coindex

In the next theorem we establish lower bound for GA(G) in terms of n, m and ID(G).

Theorem 4.1. Let G � Kn be a simple connected graph with n ≥ 3 vertices and m edges. Then

GA(G) ≥
n2(n(n − 1) − 2m)3

8m2((n − 1)ID(G) − n)2 . (19)

Equality holds if and only if G is a regular graph.

Proof. Based on the geometric–harmonic mean inequality, GM–HM inequality, see for example [28], we
have that √

did j ≥
2

1
di

+ 1
d j

,

i.e.

2
√

did j ≥
4did j

di + d j
. (20)

After multiplying the above inequality with 1
di+d j

and summing over all nonadjacent vertices in G, we
obtain

GA(G) =
∑
i/ j

2
√

did j

di + d j
≥

∑
i/ j

4did j

(di + d j)2 . (21)

For r = 1, xi := did j

di+d j
, ai := did j, with summation performed over all nonadjacent vertices in G, the

inequality (2) becomes

∑
i/ j

(
did j

di+d j

)2

did j
≥

∑
i/ j

did j

di + d j


2

∑
i/ j

did j

,

that is

∑
i/ j

did j

(di + d j)2 ≥

∑
i/ j

did j

di + d j


2

M2(G)
. (22)
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From the arithmetic–harmonic mean inequality, we have that∑
i/ j

di + d j

did j

∑
i/ j

did j

di + d j
≥ m2. (23)

Since m =
n(n−1)

2 −m and∑
i/ j

di + d j

did j
=

∑
i/ j

(
1
di

+
1
d j

)
=

n∑
i=1

(n − 1 − di)
1
di

= (n − 1)ID(G) − n,

from (23) we obtain∑
i/ j

did j

di + d j
≥

(n(n − 1) − 2m)2

4((n − 1)ID(G) − n)
. (24)

In [4] the following identity was proven

M2(G) =
1
2

(4m2
−M1(G) − 2M2(G)), (25)

and in [14] and [25]

M1(G) ≥
4m2

n
and M2(G) ≥

4m3

n2 .

From the above and (25) we get

M2(G) ≤
2m2

n2 (n(n − 1) − 2m). (26)

From the above and (22) and (24) we have that∑
i/ j

did j

(di + d j)2 ≥
n2(n(n − 1) − 2m)3

32m2((n − 1)ID(G) − n)2 . (27)

Now, (19) follows from to (21) and (27).
Equality in (20) holds if and only if di = d j for every pair of nonadjacent vertices in G. Equality in (22)

holds if and only if di + d j is a constant for every pair of nonadjacent vertices. Equality in (23) is attained
if and only if 1

di
+ 1

d j
is a constant for every pair of nonadjacent vertices in G. Equality in (27) holds if and

only if G is a regular graph, i.e. if and only if di = d j for every pair of adjacent vertices. Therefore, equality
in (19) holds if and only if G, G � Kn, is regular.

Corollary 4.2. Let G, G � Kn, be a simple connected graph with n vertices and m edges. Then

GA(G) ≥
4ISI(G)2

M2(G)
. (28)

Equality holds if and only if di + d j is a constant for every pair of nonadjacent vertices in G.

Proof. The inequality (28) is obtained from (21) and (22).

Before we give some other bounds for GA(G), we will prove some auxiliary results.

Lemma 4.3. Let G be a simple connected graph with n ≥ 3 vertices. If di + d j is a constant for every pair of
nonadjacent vertices vi and v j in G, then did j is a constant for every pair of nonadjacent vertices vi and v j in G also,
and vice versa.
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Proof. It is suffices to consider three vertices v1, v2 and v3 in G. The following two cases may occur.
Case 1. Let vertices v1, v2 and v3 be mutually nonadjacent. Then we have d1 +d2 = d1 +d3, d1 +d2 = d2 +d3

and d1 + d3 = d2 + d3, and therefore d1 = d2 = d3. Now we have d1d2 = d1d3 = d2d3. Reverse is valid also.
From the equalities d1d2 = d2d3, d1d2 = d1d3 and d1d3 = d2d3 we have that d1 = d2 = d3, and consequently
d1 + d2 = d1 + d3 = d2 + d3.

Case 2. Let vertices v1 and v2 be nonadjacent, vertices v1 and v3 be nonadjacent and vertices v2 and v3 be
adjacent. From d1 + d2 = d1 + d3 we have that d2 = d3, and therefore d1d2 = d1d3. Likewise, from the equality
d1d2 = d1d3 we have that d2 = d3, and consequently d1 + d2 = d1 + d3.

By a similar procedure the following results are obtained.

Lemma 4.4. Let G be a simple connected graph with n ≥ 3 vertices. If di + d j is a constant for every pair of
nonadjacent vertices vi and v j in G, then the same is valid for 1

di
+ 1

d j
and vice versa.

Lemma 4.5. Let G be a simple connected graph with n ≥ 3 vertices. If di + d j is a constant for every pair of

nonadjacent vertices vi and v j in G, then the same is valid for
√

did j

di+d j
.

In the next lemma we determine a relationship between Π1(G) and Π2(G).

Lemma 4.6. Let G, G � Kn, be a simple connected graph with n ≥ 3 vertices and m edges. Then

Π2(G) ≥
(

m
(n − 1)ID(G) − n

)m

Π1(G). (29)

Equality holds if and only if di + d j is constant for every pair of nonadjacent vertices vi and v j in graph G.

Proof. Based on the arithmetic–geometric mean inequality, AM–GM inequality, we have that

(n − 1)ID(G) − n =
∑
i/ j

di + d j

did j
≥ m

∏
i/ j

di + d j

did j


1
m

= m
Π1(G)

1
m

Π2(G)
1
m

, (30)

from which (29) is obtained.
Equality in (30) holds if and only if 1

di
+ 1

d j
is a constant for every pair of nonadjacent vertices in G. From

Lemma 4.4 we get that equality in (29) holds if and only if di + d j is a constant for every pair of nonadjacent
vertices in G.

In [45] the following inequality was proven

Π1(G) ≥ 2mΠ2(G)
1
2 ,

which is opposite to (29).
In the following theorem we establish a lower bound for GA(G) in terms of m, M2(G), ISI(G), Π1(G) and

Π2(G).

Theorem 4.7. Let G, G � Kn, be a simple connected graph with n ≥ 3 vertices and m edges. Then

GA(G) ≥ 2

√
ISI(G)2

M2(G)
+ m(m − 1)

Π2(G)
1
m

Π1(G)
2
m

. (31)

Equality holds if and only if di + d j is a constant for every pair of nonadjacent vertices in G.
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Proof. For m := m, ai := did j

(di+d j)2 , with summation performed over all nonadjacent vertices in G, the inequality
(1) becomes ∑

i/ j

√
did j

di + d j


2

≥

∑
i/ j

did j

(di + d j)2 + m(m − 1)

∏
i/ j

did j

(di + d j)2


1
m

,

that is

1
4

GA(G)2
≥

∑
i/ j

did j

(di + d j)2 + m(m − 1)
Π2(G)

1
m

Π1(G)
2
m

. (32)

From the above and (22) we arrive at (31).
Equality in (22) holds if and only if di + d j is a constant for every pair of nonadjacent vertices in G.

Equality in (32) holds if and only if
√

did j

di+d j
is a constant for every pair of nonadjacent vertices in G. From

Lemmas 4.3 and 4.5 we obtain that equality in (31) holds if and only if di + d j is a constant for every pair of
nonadjacent vertices in G.

Corollary 4.8. Let G, G � Kn, be a simple connected graph with n ≥ 3 vertices and m edges. Then

GA(G) ≥ 2

√
ISI(G)2

M1(G)
+

m2(m − 1)

((n − 1)ID(G) − n)Π1(G)
1
m

. (33)

Equality holds if and only if di + d j is a constant for every pair of nonadjacent vertices in G.

Proof. The inequality (33) follows from (31) and (29).
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[47] B. Zhou, I. Gutman, T. Aleksić, A note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem., 60 (2008),

441–446.


