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Abstract. Let a, b, c, d be elements in a unital associative ring R. In this note, we generalize Cline’s formula
for some new generalized inverses such as strong Drazin inverse, generalized strong Drazin inverse, Hirano
inverse and generalized Hirano inverse to the case when acd = dbd and dba = aca. As a particular case,
some recent results are recovered.

1. Introduction

Throughout this note, R denotes an associative ring with unit 1. By R−1 and Rnil we represent the set of
all invertible and nilpotent elements of R, respectively. For an element a ∈ R, the commutant and double
commutant of a are defined by comm(a) = {x ∈ R : ax = xa} and comm2(a) = {x ∈ R : xy = yx, for all y ∈
comm(a)}, respectively. An element a ∈ R is said to be quasinilpotent if 1 + ax ∈ R−1 for all x ∈ comm(a). We
use Rqnil to denote the set of all quasinilpotent elements of R.

In 2017, Wang [19] introduced a new generalized inverse, strong Drazin inverse, which is a subclass of
the Drazin inverse. An element a ∈ R is strongly Drazin invertible (or, s-Drazin invertible) if there exists
b ∈ R such that

b ∈ comm(a), bab = b and a − ab ∈ Rnil.

In this case, b is called a strong Drazin inverse (or, s-Drazin inverse) of a, denoted by b = asD, and the least
non-negative integer k for (a − ab)k = 0 is called the strong Drazin index of a, denoted by isD(a). Let RsD be
the set of all s-Drazin invertible elements of R. An element a ∈ R is called Drazin invertible if we replace
the condition a − ab ∈ Rnil in the definition of the s-Drazin invertible element with a(1 − ab) ∈ Rnil (see [7]).
In this case, b is called a Drazin inverse of a and denoted by b = aD. By RD we represent the set of all Drazin
invertible elements of R. If a ∈ RsD, observing that a(1 − aasD) = (a − aasD)(1 − aasD), then a ∈ RD. Thus, the
s-Drazin inverse of a is unique if it exists, and it belongs to the double commutant of a. However, invertible
elements may not be s-Drazin invertible in general. For example, 2 is invertible but not s-Drazin invertible
in complex number field C.
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Recently, Chen and Sheibani introduced in [3] Hirano inverse. An element a ∈ R is called Hirano
invertible provided that there exists b ∈ R such that

b ∈ comm(a), bab = b and a2
− ab ∈ Rnil.

If such b exists, then it is unique and denoted by b = aH, the Hirano inverse of a, and the minimal non-
negative integer k for which (a2

− ab)k = 0 holds is called the Hirano index iH(a) of a. The set of all Hirano
invertible elements in R will be denoted by RH. As observed in [3], RsD ( RH ( RD. Let a ∈ R be s-Drazin
invertible. Then a is also Hirano invertible. However, the indices isD(a) and iH(a) need not be the same in

general. For example, take A =

 0 1 0
0 0 1
0 0 0

 ∈ M3(C). Since A3 = O, it follows that A is s-Drazin invertible

with AsD = O and isD(A) = 3. But iH(A) = 2.
The concept of strong Drazin inverse was extended by Mosić [14] in a complex Banach algebra and by

Gürgün [8] in a ring. Recall that an element a ∈ R is generalized strongly Drazin invertible (or, gs-Drazin
invertible) if there exists b ∈ R such that

b ∈ comm2(a), bab = b and a − ab ∈ Rqnil.

In this case, b is called a generalized strong Drazin inverse (or, gs-Drazin inverse) of a and denoted by
b = a1sD. If we use the condition a(1− ab) ∈ Rqnil in the above definition instead of a− ab ∈ Rqnil, then a ∈ R is
called generalized Drazin invertible (see [10]). In the sequel, R1sD denotes the set of all gs-Drazin invertible
elements of R. From [8, Corollary 3.3] it follows that, if a ∈ R1sD, then a is generalized Drazin invertible.
Hence, the gs-Drazin inverse of a is unique if it exists (see [10, Theorem 4.2]).

Another subclass of generalized Drazin inverse, the so-called generalized Hirano inverse, was intro-
duced by Abdolyousefi and Chen [1]. The generalized Hirano inverse is the unique common solution to
the equations

b ∈ comm2(a), bab = b and a2
− ab ∈ Rqnil.

The element b above is unique if it exists and it will be denoted by b = a1H. We denote by R1H the set of all
generalized Hirano invertible elements in R.

In 1965, Cline [4] discovered that Drazin invertibility of ab is transferred to that of ba and (ba)D =
b((ab)D)2a. This equation is now called Cline’s formula and it has an important role to express Drazin
inverse of the sum of two elements (see [16] for instance). Cline’s formula for generalized Drazin inverse
was established in [13]. Recently, it has been found that Cline’s formula for (generalized) Drazin inverse
has suitable analogues under the assumptions

aba = aca (1)

and acd = dbd
dba = aca

(2)

see [9, 12, 22, 23]. The cases (1) and (2) were introduced by Corach et al. [6] and Yan et al. [20], respectively.
Taking “a = d” in (2), it gives (1), while letting “b = c” in (1), it goes back to Cline’s formula.

The main concern of this note is common properties of the products of elements in a unital associative ring
R. We extend Cline’s formula for new generalized inverses related to Drazin inverse such as (generalized)
strong Drazin inverse and (generalized) Hirano inverse. Precisely, under the assumption (2), we show that

ac ∈ R• ⇐⇒ bd ∈ R•,

and we have
(ac)• = d((bd)•)3bac and (bd)• = b((ac)•)2d,

where • ∈ {sD, 1sD,H, 1H}. As a special case, we recover some recent results in [1, 3, 8, 19].
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2. Main results

Wang established Cline’s formula for s-Drazin inverse (see [19, Theorem 3.1]). In the following, we
generalize it to the case when (2) holds.

Theorem 2.1. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca. Then ac ∈ RsD if and only if bd ∈ RsD.
In this case, we have (ac)sD = d((bd)sD)3bac, (bd)sD = b((ac)sD)2d and |isD(ac)−isD(bd)| ≤ 2.

Proof. Suppose that there exist s ∈ R and a non-negative integer k such that

s(bd) = (bd)s, s(bd)s = s and (bd − sbd)k = 0.

Take t = ds3bac. By [22, Theorem 2.1], t is a Drazin inverse of ac, so we have t(ac) = (ac)t and t(ac)t = t. Thus,
to prove that ac ∈ RsD, it is sufficient to show (ac − act)k+2 = 0.

Since (1 − s)k(bd)k = 0 and

(ac − act)k+2

= (ac − acds3bac)k+2 = (ac − dbds3bac)k+2 = (ac − ds2bac)k+2

= [(1 − ds2b)ac]k+2

= (1 − ds2b)[ac(1 − ds2b)]k+1(ac)

= (1 − ds2b)(ac − dbds2b)k+1(ac)

= (1 − ds2b)(ac − dsb)k+1(ac)

= (1 − ds2b)(ac − dsb)k(dbac − dsbac)

= (1 − ds2b)(ac − dsb)kd(1 − s)bac

= (1 − ds2b)(ac − dsb)k−1d(1 − s)bd(1 − s)bac

= d(1 − s)k+2(bd)kbac,

we get (ac − act)k+2 = 0, as required.
Conversely, suppose that ac ∈ RsD and let u be the strong Drazin inverse of ac and m its index. Set

v = bu2d. By [22, Theorem 2.1] again, we know that v is a Drazin inverse of bd. Therefore it remains only to
show (bd − bdv)m+1 = 0. Noting bd − bdv = bd − bdbu2d = bd − bdbacu3d = bd − bacacu3d = b(1 − u)d and

[b(1 − u)d]m+1 = [b(1 − u)d][b(1 − u)d][b(1 − u)d]m−1

= b(1 − u)(dbd − dbud)[b(1 − u)d]m−1

= b(1 − u)(acd − dbacu2d)[b(1 − u)d]m−1

= b(1 − u)(acd − acacu2d)[b(1 − u)d]m−1

= b(1 − u)(ac − acu)d[b(1 − u)d]m−1

= · · ·

= b(1 − u)(ac − acu)md
= 0,

we conclude that (bd − bdv)m+1 = 0.

In the sequel, we use B(X,Y) to denote the set of all bounded linear operators from Banach space X to
Banach space Y. Using the technique of block matrices, we obtain the operator case of Theorem 2.1.

Corollary 2.2. Suppose that A,D ∈ B(X,Y) and B,C ∈ B(Y,X) satisfy ACD = DBD and DBA = ACA. Then AC
is s-Drazin invertible if and only if BD is s-Drazin invertible. In this case, we have (AC)sD = D((BD)sD)3BAC and
(BD)sD = B((AC)sD)2D.



Z. Wu, Q. Zeng / Filomat 35:2 (2021), 477–483 480

Corollary 2.3. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca and let n ≥ 2 be an integer. Then
(ac)n

∈ R
sD if and only if (bd)n

∈ R
sD. In this case,

((bd)n)sD = b[((ac)n)sD]2d(bd)n−1 and ((ac)n)sD = d[((bd)n)sD]2b(ac)n−1.

Proof. Let b′ = b(db)n−1 and c′ = c(ac)n−1. Then ac′d = db′d and db′a = ac′a. From Theorem 2.1, it follows that
(ac)n = ac′ ∈ RsD if and only if (bd)n = b′d ∈ RsD, and we have

((bd)n)sD = (b′d)sD = b′((ac′)sD)2d = b[((ac)n)sD]2d(bd)n−1

and
((ac)n)sD = (ac′)sD = d((b′d)sD)3b′ac′ = d[((bd)n)sD]2b(ac)n−1,

as required.

Jacobson’s lemma states that 1 − ab ∈ R−1 if and only if 1 − ba ∈ R−1. In recent years, numerous
mathematicians paid much attention to Jacobson’s lemma for (generalized) Drazin inverse (see [2, 5, 11,
17, 18, 24]). Finding proper counterparts of Jacobson’s lemma for (generalized) Drazin inverse under the
condition (2), the interested readers should refer to [15, 21].

In [19, Lemma 3.3], Wang proved that if a ∈ RsD with isD(a) = k, then 1 − a ∈ RsD with isD(1 − a) = k and
(1 − a)sD =

∑k−1
i=0 ai(1 − aasD). This result establishes a bridge from Cline’s formula for s-Drazin inverse to

Jacobson’s Lemma for s-Drazin inverse.

Corollary 2.4. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca.
(1) If 1 − ac ∈ RsD with isD(1 − ac) = k, then 1 − bd ∈ RsD and

(1 − bd)sD =

k∑
i=0

(bd)i
− b[

k∑
i=0

k−1∑
j=0

(bd)i(1 − ac) j][1 − (1 − ac)(1 − ac)sD]d.

(2) If 1 − bd ∈ RsD with isD(1 − bd) = k, then 1 − ac ∈ RsD and

(1 − ac)sD =

k+1∑
i=0

(ac)i
− d[

k+1∑
i=0

(ac)i][
k−1∑
j=0

(1 − bd) j]2[1 − (1 − bd)(1 − bd)sD]bac.

Proof. (1) By [19, Lemma 3.3], ac ∈ RsD and

(ac)sD = [
k−1∑
j=0

(1 − ac) j][1 − (1 − ac)(1 − ac)sD].

Applying Theorem 2.1, we can get bd ∈ RsD and (bd)sD = b((ac)sD)2d and isD(bd) ≤ k + 1. According to [19,
Lemma 3.3] again, it follows that 1 − bd ∈ RsD and

(1 − bd)sD = [
k∑

i=0

(bd)i][1 − (bd)(bd)sD] = [
k∑

i=0

(bd)i][1 − b(ac)sDd]

= [
k∑

i=0

(bd)i][1 − b[
k−1∑
j=0

(1 − ac) j][1 − (1 − ac)(1 − ac)sD]d]

=

k∑
i=0

(bd)i
− b[

k∑
i=0

k−1∑
j=0

(bd)i(1 − ac) j][1 − (1 − ac)(1 − ac)sD]d.

(2) The proof is similar to that of (1).
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Cline’s formula for gs-Drazin inverse was established in [8, Theorem 4.14] under the assumption (1).
Next, we generalize it to the case when (2) holds. The following auxiliary lemma is needed.

Lemma 2.5. ([22, Lemma 2.6]) Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca. Then ac ∈ Rqnil if and
only if bd ∈ Rqnil.

Theorem 2.6. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca. Then ac ∈ R1sD if and only if bd ∈ R1sD.
In this case, we have (ac)1sD = d((bd)1sD)3bac and (bd)1sD = b((ac)1sD)2d.

Proof. Suppose that bd ∈ R1sD and let s be the generalized strong Drazin inverse of bd. Take t = ds3bac.
From [22, Theorem 2.7] it follows that, t is a generalized Drazin inverse of ac. Hence, in order to show that
ac ∈ R1sD, it is sufficient to prove (ac − act) ∈ Rqnil. Let a′ = (1 − ds2b)a and b′ = (1 − s)b. Then b′d ∈ Rqnil.
Moreover, a direct calculation shows that a′cd = db′d, db′a′ = a′ca′ and ac − act = a′c. Then by Lemma 2.5,
we deduce that ac − act ∈ Rqnil, which yields that ac ∈ R1sD.

By similar arguments as above, one can show that if ac ∈ R1sD, then bd ∈ R1sD and (bd)1sD = b((ac)1sD)2d.

From the proof of [19, Lemma 3.3], we can also deduce that a ∈ R1sD if and only if 1 − a ∈ R1sD. Hence,
as an immediate consequence of Theorem 2.6, we arrive at the following result.

Corollary 2.7. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca. Then 1 − ac ∈ R1sD if and only if
1 − bd ∈ R1sD.

In the following, as an extension of [3, Theorem 4.1], we establish Cline’s formula for Hirano inverse
under the condition (2).

Theorem 2.8. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca. Then ac ∈ RH if and only if bd ∈ RH. In
this case, we have (ac)H = d((bd)H)3bac, (bd)H = b((ac)H)2d and |iH(ac)−iH(bd)| ≤ 1.

Proof. Suppose that there exist s ∈ R and a non-negative integer k such that

s(bd) = (bd)s, s(bd)s = s and ((bd)2
− sbd)k = 0.

Take t = ds3bac. By [22, Theorem 2.1], t is a Drazin inverse of ac, so we have t(ac) = (ac)t and t(ac)t = t. Thus,
to prove that ac ∈ RH, it is sufficient to show ((ac)2

− act)k+1 = 0.
Since (bd − s)k(bd)k = 0 and

((ac)2
− act)k+1

= ((ac)2
− acds3bac)k+1 = ((ac)2

− dbds3bac)k+1

= ((ac)2
− ds2bac)k+1 = [(ac − ds2b)ac]k+1

= (ac − ds2b)[ac(ac − ds2b)]k(ac)

= (ac − ds2b)(dbac − dsb)k(ac)

= (ac − ds2b)(dbac − dsb)k−1d(bd − s)bac

= (ac − ds2b)(dbac − dsb)k−2d(bd − s)bd(bd − s)bac

= d(1 − s2)(bd − s)k(bd)kbac,

we get ((ac)2
− act)k+1 = 0, as required.

Conversely, suppose that ac ∈ RH and let u be the Hirano inverse of ac and m its index. Set v = bu2d.
By [22, Theorem 2.1] again, we know that v is a Drazin inverse of bd. Therefore it remains only to show
((bd)2

− bdv)m+1 = 0.Noting (bd)2
− bdv = bacd − bdbu2d = bacd − bdbacu3d = bacd − bacacu3d = b(ac − u)d and

[b(ac − u)d]m+1 = b(ac − u)((ac)2
− acu)md = 0, we conclude that (bd − bdv)m+1 = 0.
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At last, Cline’s formula for generalized Hirano inverse is established under the assumption (2), extending
[1, Theorem 4.1].

Theorem 2.9. Suppose that a, b, c, d ∈ R satisfy acd = dbd and dba = aca. Then ac ∈ R1H if and only if bd ∈ R1H.
In this case, we have (ac)1H = d((bd)1H)3bac and (bd)1H = b((ac)1H)2d.

Proof. Suppose that bd ∈ R1H and let s be the generalized Hirano inverse of bd. Take t = ds3bac. From [22,
Theorem 2.7] it follows that, t is a generalized Drazin inverse of ac. Hence, in order to show that ac ∈ R1H,
it is sufficient to prove (ac)2

− act ∈ Rqnil. Let a′ = d(1 − s2)ba and b′ = bac − sb. Then b′d ∈ Rqnil. Moreover, a
direct calculation shows that a′cd = db′d, db′a′ = a′ca′ and (ac)2

− act = a′c. Then by Lemma 2.5, we deduce
that (ac)2

− act ∈ Rqnil, which yields that ac ∈ R1H.
By similar arguments as above, one can show that if ac ∈ R1H, then bd ∈ R1H and (bd)1H = b((ac)1H)2d.

Remark that similar results of Corollaries 2.2 and 2.3 hold also for generalized strong Drazin inverse, Hi-
rano inverse and generalized Hirano inverse. We conclude this note by a numerical example to demonstrate
Theorems 2.1, 2.6, 2.8 and 2.9.

Example 2.10. Consider the matrices A,B,C,D ∈M6(C) as following:

A = D =



0 0 0 1 1 2
0 0 0 2 2 4
0 0 0 0 0 0
0 0 1 0 0 0
−4 2 −1 0 0 0
2 −1 0 0 0 0


,

B =



1 0 0 1 1 1
0 1 0 1 2 1
0 0 1 0 0 0
1 1 2 1 0 0
2 1 4 0 1 0
−1 −1 1 0 0 1


and C =



0 0 0 1 1 1
0 0 0 1 2 1
0 0 0 0 0 0
1 1 2 0 0 0
2 1 4 0 0 0
−1 −1 1 0 0 0


.

A direct calculation shows that ACD = DBD and DBA = ACA. Moreover,

AC =



1 0 8 0 0 0
2 0 16 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −2 0 −2
0 0 0 1 0 1


and BD =



−2 1 0 1 1 2
−6 3 −1 2 2 4
0 0 0 0 0 0
0 0 1 3 3 6
−4 2 −1 4 4 8
2 −1 0 −3 −3 −6


.

Since

 1 0 8
2 0 16
0 0 0

 and

 0 0 0
−2 0 −2
1 0 1

 are idempotents, it is clear that AC is strong Drazin invertible (resp.

generalized strongly Drazin invertible, Hirano invertible, generalized Hirano invertible), and (AC)• = AC, where •
∈ {sD, 1sD,H, 1H}. Hence, by Theorem 2.1 (resp. Theorem 2.6, Theorem 2.8, Theorem 2.9), we obtain the exact value
of (BD)•,

(BD)• = B((AC)•)2D =



−2 1 −1 1 1 2
−6 3 −3 2 2 4
0 0 0 0 0 0
0 0 0 3 3 6
−4 2 −2 4 4 8
2 −1 1 −3 −3 −6


.
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