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Measure Pseudo Almost Periodic Solution for a Class of Nonlinear
Delayed Stochastic Evolution Equations Driven by Brownian Motion
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Abstract. In this work, we present a new concept of measure-ergodic process to define the space of measure
pseudo almost periodic process in the p-th mean sense. We show some results regarding the completeness,
the composition theorems and the invariance of the space consisting in measure pseudo almost periodic
process. Motivated by above mentioned results, the Banach fixed point theorem and the stochastic analysis
techniques, we prove the existence, uniqueness and the global exponential stability of doubly measure
pseudo almost periodic mild solution for a class of nonlinear delayed stochastic evolution equations driven

by Brownian motion in a separable real Hilbert space. We provide an example to illustrate the effectiveness
of our results.

1. Introduction

The qualitative theory of differential equations, involving almost periodicity, has been an attractive
topic because of its significance and applications in areas such as physics, mathematical biology, and con-
trol theory. The concept of almost periodicity was first introduced in the literature by Bohr in 1923, for more
details about this topic we refer the reader to the recent book of N'Guérékata [16] where the author gave
an important overview about the theory of almost periodic functions and their applications to differential
equations. The notion of u—pseudo almost periodicity, which was introduced and developed by Ezzinbi et
al. [3, 8, 10, 13-15], is a generalization of the almost periodicity and pseudo almost periodicity introduced

by Zhang [18, 19]; it is also a generalization of weighted pseudo almost periodicity firstly introduced by
Diagana [9].

In recent years, stochastic differential systems have been extensively studied since stochastic modeling
plays an important role in physics, engineering, finance, social science and so on. Qualitative properties
such as existence, uniqueness and stability for stochastic differential systems have attracted more and more
researchers attention. The existence of almost periodic, pseudo almost periodic and measure pseudo almost

periodic solutions for stochastic differential equations was obtained. We refer the reader to [1, 2, 6] and
references therein.
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In this work, we consider the following stochastic evolution equation driven by Brownian motion in a
separable Hilbert space IH :

dx(t) = Ax(Ddt + f(t, x(t — T)dt + @(t, x(t — 7))dW(D), t € R, (1)

where A is the infinitesimal generator of a Co—semi-group (T(t));>0 exponentially stable, f,¢ are two
stochastic processes and W(t) is a two-sided standard Brownian motion with values in H.

In [7], F. Chérif investigates the existence of the quadratic-mean pseudo almost periodic solutions of Eq. (1).
In [11], the authors obtained sufficient condition for the existence of p-th mean p-pseudo almost periodic
mild solutions to the following class of nonlinear stochastic evolution equations driven by a fractional
Brownian motion in a separable Hilbert space IH :

dx(t) = A()x(dt + f(t x(£)dt + O(t, x())dAW(E) + P(HdBH(H), t € R, )

where (A(t))ser is a family of densely defined closed linear operators satisfying Acquistapace-Terreni con-
ditions; f, 0 are two stochastic processes and 1 a function deterministic. The concept of almost automorphy
was first introduced in the literature by Bochner in the earlier sixties, it is a natural generalization of the
almost periodicity. In [12], the authors gave some results for the existence of p-th mean y—pseudo almost
automorphic (or measure pseudo almost automorphic) mild solutions from equation (1) without delay.
Motivated by the above discussion, we introduce the concept of doubly measure pseudo almost period-
icity, we give some fundamental properties and we investigate the existence, uniqueness and stability of
(u, v)-pseudo almost periodic mild solutions in p-th mean sense for Eq. (1).

The organization of the work is as follows : In section 2, we introduce the concept of doubly measure pseudo
almost periodicity. In section 3, we give some new developments on the completeness and composition
of measure pseudo almost automorphic functions. In section 4, we study the existence and uniqueness of
(4, v)-pseudo almost periodic mild solutions in p-th mean sense for Eq. (1). Section 5 states the stability of
the (u, v)-pseudo almost periodic mild solutions for Eq.(1). Finally, in section 6, we provide an example to
illustrate the basic theory of this work.

2. (4, v)-pseudo-almost periodic processes

We denote by B the Lebesgue o-field of R and by M the set of all positive measures y on 8 satisfying
(R) = +oo and u([a, b]) < +ooforalla, b € R (a < b). We introduce the following new space of (i, v)-ergodic
functions :

Definition 2.1. Let 1, v € M. A bounded continuous function f : R — H is said to be (1, v)-ergodic in p-th (p > 2)
mean sense, if

lim = — f 1) 1P du() =

o S

We denote the space of such all functions by E(R, H, u, v).

We give the following hypothesis.
(Hy) Let y,ve M,
lim sup pllznrl) =a < oo.
roteo V([=17])
Proposition 2.2. Let i, v € M satisfy (Hy). Then (E(R,H, u,v), |l . llo) is @ Banach space, where
Il f lleo= sup IO
€
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Proof. Itis enough to prove that (IR, IH, y,v) is closed in Bc. Let (f,), be a sequence in &(R, H, p, v) such
that lir+n Il fu — f llo= 0. Since || f |IP is a convex function, then for r > 0, we have
n—+00

[ I £ 1P dysce) < 201 f 1 £, = FO) 1P du() + 277 f 1 £, 1P due).

It implies

1 d i
o [ ran < < A0 duo+ -2 [ 16 ¥ du

It follows that,

i L Ty pr =7 )
hfl_l}fgp =) [r | f(t) IIP du(t) < llfl:fng ) td}{) Il fu(t) = fCE) 1P

Moreover,

sup | i) = fO1F< (sup | fu) = FO)| V=1 f-fFIL,

teR

and from (H;), we obtain

lim sup

r—+00

’ -1 P
; f O dut <02 0 fu- e

Since lim || f, — f llo= 0, we deduce that
lim —— B 1IP du(t) =
r—+0c0 1/([ r,7]) f I f( ) i (t) =
O

Definition 2.3. [11] A stochastic process x(t) : R — LP(Q,H) is said to be stochastically bounded in p-th mean
sense, if there exists C > 0 such that
E|l x(t)|P<C, VteR,

and a stochastic process x(t) : R — LP(Q, H) is said to be stochastically continuous in p-th mean sense, if

ltimlE [| x(£) —x(s) |P=0, VYt seR.
—s

Denote by B¢(R, LF(€Q, H)) the collection of all the stochastically bounded continuous processes. We can
verify that Bc(R, LF(Q, H),|| . |l») is a Banach space, where

1/p
I lleo= sup (E || x(t) ")

teR

Definition 2.4. Let u,v € M. A stochastic process x is said to be (u,v)-ergodic in p-th mean sense, if x €

Be(R, LP(Q,H) and it satisfies
1 T
Iim — E || x@) | du(t) =0
Jim ST Ir Il x(t) 1P du(t)

Denote by &,(R, £F(Q2,H), 4, v) the set of all such stochastic processes.
Proposition 2.5. Let u,v € M satisfy (H;). Then (cf,,(]R, LP(QH), u,v) - oo ) is a Banach space.

To prove this proposition, we have just to use the same arguments in the proof of Proposition 2.2. The
following lemma gives some properties of ergodicity.
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Lemma 2.6. Let p, v € M, satisfy (Hy), and let I be a bounded interval (eventually I = @). Suppose that
x € Bc(R, LP(QQ,H)). Then the following assertions are equivalent :
(i) x € &(R, LP(Q,H), u,v);
1 1 P -0
(i) lim ) HVNIE Il x(#) IIP du(t) = 0;
(iii) for any € > 0,
lim ult € [=r, v\ - E || x(¢) |IP> €} _
r—+00 vit € [-r,r]\I}

Proof. The proof uses the same arguments of the proof of Theorem 2.22 in [10].

(i) & (ii) We denote by A =v(I), B = fl E || x() IIF du(t) and C = u(l). Since the interval I is bounded and
x € Bc(R, LP(Q, H)), then A, B and C are finite.

For r > 0 such that I C [-7, 7] and v([-7,7]\]) > O,

we have

e BT = ([ B v au - )

v([-r,7]) 1 ' » B
(e O e f]E IxO1F dyt) = =)

Since V(IR) = +o0, we obtain that,

1 v
im ———— | E| x(#) |l du(t) =0.
lim s [ B0 P dut)
Thus, (i) and (ii) are equivalent.

(ii) = (iii) Let AL = {t € [-r,yIN[ : E || x(¢t) |’> ¢} and BS = {t € [-r,r] : E || x(¢) |IP< €}.
Assume that (ii) holds. Then, we have

1
= 7I\D) p
v, M\ f[ B0 dut)

S J, E1EO P o
L HA)
v([=r,7I\I)
Therefore, for r large enough, we obtain (iii).
(iii) = (ii) Assume that (iii) holds, then

1
=1 7I\D P
v([=r,7I\]) f[_ W]\I]E [l x(t) 1P du(t)

f E [l () I du() + f E [l () I du(®)
A¢ Bt
pAD )

< 0¥l S * oo D

< 2 v([’i(f f])\l) i 65(({:: :]]tg

< Ml R )

< lxl HA) M LT

A I IR (s ey

Since, 1(R) = v(IR) = +oo, then from (H;), we get that

lim sup

—_— E || x(t) |IF du(t) < Cst.e.
r—+00 V([—T, 1’]\1) [=rI\I ” ( ) ” AU( )

In conclusion, (ii) holds. ]
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Definition 2.7. Let u, v € M. A function f : Rx LF(Q,H) — LF(Q,H), (t,x) — f(t,x) is said to be (1, v)-ergodic
in p-th sense in t € R uniformly with respect to x € K, if f € Bc(R x LP(Q,H), LP(Q, H)) and it satisfies

1 s

im ———— P =
Jim fJE Il £t %) IP du(®) = 0,
where K c LP(Q,H) is compact.

We denote by
& (R x L7(Q,H), L(Q,H), 1,v) = {f(,x) € &(R, L/(Q,H)p,v) for any x € L7(Q, H)}
the set of all such functions.

Definition 2.8. [4] Let x : R — £LP(Q,H) be a continuous stochastic process. x is said to be almost periodic process
in p-th mean sense if for each € > 0 there exists [ > 0 such that for all a € R, there exists T € [a, a + ] satisfying

supE || x(t + 7) — x(t) [P< e.
teR

We denote by AP(IR, L7 (€2, H)) the space of all such stochastic processes. It is easy to verify that
(AP(]R, LP(Q,H)), |l - o ) is a Banach space.

Definition 2.9. [11] Let f : R x LF(Q, H) — LF(Q, H) be continuous. f is said to be almost periodic in p-th mean
sense in t € R uniformly in x € K, where K  LP(Q, H) is a compact, if for each € > 0, there exists I(e, ) > 0 such
that for all a € R, there exists T € [a, a + I(e, K)] satisfying

supE || f(t+17,x) - f(t,x) [P<e,
teR

for each stochastic process x : R — K.
We denote by AP(R x LF(QQ,H), £LP(Q,H)) = {f(.,x) € AP(R, LP(QQ,H)) for any x € LP(Q,H)} the space of such
stochastic processes.

Definition 2.10. Let u,v € M. A continuous stochastic process x is said to be (u, v)-pseudo almost periodic in p-th
mean sense, if it can be written as
X=X1+X2

where x; € AP(R, LF(Q), H)) and x; € &,(R, LP(Q,H), u, v).

Denote by PAP(RR, £F(Q2, H), i, v) the set of all such stochastic processes.
We can verify that
PAP(RR, £P(Q, H), u,v) € Bc(R, LP(Q, H)).

We introduce the following new space of doubly measure pseudo almost periodic functions :

Definition 2.11. Let u,v € M. A continuous function f : R x LP(Q,H) — LP(Q,H) is said to be (u, v)-pseudo
almost periodic in p-th mean sense, if it can be written as

f=g+h

where g € AP(R x LP(Q,H), LP(Q,H)) and h € (R x LP(Q, H), LP(QQ, H), u, v).

Denote by PAP(R x £F(Q, H), LP(Q, H), u, v) the set of all such functions.
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Definition 2.12. [3] Let p1, po € M. If there exist positive constants «, p and a bounded interval 1 (eventually
I = @) such that

apr(A) < pa(A) < Bui(A)
for A € B satisfying AN I = @, then we say that py and p are equivalent py ~ .
Proposition 2.13. Let uy, po, vi and v, € M. If py and vy are equivalent respectively to p, and v, then
&R, LA, H), 1, v1) = &R, L7(Q, H), iz, v2), (©)
and
PAP(R, LF(Q, H), u1,v1) = PAP(R, LP(Q, H), uz, v7). 4)

Proof. We prove in the first (3).
Since y1 ~ U, v1 ~ v and B is a Lebesgue o-field, then there exist o, 5,7, 0 > 0,

such that
apr < pp < P,
and
yv1 <12 < Ovy.
It implies that
a it € [-nNE| f(E) P> ¢ P paft € [=r, 7\ E || f(2) [IP> €}
0 vi{t € [-r,r\I} - volt € [-r,r\I}

=X

Bt € [-r, N E || f(B) P> &}
14 vift € [-r,7]\I} '
From Lemma 2.6, we get that

ép(Rr LP(QI I[_I)/ 1, Vl) = Ep(l[{/ ‘LP(Q, ]H)I U2, VZ)'
Using the definition of (u, v)-pseudo almost periodicity, we conclude that,

PAP(]R, .[,'D(Q, ]I—I), U1, V1) = PAP(]R, .[,p(Q, ]I—I), U2, Vz). O
For u € M and o € R, we define the positive measure p; on (IR, 8) by
Us(A)=pla+o:acA), AeB.

We give the following hypothesis :
(H) For all 0 € R, there exist @ > 0 and a bounded interval I such that

Ho(A) < ap(A),
where A € Bsatisfies ANI = 0.
Lemma 2.14. [3] Let u € M. Then u satisfies (Hy) if and only if u is equivalent to u, for all 0 € R.
Lemma 2.15. [3] It follows from hypothesis (Hy) that,

) u([=r—0o,r +96])
YV6>0, 1 _
o =)

Let f € Bc(R, LF(QQ,H)). For all @ € R, we define f, by
fat) = f(t + ).
We say that the subset S of B¢(R, LP(CQ, H)) is translation invariant, if V f € S, we have f, € S.
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Theorem 2.16. Let u,v € M satisfy (H,). Then PAP(R, LP(Q, H), u, v) is translation invariant.

Proof.  Firstly, we need to prove that &,(IR, £P(Q2,H), u,v) is translation invariant. In other words, if
f € ép(R/ LP(Q/ H)/ ,u/ V)/ then f’I € gp(R/ LP(Q/ ]I_I)/ ["l/ V)/ v TE IR
Letu, =u({t+1, t€ A)) YA€ B.

v[-r+1t,r+1] 1 d
v(l-nr])  v[-r+tr+1] _r]E Il f(E+7) |l du(t)

1 r
m[}ﬁ Il £t +7) IV du(t)

v[-r+ 1,1+ 1]

1 r+T
) v(l-r,r])  vl-r+Tr+1] j: E || f() | du—(£)

r+T

_ Mer=ler+k) 1 f E || £(8) Il dut+(t).

v([-r,7]) V-r+1,r+1] Joppr

Since p and v satisfy (H;) and according to Lemma 2.15 we obtain that

[—r — |zl 7+ |7]] 1 T

v([-rrD)  v(=r+ e+l Joa

1 d by
o) f]E ILf(t+ ) I dpadt) < Ce. E |l £0) Il du(b).

We get that
1 T
im — 14 =
tl_1)r£0 ) f_r]E Il f(t+7) P du(t) = 0.

Therefore, £, (IR, LP(€2, H), u, v) is translation invariant. Since AP(IR, £P(€2,H)) is translation invariant, then
PAP(R, LF(Q, H), u,v) is also translation invariant. |

3. Completeness and composition theorem

Theorem 3.1. Let p,v € M. Assume that f € PAP(R, LP(QQ,H), u,v) can be written as f = g + h, where
g € AP(R, LF(QQ,H)) and h € {,(R, LP(Q,H), u,v). If u and v satisfy (Hy), then

{g(0), te R} C {f(t), t € R}. (5)

Proof. For the proof, we use the same arguments given in [3]. Assume that (5) does not hold. Then, there
exists ty € R such that

g(to)  {f (D), t € R}.

Since p, v satisfy (H), and from Theorem2.16, we deduce that AP(IR, £F(Q2, H)) and &,(R, £P(QQ, H), u,v)
are translation invariants. We can suppose that ¢y = 0, then there exists ¢ > 0 such that

E || f(t) - 9(0) [P> 2Pe VteR.

Note,

E || f(t) = g(0) IP< 2P""E || f(£) = g(t) IP +2"7"E || g(t) = 9(0) I -
Forallte C, := {t eR:E| g(t) —g(0) IP< e}, we obtain that,
2'PE || £(t) - 9(0) IV —E |l g(t) - g(0) I

>
> 2'TE| f(t) - 9O I
> E.

E |l h@®) IP=E |l £(5) - gt) I’

Forallie{1,2,...,n}and for all t € a; + C,, where a1, ..., &, € R such that

R= O(ai + Ce),
i=1
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we have,
E || h(t — a;) P e. (6)

Let 1 be the function defined by

Pty =Y Elht-a)lP. 7)
i=1
(6) and (7) imply that
Y(t) = e VEER. 8)

Since &p(R, LP(Q2,H), u, v) is translation invariant, then we get that
[t - h(t - ai)] € ép(]l—{/ -Ep(Q/ H)/ u, V)/ Vie {1/ cees 7’1}.
Therefore, Y € &,(R, LF(Q2, H), y, v), which is absurd by (8). m]

Theorem 3.2. Let u, v € M satisfy (Hy), then the decomposition of (i1, v)-pseudo almost periodic function in the form
f =g+ h,where g € AP(R, LF(QQ, H)) and h € (R, LP(Q, H), u,v), is unique.

This theorem can be proved with the same steps developed in the proof of Theorem 2 in [7].
Theorem 3.3. Let u,v € M, satisfy (Hy) and (H;). Then (PAP(R, £F(QQ,H), u, v, || . lle) is a Banach space.

Proof. We use the same arguments of the proof of Theorem 2.19 in [10], where we take the Banach space
X := LP(Q, H) equipped with the norm || x || = (E || x |[P)!/7. ]

Theorem 3.4. [5] Let f : R x LP(Q,H) — LP(Q, H), (t,x) — f(t x), be an almost periodic process in t uniformly
in x € K, where K C LF(Q,H) is a compact. Assume that f satisfies the Lipschitz condition : there exists L > 0
such that for any x,y € LF(Q,H),

E| ftt,0) - ft,y) IPSLE[x-yIPF.
Then t — f(t,x(t)) € AP(R, LF(Q, H) for any x € AP(R, £F(Q), H)).

Theorem 3.5. Let u,v € M, satisfy Hy. Assume that f € PAP(R x LP(Q,H), LF(QQ,H), u,v). If f satisfies the
Lipschitz condition in the second variable, that is, there exists L > 0 such that, for any x, y € LF(Q,H),

E|l ftt,x) - ft,y) 'SLElx—ylP, YteR.
Then t — f(t,x(t)) € PAP(R, LF(QQ,H), u,v) for any x € PAP(R, £LP(Q, H), 1, v).

Proof. Let f € PAP(R x £LF(Q), H), £L(Q),H), u,v) and x € PAP(R, £P(QQ, H), 1, v).
Then, we can write f = g+h, where g € AP(RX LP(Q, H), LF(QQ,H)) and 1 € &,(Rx LF(Q, H), LF(Q, H), u, v).
And

X =Xx1+ Xp,

with x; € AP(R, £P(Q, H), and x; € &,(R, LF(Q, H), u, v). We decomposed f as

f(t x(t)) g, x1(8) + [f(t, x(t)) — f(t, x1($)] + [f (£, x1(8)) — g(t, x1(#))]
gt x1()) + [f(t, x(B)) — f(t, x1(£))] + h(t, x1 (1))

To prove this Theorem, we need to verify

@ g(.,x1(.)) € AP(R, £P(Q, H)).

Gi) f(., x() = f(,x1() € E(R, LP(Q, H), w,v).



N. Belmabrouk et al. / Filomat 35:2 (2021), 515-534 523

(iii) h(/ xl(')) € EP(R/ LP(Q! H)/ u, 1/).
To demonstrate (i), we use the similar arguments of Step (1) in the proof of Theorem 5.7 in [11].
(ii) Let x, x; € LP(Q, H). By using the Lipschitz condition, we obtain

1 " 1 r
L ) p L _ |
Tl J B0 om0 0 < Gt [ B0 -0 dud
1 r
W IrlE Il x2(8) 1P dpa(h)-
Since x, € &,(R, £P(Q, H), u, v), then V1—1>1;.r<1>o ﬁ frlE =0
We deduce that, : B

l T
limsup m IVIE Il £, x(t)) = f(t, x1(t) IIP du(t) = 0.

r—+00

Therefore,
FCx() = f(,x()) € Ep(R, LP(Q,H), w, v).

(iii) It remains to demonstrate the ergodicity of h(., x1(.)). First, we have

“ h(t/x)_h(t/y) ”P = ||f(trx)_g(trx)_f(t/y)+g(t/y) “P

< 2N fE) - fEy) P27 gt x) — gt y) 1P

By using the Lipschitz condition, we obtain that

E |l ht,x)—ht,y) I < 2P7E| f(t,x) = f(t, ) P +2"'E || g(t,x) — g(t, y) IV

< 2LE|x-ylF.
Since K = {x;(t), t € R}is a compact. Then, for ¢ > 0 there exists x1, ..., x,, € K, such that
€

K c U;’;l(Bxi, m)
It implies that, K < U, {x € K, t € R, E || h(t, x) — h(t, x;) IP'< %}
Lett € R and x € K. Then, there exists iy € {1, ..., m} such that

, where B(x;, 37) = {x € K; || xi — x |P< 557}

e
E || h(t, x) = h(t, xi,) IP'< >

We get that
E [k, i) P < 2B | At x0(8)) = bt xi0) P +2P7VE | Bt xi,) I
< e+ 2 Y Elht,x) I
i=1

Since Vi € {1, ..., m} we have
1 7
i T 3P -
Jim D LIEII h(t, x;) | du(t) = 0.

It follows that

1 s

lim su f]E h(t, x1() IIF du(t) < e, Ye > 0.
r—>+oop V([—T, 7]) i ” ( 1( )) ” [Ll( )
We deduce that
1 s
. . _
tim s [ E NG00 P du) = 0.
Finally,

t = ht, x1(t) € &p(R, L7(Q, H), w1, v).
It ends the proof. o



N. Belmabrouk et al. / Filomat 35:2 (2021), 515-534 524

4. Existence of (i, v)-pseudo almost periodic mild solutions for nonlinear stochastic differential equa-
tions with delay

This section is devoted to the existence of (u,v)-pseudo almost periodic solution for the nonlinear
stochastic delayed evolution equation (1) in the space PAP(R, £L7(Q), H), 1, v), where u, ve M. @ A : D(A) C
LP(Q,H) —» LP(Q,H) is an infinitesimal generator, generating a Cp- semi group exponentially stable,
denoted by (T(t)s»0) such that Vt € R, there exists K > 0 and w > 0 satisfying

(Ho) II T(t) ll< Ke™".

o f: RxLV(Q,H) - LF/(QH), ¢ : RxLV(Q,H) — LF(Q, H) are two stochastic processes.
o W(.) is a two-sided and standard one-dimensional Brownian motion with values in H.
e 7 > (is a constant delay.

Definition 4.1. An F;-progressively measurable stochastic process {x(t)}ser is called a mild solution of Equation (1),
if it satisfies the corresponding stochastic integral equation

t t
x(t) = T(t — a)x(a) + f T(t —s)f(s,x(s — 1))ds + f T(t —s)p(s, x(s — T))dW(s), 9)

forall t,a € R such that t > a.
Lemma 4.2. [17] Let S : [0, T] X Q — €(LP(Q, H)) be an Fi-adapted measurable stochastic process satisfying

T
f E || S(t) |* dt < oo as,
0

where £(LP(Q, H)) designate the space of all continuous linear operators from LF(Q3, H) to itself. Then Vp > 1, there
exist a constant C, > 0 such that

T T
2 5 V2
E sup || S(s)dW(s) |IP< CPIE(f | S(s) | ds) , T>0.
0

0<t<T 0

Theorem 4.3. If f € PAP(R, LF(Q), H), u,v), then
(i)t [ T(t—5)f(s — 1)ds € PAP(R, L/(Q, H), 1, ).
(i)t — J(;t T(t—s)f(s—1)dW(s) € PAP(R, LP(Q, H), u,v).

Proof. (i) We know that f € PAP(R, £L7(Q,H), i, v), then it can be decomposed as f = g + h where
g € AP(R, LF(Q,H)), and & € &,(R, LF(Q, H), u, v).

Denote by (Ax)(t) = f T(t —s)g(s — t)ds and (I'x)(t) = f ' T(t — s)h(s — T)ds.

We need to verify that (Ax)(t) € AP(R, £F(Q,H)) and (I'x)(t) € &p(R, LP(Q, H), u, v).

o Our first step consists to proving that (Ax)(¢) and (I'x)(t) are stochastically continuous.
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Let tp € R fixed. Assume that @ = s —t + t, and from Holder’s inequality, we get that
E || (Ax)(t) — (Ax)(to) IIP

t to
=E| f T(t —s)g(s — T)ds — f T(to —s)g(s — )ds ||
to

to
=E| f T(to —a)g(a +t —to, x(a + t — ty — 7))dar — f T(tg —s)g(s — 7)ds ||

<]E[f0 | T(to — s) ||||g(s+t—t0—7)—g(s_r[)||ds]p

o p-1 1
<EL[ 1T =) 7 1l Tto —9) 1P g(s + £~ to — 1) = g(s — ) | s
o p-1 p et
<gf( [ aTe-91T)7a) 7 x

1

(ji(nnm—ﬂnMg@+t—m—ﬂ—g@—ﬂnY&VT
<([iren-s1a) " x
‘[ZHN%—@HEHgG+t—m—ﬂ—g®—7HW%
<X ! e OE || g(s +t -ty —T) — g(s — 7) |IP ds.

So )L
Let {t,} be a real arbitrary sequence such that t, — ty as n — +00. Since g € B¢(R, LF(Q2,H)), we have
e OB || gs +ty—ty—T) = g(s — 1) [F— 0, n — +o0.
Consequently, for 1 large enough one has
e OIE || g(s + ty — to — 1) — g(s — 1) IP< 2O | g |5, .
Furthermore,

to
f 27e= =) || g |, ds < oo.

o0

Then, from the Lebesgue’s Dominated Convergence Theorem, we get that

to
lim e E || g(s + t, —to — T) — g(s — 1) |IP ds = 0.

1—3-+00
Hence, t

}Lnt} _; e OE || g(s+t—tg— 1) —g(s —7) |IP ds = 0.
Therefore

Hm E || (Ax)(t) = (Ax)(to) IP'= 0.

In this way we have shown that (Ax)(¢) is stochastically continuous. In the same way we demonstrate that
(I'x)(t) is a continuous process.

Thus, we conclude that f_t  T(t = s)f(s — T)ds is stochastically continuous.
e We now prove the almost periodicity of Ax. Note that the integral

ft T(t —s)g(s — 7)ds
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is absolutely convergent, and
[ ; T(t = 9)g(5 ~ D5 1< = 119 s
Since g € AP(R, LF(QQ,H)), then Ve >0, 31 >0, Va € R, thereexists 6 € [a, a + [] satisfying
Sup’E | 4+ 0) — 9 I'< e()
In other hand, assume that 0 = s — 0, then we obtain :
E [l (Ax)(t +6) = (A () IF

t+0 t
=E| f T(t+06—1s)g(s—1)ds — f T(t —s)g(s — 7)ds |IF

t t
=E| f T(t—o0)g(c + 6 —1)do — f T(t —s)g(s — 7)ds |IP

: w
=E|| f T(t—s)(g(s +5-1) - g(s - 7)ds I’ .

Using the same steps developed above and the condition of exponential Cy—semi-group(T(t)):0, we get
that

E|l (A9(t +5) — (A9(D) IF
t
~El [ Ta-9fgs 0 -0 - g5 D) IP
(f ITG=91ds) " x [ 1T 1 Elgs+0-0-gs =) I d
PlK W\P
<57 Sel%)
<&

o It remains to verify that (I'x) € &,(R, £P(Q2, H), u,v). First, we have

L[ vauty = —— [(EI [ T¢-9ns-ods
g | ENE0 ¥ duw = s [N [T - s P duty

7 t
ﬁ[ [EI 1 T~ s)h(s — 1) || ds] du(t)

From Holder’s inequality and Fubini’s theorem, we get that

1 v
v([-r,1]) f ENN )0 P duth)

< f ( f e ([ I | s — 1) 1P d)dpt)

(o)

KP 1 7 t
_— —w(t—s) _ P
S o W) LLf” E [l h(s = ) IF dsdu(t
14 T
: f f L-con(s)e VB || h(s — 7) IV dsdp(t)
-r JR

{— —
P~ v([-r,71])

K 1 r
- —w(t=s) - P
<= S fR Ir 1j—cop(s)e E || h(s — 7) |I” du(t)ds.
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Let v = t — s, then we obtain

1 ' KP +00 e r
ven ) I rlEII )@ I dp®) < —= fo D [ rlEII h(t —v—1) P du(t)do

Moreover, we have

l ' 7 — —Wv P
g | ENHE—o=0 P dul < IhL.

Since h € &y(R, LP(QQ,H), u, v) which is translation invariant, and from the Lebesgue’s dominated conver-
gence theorem, we deduce that

1

lim ——— f BT 1P du)
Kp +00 o 1 "
S o, (¢ Ei‘;mﬁﬁ I it = v = 1) IP du(t))do

=0.
Thus, (Tx)(t) € &,(R, LP(Q, H), u,v). Finally, (i) holds.

(ii) Similarly to (i), since f € PAP(R, £F(Q),H), u,v), then it can be written as f = © + ¢ where © €
AP(R, LP(Q,H)), and ¢ € &,(R, LP(Q,H), u, v).
Let S1x(f) = f_too T(t —5)O(s — 1)dW(t) and Sx(t) = f_tw T(t — s)p(s — 1) dW(t). We must demonstrate that
S1x € AP(R, £7(QQ, H)) and S»x € Ep(R, LP(QQ, H), u, v).
oo In the first time we verify that (S;x)(t) is stochastically continuous. We take an arbitrary number ¢y € R.
Let @ = s — t + ty, then we obtain

E || (S1x)(t) = (S1x)(to) IIP
t to
—E| f T(t - 5)O(s — T)dW(s) f T(ty — 5)0(s — T)AW(s) |I

{ee]
to

to
- E| f T(to — a)®(a + t — tg — TYAW(a + £ — tg) — f T(to — $)O(s — T)AW(s) |1’ .

—00

Suppose that
W(a) = W(a + t — to) — W(t — t).

We note that W and W are two Wiener process and have the same distribution. Using the Lemma 4.2, we
obtain

E || (S12)(f) — (S1x)(to) I

to

to
—E| f T(ty — 0)O(ax + f — to — T)dW(a) — f T(ty — 5)0(s — T)AW(s) |I

—00

to

to —
=E| f Tty —a)O(a+t—1ty)— T)dW(a) - f T(tg — 5)O(s — T)dW(s) ||

—00

to —_
=E| f T(to — s)(®(s +t—tg—1)—O(s — T))dW(oz) &

< cp]E[ftO I Tt = 5)(O(s +t — tg — 7) = (s — 7)) |I ds]g.
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From Holder’s inequality, we get that
E [l (S12)(t) = (S1x)(to) I

< Cp]E[ftO I Tty = 5)(O(s + t — tg — 7) = O(s — 7)) |1 ds]g

[Nl

to
< CP]E(f || T(tp — S) ||2|| @(S +t—ty— T) — @(S _ T) ”2 dS)

(S]]

t() . 4
< cpJE(f 1Tt =) 17 1 Tto =) IIF X | ©(s +t — tg — 7) — (s — 1) |P* ds)
70?0 p-2 p ﬂ
< GE|( f (I Tt — ) I*7)72ds)

14
2

to \ L2
A [ 0Tt=9 106 +1-10 -1~ 06 - ) Pyias)'|

to =2 to
<CK( f e 20 =ds) * x f e 2 OE || @5+t — tg— 7) — O(s — 7) | ds

00

£

o 0
< CPKP(Za))Tp f e 20 || @(s + t — tg —T) — O(s — 7) | ds.

By the similar arguments as above, we obtain

to
lim | e 20G09E || O +t—ty—1)— O —1) | ds =0.

t—ty oo

It implies that
to

t
lim E | f T(t - 5)O(s — T)dW(s) — f T(to — 5)O(s — T)AW(s) |IP= 0.

00

Thus,
}ir?]E | S1x(t) — Six(to) |IP= 0.
—10

So we demonstrate that (S;x)(t) is stochastically continuous. By an analogous argument, we verify that
(S7)x(t) is also continuous.
oo We know that ® € AP(R, LF(Q},H)). So, Ve >0, 31>0, YaeR, 36 € [a,a+]]satisfying

1/, V2w\»
_ Pe o — (Y2
stg]l}z)]EIIG)(t+5) G)(t)||<e.cp( X )

Leto =s—-9,and W(G) = W(o + 6) — W(0). From lemma 4.2, we obtain
E || (S1x)(t + ) — (Six)(®) IV

t

t+0
=E]| f T(t+06—5)0O(s — 1)dW(s) — f T(t — 8)O(s — T)AW(s) |IP

—00

t

¢
=E| f T(t—0)O(0 + 6 —1)dW(o + ) — f T(t —s)O(s — T)dW(s) |IP

—00

t

=E| f T(t - 0)O(0 + 6 — 1)AW(0) — f T(t - 5)O(s — T)dW(s) |

—00

=E| f T(t - 5)(O(s + 6 — 1) — O(s — 1))dW(s) II

< GIE( ft | T(t - s)O@ + 6 — 7) — Os — 7) |2 ds)g.

(o)
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From Holder’s inequality and the condition of exponential Co—semi-group(T(t)):0), we obtain
E || S1x(t + 0) = Sqx(®) I

P
2

£
< c,,]E(f I T(t = )O(s + 5 = 7) — ©(s — 7) |I* ds)

t p=2 t
<c,,(f I T(t=s) P ds) ° xf I T(t—s) |2 E| O@+06-1)—0(s—1) | ds

¢ p-2 t
< K f e 29ds) * x K2 f e 2 E | O +6-1)—O(s — 1) |V ds

1 2 1 1/ V2w

< (=) 7 — .= —

GK-(50) zcugcp( )
< E.

Consequently, (S1x)(t) is almost periodic.

ee In order to complete the proof we still have to show the ergodicity of (S,x)(t). By Lemma 4.2, we get
that

1 7 1 T t
i f rIE|| Sox(t) IV du(t) = D f 7]E|| f i T(t — s)p(s — TYAW(s) |IP du(t)

r t ,
C”mfr [E fw 1T = s)p(s — o) |12 ds|* dpa(o).

From Holder’s inequality and Fubini’s theorem, we infer that

1 T
=) .L]E I (S2x)(®) I dp(t)

([ TR e N
va([ M])f f I T(t - 5) | ds) XLO I T(t =) IP . || (s — 7) P dsdu(t)

p2 t
v([ - r]) f f —2w(t- S)ds X (f:oo e 2R || (s — 1) P dS)dy(t)

C 72(()(t s) _ P dsd
< ' 0wz V(- rr])ff E || (s — 1) |IP dsdpu(t)

P
< Cp_ K e f f]-]—oo,t](s)e_zw(t_s)]E || (P(S _ 7_—) ||P dsdy(t)
(2a))T V([—T, 1’]) -r JR
Kr 1 "
<C . 1o —Zw(t—s)]E _ P du(t)ds.
" 2w)z V=1, 1]) fmf -ees1(S)e Hp(s =D 1" dutds

Let v = t — s, then we obtain

: f NSO < o [ 2 f E |l gt —0—1) IP du(t)d
- X < -0 — 0.
v([-rr]) J_, ? H p(z@# r]) ¢ ‘ H
Add to that, we have
e—Zwv 4
o 14 —2wv 14
g | Ellet-o-0 duti < I

Since, ¢ € &(R,H, u,v) which is translation invariant, and from the Lebesgue dominated convergence
theorem, we deduce that
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. 1 ’
tim s [ BN S0 P dut)

—Zwv li o
< zw)zf B ) ])f Ell gt =ox(t =0 =) IF" du(t)do
=0,

which complete the proof. O

Theorem 4.4. Let u, v € M satisfy (Hp), (H1) and (Hy). Assume that f, ) €
PAP(R x LP(Q, H), LF(Q, H), u, v) which satisfy the Lipschitz condition ,that is there exist two positive constants
L and L’ such that

E |l f(t,x) - f(t, y) IPSLE [ x -y II", (10)

Ellytx) -yt y) PSLElx-ylF, (11)
Vte Rand x,y € LF(Q,H). If
1 L ;1 \p/2
2r- KP( CL( ) )<1, p>2,

and
7’

L L
2
K (2; + 5) <1,
then Equation (1) has a unique (u, v)-pseudo almost periodic mild solution in p-th mean sense on R.

Proof. Itis clear that x : R — £P(Q, H) is a solution of (1) if and only if it satisfies the stochastic integral
equation :

!

t
x(t) = f: T(t—s)f(s,x(s — 1))ds + f T(t = s)Y(s, x(s — 1))dW(s). (12)

Let
t

¢
(yx)(t) = I T(t —s)f(s,x(s — T))ds + f T(t —s)Y(s, x(s — 1))dW(s).

From Theorem 3.5 and Theorem 4.3, we infer that y is a self-mapping from PAP(R, £F(Q2,H), u,v) to
itself. In order to demonstrate this theorem, it is sufficient to show that y is a contraction mapping. Let
x,y € PAP(R, LF(QQ,H), u,v) and t € R

t t
E |l (0@®) - (y)®) I’ E | I T(t = 5)f(s,x(s — T))ds + I T(t = s)Y(s, x(s = 7))dW(s)

t t
I T(t —s)f(s, y(s — 1))ds — f Tt = s)Y(s, y(s — T))dW(s) IIF

00 —00

t
- E| f T(t = $)Lf(s, x(s — 1) — (5, y(s — V)]s

t
+ I T(t = )Y (s, x(s — 1)) — (s, y(s — D)NAW(s) |IP

(o)

N

2 (1l [T x6 - ) - fs,vls - s )

b 2B [T 9196t - 1) - pis, s - D) )

= 271—1(7/1 + )/2)
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Firstly, we evaluate ;. From Holder’s inequality and the Lipschitz conditions, we have

t
no= E| f T(t — $)Lf(s, x(s — 1) — f(5, y(s — D)lds I

t
p-1
< ([ ura=9na)™ [ NTa-91EN o366 =) - s, - ) P s
KP ' —w(t-s)
S ol E |l f(s,x(s = 1)) = f(s, y(s = 1)) I ds
K? !
Il —w(t-s) _ _ _ p
< a)p—l'L' fooe El|lx(s—1)—y(s—1)|IF ds
4 t
< %.L.SEHEIEH x(t—1)—y(t—1) | [ ooe‘“’(t‘s)ds
K? .
< J.Lsup]Ellx(t—T)—y(t—T)ll .

teR

Secondly, using Lemma 4.2, Holder theorem and the Lipschitz condition, we get that

t
v = E(] f T(t = )5, x(5 = ) = (s, y(s ~ DIAWS) I )

00

t P

< GE( [ 1091906 - 0) - 965, (s~ ] P )
t P2 t

< o f IT(t=5) | ds)  x f I T(E =) 12 E || (s, x(5 = 1)) = (s, y(s = ) I ds

< G f e’z“’(t’s)ds)}% x K2 f e 29I || (s, x(s — 1)) — (s, y(s — 1)) | ds
K

CP.W.L S,:uE]E Ix(t—7)—yt—1) I .
Therefore,

or-1gpL  2P'KPC,L

E |l 020 - 0O < (5= + =557

JIlx=ylk .

Actually in the case p = 2, by the same method as above and from Ito’s isometry identity, we get that

N

t
E om0 -O0® P < 2E f I T = LG, x(5 — 1) — Fls, y(s — )] | ds)

+

[ I T - )5, 26 = 7)) = (s, y(s — AW I )

(o]

N

t 2
2B( [ ITG= 970536 = ) - f65, 65 - )] 1 )

(o8]

2E

+

(
20
(
(

t
1= 910636 = ) - 06 vts = 01 P )

531
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N

t 2
25( [ NT=9) 1 6,5 = 0) - 6,6 - ) 1)

t
+ ZE«[ Il T(t = s) IPIl (s, x(s — 7)) — (s, y(s — 7)) |I* ds

N

ZKZ( It e_w(t—s)ds)( j:t e_(u(t—s)lE I f(S, X(S - "L’)) _f(S, y(S _ T)) ||2 dS)

00

t
+ ZKZ(I e 209 Il (s, x(s = 7)) — Y(s, y(s — 7)) ||2 ds)

00

2 KZL/
< —supE || x(l‘—T)—]/(t—T)||2+ supE || x(t — 7) — y(t — 1) &
w teR @ R
2K’L  K’L’ By
< ()=l
If
2r-1gpL 2P'KPC,L
( o Qaw)r2 ) ’
and

2K2L KL

( >+ ) <1,
w )

then, y is a contraction mapping in the Banach space PAP(IR, L7(€), IH), i, v). Therefore, by the Banach fixed

point theorem, we deduce that Equation (1) has a unique (y, v)-pseudo almost periodic mild solution in

p-th mean. ]

5. Stability of (u, v)-pseudo almost periodic solutions
In this section, we will establish the stability of the solution for the stochastic evolution equation (1).
Theorem 5.1. Suppose that all the conditions of theorem 4.4 hold. If

3r-1KrL  3PKPC L

e O <L

Then the (u, v)-pseudo almost periodic mild solution x*(t) on R of equation (1) is globally exponentially stable in the
p-th mean sense.

To prove this theorem, we use same steps in the proof of Theorem 6.2 [11].
Corollary 5.2. Suppose that p = 2 and all the conditions of Theorem 4.4 hold. If
3KL N 3K2L’

w? 2w

then the square-mean (1, v)-pseudo almost periodic mild solution x*(t) on R of Equation (1) is globally exponentially
stable.

<1,

6. Example

We consider the following one-dimensional heat equation

do(t, x) = 5—;0(15, x)dt + f(t,0(t, x))dt + P(t, v(t, x))dW(¢),
(t,x) e Rx(0,1), (13)
u(t,0) =u(t,1) =0 fort e R.
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Suppose that u is a positive measure, where its Radon-Nikodym derivative is

pir={ 70 LSO (14)

and v is the Lebesgue measure. Then from [3] 1 and v satisfy (H;) and (H»).
In order to write Eq.13 on the abstract from (1), we consider the linear operator

A : D(A) c £20,1) = £%0,1),

given by
D(A) = H*(0,1) N HL(0,1), and Av = v’ for v € D(A).

It is well known that A generates a Cy semi-group (T(f))i=o such that || T(f) [|< e ! for t,w > 0. Let
f(t,v) = (sint +sin2n \/Et)v + e‘t2+"(cosv +sinv), fora >0

and
O(t,v) = (sin2t + sin ) + V2e Mlcosv.

We have

[(sint + sin 27 V2t)o + e**(cos v + sin )| € PAP(R x L7(Q, £2(0,1)), L/(Q, £2(0,1)), 11, v)

where (sin f + sin 27t V2t)v is almost periodic and e‘tzﬂ(cos v + sinv) is (u, v)-ergodic, since

_t f 01E|| e (cosv + sino) | du(t) < w1 f Oe-r’f2 etdt
Wi=r,) J., HYS rJLt
ap+ = 0
= 2”_16 4pfve_p(t_zlﬂ)zdi‘—>0asr—>+c>o.
-r
and
1 f "E || ino) I dyu(t) 2’”eupf o
_— e COsSv + sinv < T — e’
Wi=r,7D) Jo : r Jo

_eap r_z
= 2”2—fe7”dt—>0asr—>+oo.
r =r

Consequently (t,v) — f(t,v) € PAP(R, £F(Q, £%(0,1))y,v). By the same arguments performed above and
from [11], we deduce that

(t,v) — 6(t,v) = (sin2t + sin t)o + V2eMcosv € PAP(R, £7(Q, £2(0, 1)), v).

It is easy to verify that f and O satisfy the Lipschitz conditions in Theorem 4.4, with K = 1, L = 2°(1 + ¢")?
and L’ = (2 + V2).

We conclude by Theorem 4.4, that the equation (13) has a unique (1, v)-pseudo almost periodic mild solution
in p-th mean sense. O
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