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Approximation Theorems in Weighted Lebesgue Spaces with
Variable Exponent

Ahmet Testici®

“Balikesir University, Department of Mathematics, 10145 Balikesir, Turkey

Abstract. In this work, approximation properties of de la Vallée-Poussin means are investigated in
weighted Lebesgue spaces with variable exponent where weight function belongs to Muckenhoupt class.
For this purpose direct, inverse and simultaneous theorems of approximation theory are proved and con-
structive characterizations of functions are obtained in weighted Lebesgue spaces with variable exponent.

1. Introduction

Let T := [0,2n] and let p(:) : T — [1,0) be a Lebesgue measurable 2r periodic function. We suppose
that the considered exponent functions p (-) satisfy the condition

1 <p-:=essinf p(x) <esssup p(x) :=p* < co.
xeT xeT

If there exist a positive constant ¢ such that
|p(x) —p(y)|ln(1/ |x - y|) <c¢, x,yeT, 0< |x - y| <1/2, (1)

then we say that p (-) € P (T). The Lebesgue space LPY) (T) with variable exponent is defined as the set of
all Lebesgue measurable 27 periodic functions f such that p,(, (f) := fozn | f (x)|p(x) dx < co. L'V (T) becomes
a Banach space equipped with the norm ”f”p(.) = inf{A >0:pp (f/A) < 1} as long as p (-) € Py ().

For a given weight w, we define the weighted variable Lebesgue space LZ(') (T) as the set of all measurable
2 periodic functions f such that fw € LP®) (T). The norm of LZ,(') (T) can be defined as ” f Hp(.) o= ” fw”p(_).

The subspace Wf,(')’r("ll“), r =1,2,.., consist of the functions f € L’Z,(') (T) such that f("l) is absolutely

continuous on T and £ € L’z)(') (T). This subspace of sz,(') (T) is called weighted Sobolev space with variable
exponent. Also, Wf,(')’r(T), p(-) € Py (T) becomes a Banach space with the norm
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Let f € L' (T) and Fourier series of f is defined as

(o8]

fx)~ % + Z (ax cos kx + by sin kx)
k=1

where g and by, k = 0,1, 2, ..., are Fourier coefficients of f such that

1 [ 1 ,
ar = ar(f) = o ff(t) cosktdt and by := br(f) = o ff(t) sin ktdt.
Let
Su(f) =Su(f,x):= %0 + Z (ar coskx + bysinkx) , n=1,2,...,
k=1

be the nth partial sums of Fourier series of f. Also, de la Vallée-Poussin means of f is defined as

n+m

V(N = Vi () = 2 Y S(F0).
k=n

Definition 1.1. For a given exponent p (-) we say that w € Ay, (T) if

sup B[ flos, [, o™ xw L, < o 1P+ 10 =1

]

where supremum is taken over all open intervals B; C T with the characteristic functions x,.

Let f € L(T), p(-) € Po(T), w() € Ay (T). The K-functional K, (f, )
defined as

K (Ga= it {1 =l +0 1700}

geWws"(m)

wr T =12, for 6 > 0is

Definition 1.2. Lef f € LZ,(') (T), p() € Po(T), w () € Ay (T) and let

r

ATf(x) = Z (=1)* (:)f (x+st), r=12,.., .

s=0
We define the rth modulus of smoothness as

h
. f ATt
0

The correctness of this definition follows from the boundedness of the maximal operator

, 0>0.

Q. (f, 6)p(.)/w = sup
0<h<d
p()w

1
M(f): f » Mf(x) := s$5®!|f(t)|dt

for any x € T in the ij,(') (T), where supremum is taken over all subinterval B C T that contain x (see, [6]).

So we have that if w (-) € Ay (T) and p () € Py (T), then the maximal operator M (f) is bounded in LZ,(') ().
In this case there exists a positive constant c¢(p) such that the inequality

MO, <@l (2)
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holds for every f € L’9(T). In L' (T) the boundedness of M ( f) provides us the boundedness of
Q (f, 6);:(‘),“;- Namely, if f € L’Z,(') (T), p(-) € Po(T) and w (-) € Ay (T), then there exists a positive con-
stant c(p) such that

Qr (f:0)py,0 < p) ”f Hp(-),a) : (3)
Moreover, it can be shown that if f,g € LZ,(') (T), then
QT’ (f + g’ 6)p('),a) < Q" (f’ 6)p(~),m + QV (g’ 6)p(~),a} and })1_1’)% QT’ (f/ 6)p(-),a) =0.

Lebesgue spaces with variable exponent were introduced by Orlicz in [23]. Lebesgue spaces with
variable exponent enable us important tools for explanations of different applications in mechanic, like
modelling of electrorheological fluids. As a result of this fact, investigations on the fundamental problems
of these spaces have been studied recently, in view of potential theory, maximal and singular integral
operator theory and others. The corresponding results can be found in the monographs [5, 9]. If we
focus on the approximation theory in Lebesgue spaces with variable exponent, we can found some of the
pioneering results in [13] and [10]. Under the condition p (-) € Py (T), by defining the first order modulus
of smoothness for f € LP") (T) as

7

p()

Q) (£,0) :=

h
1
= | |fa+p—f)|dt
2

the direct theorem in /") (T) was proved in [10]. Some problems of approximation theory in L/*) (T) were
investigated in [1] where p(-) € P (T). If the exponent function p () satisfies that 1 < p_ < p < oo and
the condition (1), then we say that p(-) € £ (T). Clearly, £ (T) is more generalized than $, (T). In case
p (-) € P(T), the first order modulus of smoothness for f € LP") (T), which is more sensitive than Q) (f,0),
was defined as

Q(f,0)y) =

h
1
P [e@-raena

0 p()
in [25]. Also, under the condition p () € £ (T), the direct and inverse theorems of approximation theory
in PV (T) were proved in [25] and [12], respectively. Later, these results extended to weighted Lebesgue
spaces with variable exponent in [14, 15] where the w € Ay (T) and p (-) € P (T).

Approximation properties of de la Vallée Poussin means of given function f € L' (T), p (-) € P (T) were
investigated by means of Q (f, 6)p(_) in [26, 27]. Later, these results were extended to LZ,(') (T) in [29] under the
conditions p (-) € $o (T) and w € Ay (T). In this work, one of our aims is to generalize the results proved in
[29] by using O, (f, 1/”);7(.),@/ r=1,2,..,andn = 1,2, ..., which equivalent to K, (f, 1/n)p(,),w. For this purpose,

direct and inverse theorems of approximation theory are proved in LZ,(') (T), p(-) € Po(T) and w € Ay (T).
The similar theorems in nonweighted case, were proved in [16] and [31]. Another one of our aims is to
generalize some approximation theorems investigated in [21] for classical Lebesgue space. Previously,
the approximation properties of different summation methods were investigated in [11, 19, 20]. On the

other hand, by different type modulus of smoothness appropriate approximation theorems in LZ}(') (T) were
proved in [2, 3], where w™ € A, (T), m + ﬁ =1, for some pg € (1,p-). Nevertheless, the Apy (T)

class is more intelligible than the class of weights considered in these work.
The best approximation number of f € Lﬁ,(') (T) is defined asE, ( f)p(,)/m = inf{” f— T"”p(.) S Tn€ HH} ,
n=0,1,2,.., whereIl, is the class of trigonometric polynomials of degree not exceeding #.
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Also, T := TO(f) € II, is called best approximating polynomial to f € L/ (T), if TO satisfies that
“f - T’ng(»),w = Eu (f)l’(‘),ﬂ) '

Throughout this work the constants can vary line by line but are independent of . In addition, we use
the notation f = O (g) which means that f < cg for some positiveconstant c. We will also use the notation
f = g for the sake of reader’s convenience if there exist two constants ¢; (p,r) and ¢, (p, r) such thatc; (p, 7) f

<g<salprn)f.
The our main results are follows.

Theorem 1.3. Let p(-) € Po(T), r =1,2,..., w(-) € Ay (). If f € L’;(')(T), then there exists a positive constant
c(p, ) such that the inequality

Ev Ny <N (f, 1), =12,

holds.

Theorem 1.4. Let f € L’Z,(') (T), p() € Po(T), w () € Apy (). Then forn =1,2,...,and r = 1,2, ..., the equivalent
O (f, 1)y ~ Ko (£, 1) 0.,

holds.

Theorem 1.5. Letp(-) € Po(T), r=1,2,.., w(-) € Ay (). If f € L’;(')(T), then there exists a positive constant
c(p, r) such that the inequality

c(p.r) y 1 _
”f ~ Vo (f)”p(.),m = ;)‘ Q, (f, m)p(.)lw ,n=12,..

m+1

holds.

Applying Theorem 1.5 and Lemma 2.5 proved in next section we have

Corollary 1.6. Letp () € Po(T), w(-) € Ay (T). If f € Wf,(')’r(T), r=1,2, ..., then there exists a positive constant
c(p, r) such that the inequality

n cpny 1 S
I = Vo Do < 557 ;; n+ k) 1y =120

holds.

Theorem 1.7. Let p(-) € Po(T), r = 1,2,..., w () € Ay (). If f € Lff,(‘)(T), then there exists a positive constant
c(p, r) such that the inequality

c(p,7) © .
0 (1100 = BN e 1 E () =12
k=0

holds.

Firstly, Theorems 1.3, 1.4 and 1.7 in weighted Lebesgue space L/ (T), 1 < p < co were proved in [22].
Under the condition p (-) € £ (T) in nonweighted case, Theorems 1.3 and 1.7 were proved in [16] and [31]
independently of each other. Theorem 1.5 for r = 1 was proved in [27]. In case r = 1, Theorem 1.3 was
proved in [14], Theorem 1.7 was proved in [15], Theorems 1.4 and 1.5 were proved in [29]. In case r € IR,
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Theorems 1.3 and 1.7 were proved in [2] by different type modulus of smoothness where w™ € A, (T),
1 1
Gomy e = 1, for some py € (1,p-).
Let a > 0 and [a] be is the integer part of a. If we define a generalized Lipschitz class Lipfﬁ',)’w (T) for
r:=[a]+1as
Ligh ™ (T) = {f € Li(T) : O, (f,8),y,, = O0), 6 >0},

then taking into account Theorem 1.3 and 1.7 by simple computations we have

Corollary 1.8. Let f € L’a],(')(T), p() € Po(T) w(-) € Ay (T) and a > 0. Then the following statements are
equivalent:

DEn (flyy =0 ™), n=1,2,.., and ii) f € Ligl, (T).

Theorem 1.9. Let p(-) € Po(T) and w (-) € Ay (). If f € Wf)(')’k(l"), k =1,2,..., then there exists a positive
constant ¢ (p, k) such that the inequality

1=V (Pl < —EE, (#9)

(n+ 1)

p()w
holds.

Theorem 1.10. Let p(-) € Po(T) and w(-) € Ay (T). If f € WO, = 1,2, ..., then there exists a positive
constant ¢ (p, r) such that the inequality

) c (p, 1’) n+m 1 .
”f —Va(f )”m-),w < kz_;‘ (k + 1)’E" (f ( ))p<~),m

m+1

holds.

In classical Lebesgue space, Theorem 1.9 was proved in [24] where m € {n,n — 1}. In nonweighted case,
Theorem 1.9 was proved under the condition p (-) € P (T) in [26] and [27] where m € {n,n — 1}, n = O (m)
respectively. In case r = 1, Theorem 1.10 was proved in [29].

If trigonometric polynomial T}, := T (f) € I, satisfies the inequality ” f-T, e = CEn (fpiyw M =
0,1,2,.., for some positive constant c is independent of 7, then T;, is called near-best approximating poly-

nomail to f € LZ,(')(T).

Theorem 1.11. Let f € Wg,(')’k(T), k=1,2.,p(¢) € Po(T) and w(-) € Ay (T). If T;, € T1, is a near-best
approximating polynomial to f, then there exists a positive constant ¢ (p, k) such that the inequality

”f - (T:l)(k)“p('),w <cp (1), =120

pOw
holds.
This theorem in Lebesgue space L7 (T),1 < p < co was proved in [7]. In nonweighted case, Theorem

1.11 was proved in [17] when p () € P (T). In case k = 1, Theorem 1.11 was proved in [15]. Moreover, in the
case k € R, Theorem 1.11 was proved in [2] where w™ € A, () (T), m + ﬁ =1 for some pg € (1,p-)

and it was proved in weighted Lebesgue and weighted Orlicz spaces in [32] and [4], respectively.
The inequality
[If = S ( f)“p(_)w < c)En (Fyer 1 =12, (4)

proved in [29] implies that S, (f) is near-best approximating polynomail to f € LF;,(')(T). Hence, applying
Theorem 1.11 we have immediately
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Corollary 1.12. Let p () € Py (T) and w (-) € Ay (T). If f € WEONT), k = 1,2, .., then there exists a positive
constant ¢ (p, k) such that the inequality

1F9 = 8 (A0 < P RO f<k>)p(‘),w n=1,2,.,
holds.

Theorem 1.13. Let f € L'O(T), p() € Py (T), () € Ay, (T). Let ¥, K Ey ( Py < o0 where ar € R. Then the
k=1 ’

series
”50 + Y K (ag coskx + by sin k) )
k=1
is Fourier series of the function g € Lﬁ,(‘)("ll") and for every g € Lﬁ,(')(T) the inequalities
En (9)py0 < (p) {n“En Py * Z K E ( f)p(,),w}, n=1,2,.. 6)
k=n+1
and
Eo (9)000 < () {Eo Py + Y K E <f)p<.),w} )
k=1

hold with positive constants independent of n.

Theorem 1.14. Let f € LZ(')(T), p() € Po(T), r=1,2,.., w() € Ay (). Let }, Kk 1E, (f)p(,)w < oo where
k=1 ’

a € R and let the series (5) be Fourier series of g € Lﬁ)(')("ll"). Then the inequality

1 1 - r+a—1 . a—1
Q, (9, E)p(.),w <c (P) {; ; v+1) E, (f)p(.),w + Z viE, (f)p(.),w}

v=n+1
forn =1,2,..., holds with positive constants independent of n.

Similar results were proved in [2] and [3] where w ™ € Ay, (T), m + ﬁ = 1forsomepy € (1,p-). In

weighted generalized grand Lebesgue spaces, Theorem 1.13 and 1.14 for conjugate functions were proved
in [18]. Similar theorems in Lebesgue spaces were proved in [21] and [28].

2. Auxiliary Results

Lemma 2.1 ([14]). Let f € L’Z,(') (T), p(-) € Po(T). If w () € Ay (), then the operator S, (f) : f(-) = Su(f,") is
bounded in L' (T) and there exists a positive constant c(p) such thatHSn (f)”p(.) L Sclp) Hf”p(.) o =12, holds.
Ifp() € Po(T)and w (-) € Ay (T) then applying Lemma 2.1 we have
l n+m

||V:7 (f)“p(-),a) < T ; HSk (f)“p(-),a) < C(p) ”f“p(-),a)

m

and

En (f)p(-),m < ||f - S”l (f)”p('),m = C(p) ”f”p(),m : (8)
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Let f € L' (T) and let f~ be its conjugate function defined as

— 1 f®
f(x).—;_ 2tan 5*

It is well known that if f~is integrable, then its Fourier series coincides with the conjugate Fourier series of
£ [30, p. 155] and hence

j?(x) ~ Z (ay sin kx — by cos kx) .
k=1

Lemma 2.2 ([14]). Let f € L2 (T), p () € P (T). If w () € Ay (T), then the operator f : f (-) — f () is bounded
in L’:,(') (T') and there exists a positive constant c(p) such that ||f“ o <c(p) ”f”p(.) " holds.
p()w /

Since S,, (f) is a trigonometric polynomials with degree n, by Lemma 2.2 and (4) we can obtain
E, (f)p oo S CPE (Pyyr 1=12,, )

Lemma 2.3 ([15]). Let f € L’z)(') (T), p(-) € Po (), w (-) € Ay (). If T, is a trigonometric polynomial with degree
n, then there exists a positive constant c (p) such that for r = 1,2, 3, ... the inequality “T,(I)Hp(,),w <c@)n I Tullpey,e
n=1,2,.., holds.

Lemma 2.4. Let p(-) € Po(T) and w () € Ay (). If f € Wf,(')’k(T), k =1,2,..., then there exists a positive
constant c(p, k) such that the inequality

c(p, k)
E, (f)p(-),a) < mEn (f(k))p(-),w

holds.
Proof. Let f € Wf,(‘)’k(l"), k=1,2,...,. For the Fourier coefficients of f, denoted by a, and b,,v =1,2, ..., we set
Ao (f,x) = %0; A, (f,x) = a, cosvx + b, sinvx and A, (f~,x) =g, sinvx — b, cosvx.

Since

kn kn ~ kr\ . km
A, (f, %) —Av(f,x+ E)cos? +Av(f,x+ Z)sm—

2
A, (f(k),X) = VA, (f,x + I;—:) and A, (ﬁ’:),x) = A, (ﬁx N l;_:),
we have
© -
V=Zn-i‘—1 FAV (f<k>,x) = Vg:l = ([SV (f(k),x) — f® (x)] - [sv_l (f(k),x) _f® (x)])

co 1 , 1
= V;l (17 h v+ 1)k) [Sv (f(k)/ x) - f(k) (x)] - e 1)k [Sn (f(k),x) _ f(k) (x)] .
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Similar relation holds also for oi 1 <A, ( f® x) By (4) and (9) we have

v:n+1

— kn v 1 kn v 1 —
||f(x)_5n (f,x)“p(_)lw = Z A, (f,x) = COS?T( Z 1?/\1/ (f(k),x)+sin?n Z JAV (f(k),x)
v=n+1 ()@ v=n+1 v=n+1 ()@

(1 ® ) _ 0 1 ® ®
< V;1 (vk Tl ) S, (f ,x) F(x ”p(')/m + P (f x i (x)”p()

(o) 1 — — — —

1. Sv( ®, ) T S, ( ®, ) -

’ Vzn:‘rl (vk v+ 1) ) fRx) =R p(),@ " n+1) fRx) =R p()@

= (1 1 1
<c(p) {VZ (17 o 1)k)Ev (f <k>)p(.),w + T E, (f<k>)p(.),m}

=n+1

+C(P){vi (%— (le)k)Ev (J%)p(_),er (n+11) (f(k) m}

=n+1

= (1 1 1
<c (P) {VZ (1? - W+ 1)k)Ev (f(k))p('),w + n+ 1)k E, (f(k))p('),m}

=n+1

i 1 (k) C(P/k) (k)
< (P) Z (Vk ( + 1) + (n + 1)k)En (f )p(~),w (7’1 + 1) (f )

v=n+1

Thus lemma is proved. [

Lemma 2.5. Let p(-) € Po(T), w () € Ay, (). Then there exists a positive constant c(p), such that for any
r=1,2,.., 6> 0and for any function f € W'"(T) the inequality

@

Qr (f/ 6)17( )@ < p’ r)ér Hf(r ”p( -),w

holds.

Proof. Since

t t t
A{f(x)zff...ff(r)(x+t1+...+tr)dt1...dtr,
0 0 0
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applying r times the generalized Minkowski inequality and (2) we have

h

h
1 (., 1 .
; f Al fdt < )y f A £,
0 p()w 0
h t t
1
< c(P)hrhmf f...ff(’)(-+t1+...+tr)dt1...dtr dt
o Mo p()w
h t
1 (|1
r (")
< cph ﬁf thylf ff (+t+..+t)dh.dt g |dt|  dt
0 0 0 pe)w
h h
1 (1
- c(p)hrﬁf thrlf ff(’)(+t1+ c+t)db.dto|d| dt
0 0 0 o
h
< c(p)hr%f Y+ 8+ e+ b)) dbydbq dt
0 0 pQ)w
h
< <c(p)hf % f O (- + t)|dh dt
0 p()w

IA

r r 1 r T,
O T f at =) 7],
0

and taking here the supremum we obtain the inequality Q, (f, 6)p( o S Cp,1)0" || f (’)”p O’

For f € LZ(') (T) and 6 > 0 we define the Steklov mean value function

h h
REEY S R A PN
fos @) = fhrZ( 1) Of Off £k 2 (b b))t dtd

0/2

Lemma 2.6. If f € L' (T), p(-) € Po(T), @ () € Any (), then f,5 € W' (T) for r = 1,2, ..., and & > 0.

Proof. The equation

5@ = j hl :Zi(_l)mﬂ(:) ;fh(r_s) AL f Gx o+ tydt b dh

5/2 =0

x+55h

Z f 1)+t (r) — )A’, L f (Bt s dh (10)
s=0 %

were proved in [16]. The Steklov mean value function fr(;_l) is absolute continuity on [0, 27t], this fact can

be showed by standard way. It remains to prove the imbedding fr(:s) € qu(') (T). Differentiating the relation
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(10) we obtain

6 r—1 r
Mw=3 [ hl( (-1 (:)(ﬁ) Neawf (’C)]d’“
: 0

5/2 5=

and denoting t := =*h we have

=g

6 r
LS\ r V|1 2V S\ r V|1
ol = 5 S ol ] o
8/2 o= =2(5/2)

o = =2(5/2)

2" r r\ 1 1

= Z(S)(—r_s) uéfA;f(x)dt +e f AF@)dt] b,

5=0 r 0 r 0

which by (3) implies the inequality

(r)
f"‘s p()

)/

. < ZC(T’)éinr (f/ 6)p(-),a} S C(P, 7’) ”f”p(-),w '

Since f € ij,(') (T) the relation (11) means that f:g) € ij)(') (T). DO

3. Proofs of Main Results

570

(11)

Proof of Theorem 1.3. Let f € Lz,(') (T), p(-) € Po(T) and w(-) € Ayy(T). For 6 > 0and r = 1,2, ..., after

some necessary simplifications we have

o h h
2 1
o= f@|=5|[{= | o | A f @) dbrdt, bdh

and then by the generalized Minkowski inequality

o h h h
2 1 1 .
|I£0 - f||p(_)/w§c(p,r)5 ) | |G | N fan didty o dh
6/2 0 0 0 pOw
o h h h+ty+..+t,
= 2 ! ! N, fd dty...dt, y dh
—c(p,r)g | 7 %f t ty...dt, ¢ dh.
6/2 0 0 to+...+t, P(')/w
Since
htty+...+t, htty+..+t, to+...+t,
1
- f A, fdt = E[ f A, fdt — f A’tfdtJ
to+...+t, p(‘),m p(.),w
(h+ty+...+t,) 1 (tr+...+t,) /1

L f Afd| | — f Al fdt

h+t+...+t)/r (tr+ ...+ t)/r
0 pO)w 0 pO)w

(12)
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(h+tp+...+t,) /1 (ta+...+t) 7
1 1
< su Al fdt + su —_ f Al fdt
(h+tz+...£>/rsé (httr+ . t+t)/r f f (t2+...+tg/755 (b +..+t)/r tf
p()w 0 (),
=Q.(f, 6)p(_)/w +Q, (f, 6)p(_)/w =20, (f, 6)}7(,),&) , (13)
combining (12) and (13) we have
B hoooh
2 1
76 = Fll 0 < s N3 f = f f Qr (£, 8), ) -ty ¢ dl
0/2 0 0
B
2
<0005 [ = cpIO (0, (14)
8/2
By Lemma 2.4 and (8) we have E,, ( f)p( o S C:fj) f(r)”p(‘),w’ later using the relations (8), (14), (11) for 6 :=1/n
we conclude that
C(p)
E” (f)p(-),w < E” (f - f"rl/”)p(-),a) + E" (f"rl/”)p(-),a) < ||f”:1/” - f||p(~),(u fr 1/n pOw

<cp, N (f,1/n),), + (p,r) n'Q, (f,1/n),,, < clp, N (f,1/n),,- O

Proof of Theorem 1.4. Let f € LZ,” (T), p() € Po(T) and w () € Ay, (T). By (11), (14) for 6 := 1/n and
taking infimum we have

Ke (f,1/1)y),0 < cp, 1) (f, 1/1), 0, » 1= 1,2, (15)
forr=1,2,...,. On the other hand, by (3) and Lemma 2.5 we obtain

Q. (f, 1/”);7(.),(., < O (f - fam l/n)p(,),w +Q, (fr 1/ns 1/n);7('),m
< r){Hf"”" o+ f*(?/" p<~>,w}'
Taking infimum at last inequality we have

Q, (f,l/n)p()w < c(p, NK: (f, 1/”);;()&) ,n=12..,

forr=1,2,..., and by (15) we obtain that Q, (f, l/n)p(,),m ~ K. (f, 1/n)p(_),w . O

Proof of Theorem 1.5. Let f € WE(T), r = 1,2,.., p(\) € Po(T) and w () € Ay, (T). By (4) and Theorem
1.3 we have

A

IA

n+m c (p) n+m

Ti’l+1 Z”f Sk(f)”p()(u “m+1 ZEk(f)P('):w

_ n+k(f)p()m—C(p,r)ZQ ( n+k) -

m+1 m+1 )(u

1 = Vi Dl

Proof of Theorem 1.7. Let T,, be the best approx1mat10n trigonometric polynomial to f € LP() (M), p() €
Po(T) and w () € Ay (T). Letalso m = 1,2, ..., be the number, such that 2" <n < 2"+ Since

Qr (f, 1/n)p()/w S QT’ (f - T2m+1, l/n)p()/w + Qi’ (T2m+1, 1/n)p()’w 7 (16)



A. Testici/ Filomat 35:2 (2021), 561-577 572
using the inequality [8, p. 209]

2v
2(v+1)rE2V (f)p(~),w < 227 Z kr—lEk (f)p(~),w ’ (17)

k=2v-141

by (3) we have

Qr (f — T2m+1, l/n)p( Yo = C(p, 7") ||f sz+1 ('),ﬂ’ = C(p, 7’)E2m+1 (f)P('),(U

c(P,

2(m+1)r Wl 52r Z K E, (f)p()a) (18)

k=2m"141

<clp, r) Epn (f)p(

On the other hand, applying Lemma 2.5, Lemma 2.3 and (17) we get

.1 i _ ) e O _ 0
Q (T, Uy < =T = = TS+ Z Y, - 1Y)
p)w
C(P ’ 7’) (r) . (r) (r)
s “Tl Hp(~ + Z‘(Tzv+1 - )
v=0 p()w
c(p, 1) o
< IT1llpey,0 + Zo‘ 204D |(Typn — T2V)||p(-),w]
C(p’ 7") - (v+1)r
= nr Eo (f)P(-),w + ZS 2" Ey (f)p(~),w
c(p, 1) e
= n EO (f)p(~),(u + ZVEl (f)p(-),w + Z 2( +1)rE2" (f)p(-),m}
v=1
C(P 7") m 2v
< = | Eopiw +2Eo (e v, ), KRG )p(-»“’]
v=1 k=2v-141
c(p,1) o
o LS WA e
k=1
Combining (16), (18) and (19) we conclude that
C(P r) 27” 2!)1
Q (FUMy00 < = ( D K E Py + Eo Py + ) KT E(f )pc),“’]
k=241 k=1
222 ik"lE E <Ny
< == E Pt B Py | € = | 2 G+ DT Ec (D[ O
k=1 k=0
Proof of Theorem 1.9. Let f € W (T) ,k =1,2,...,p()) € P(T) and w (-) € Ay, (T). Since E, (f),,,, decreasing
sequence applying (4) and Lemma 2.4 we have
v v S c(p) v E E, ¢ (PI k) *)
If = Vi Dl < = Z IF =5 Pl < 77 2o B Do < P En Py < En(£), 60

Thus theorem is proved. O
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Proof of Theorem 1.10. Let f € WX (T),r = 1,2,..., p() € P(T) and w () € Ay (T). Applying (4) and
Lemma 2.4 we have

1=V Ol < g LI 51 Pl = <) k}_:nEk(np(.),msC(”'r)):(kﬂ)r (F)

m+1 m+1 m+1

Thus theorem is proved. O
Proof of Theorem 1.11. Let p(-) € P(T) and w (-) € Ay (T). Let also TY(f), T, (f) € T, be the best and

near-best approximating trigonometric polynomials to f € WZ(')’k (T),k=1,2,..., respectively. Then

AR f)“p(.),m < H - ( f(k))” (v () - T )Hp(,)/w +

p()w

Vi () =T (Vin )|, = b+ b

By the boundedness of V"  (f)

= I b, B - )
p()w p()u
=W%w%MWWmWMﬁW%m m()-r0,,. 2
< dpE(FY) .-

By Lemma 2.3, Theorem 1.9 and Lemma 2.4

b= v g)-T ,a@wrwhm%mwmws
< C(P)nk{ ( -1 (f) n 1 (f)” n—l (f) - f”p(-),a) + ||f - T:’(f)Hp('),m} <

IA

O {eIE (Vi (), + Vi () - f||,,(>a, + I () <
c(p)nk {c(p)En (ve, (f))m-),w <) (f(k)) C(P) En (f® )p()’w}.

le

IA

Since by Theorem 1.9 and Lemma 2.4
E(ViaD). = IVia®=T0A, <
k
V2s = Ay 1 =120, = B2 (1)

nk

IA

O (20)

we obtain that I, < c(p, k)E, ( f(k))p(') o
Ultimately applying Lemma 2.3 to I3, and (20) we get

I

v -1 (v, )|

4 (f(k)) k) (V” ) (f))H <c(p)(2n e <

IA

)@= E (VL (1), < (7)< o biE (7)

pO) @

and therefore

79 =Tl <1+ 4 b < OE(O), - O



A. Testici/ Filomat 35:2 (2021), 561-577 574

Proof of Theorem 1.13. Let f € L’;,(')(T), p() € Po(T) and w (-) € Ay (T). Let S;, be nth partial sum of the
series (5) and

o k=0
He=Y ke k=1,2,.., °
By Abel transform
m—1
Sp=f =Y (Si(F) = £) Ay + S (F) = £) i,
j=1

wherem =1,2,...,and Apj=pj— pj. Then for a fixedn = 1,2, ..., and for every k = 0,1, 2, ..., we obtain

2k+1n_1

=S = Y (S D= F) At + (S (F) = ) ptaenn = (St (F) = ) iz 1)

j=2kn

S

It can be shown that |Ay ]-| < ¢j*L. Since the sequence {En (f )p(_)/w}:):l is decreasing, combining (4) and (21)
we get

2k+ly—q
S;k“n N S;kn |p('),m < cp) Z ja_lEj (f)P(')rw +c(p)2? <2kn) Ezin (f)l’(‘),w <
j=2kn
_ a-1 o a
< c(P) 2027 (2) By (D + ¢ ()2 (2%) Bz () <
= c()(2) Exu Py
and hence,
Syt = Satallr < €®) Y, (2%) Bt Dy

k=0 k=0
It is clear that

— a = _ a o = a-1

Z (2n) By (D = 2° Z (2710) Bz (F)y00 =27 Y (2) 2%nEer, (), <

k=1 k=1 k=0

0 2k+1n )
< 201 Z Z jailE]‘ (f)p(-),m <c Z kailEk (f)p(-),m . (22)
k=0 j=2Fn+1 k=n+1

By (22) we have

Z S;kﬂn - S;kn”p(-),a} <c (p) {naEﬂ (f)p(-),m + Z (an) EZk‘rl (f)p(-),m} <

k=0 k=1

<c (p) {naEn (f)p(-),a) + Z ka_lEk (f)p(),w} . (23)

k=n+1

Since Y k*1Ex (f) < o, the series S}, + ), (S;Mn -5 ) convergences to some function g € L’;,(') (T) in
k=1 k=0

p()w 2kn

Lﬁ,(') (T). Hence, it is obtained that the series (5) is the Fourier series of the function g. Since S;, = S, (g),
applying Minkowski inequality and (23) we get

<)
p()w
k=0

E, (g)p(A),m < ”.’7 - S;

k=n+1

Syetn = Syiullye <€) {”aE" Dy + Y, KE(F )p<~>,w}- (24)
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By (4) and (24) for n = 1 we have

Eo (9)y0,0 < [J7 - 2 ” <lg-sil..,. +s;- %”p(.m <E1 (@0 +

ao
5=
b2 1o

Ulp(),w

ao
5 -3
1 2 p()w

s - %”pw. (25)

<c(p) {El oy + Z K E (f)p(-),m} +
k=2

=c(0) ) KT E (o +
k=1

Let Ty be number such that H g—To =E, (g)p(_),w. Then

”p(-),w

= To ()] cosxdx| < ¢(p) [l = Tol| ., = ¢ (P) Eo (@), -

1
lai| = =
T

and similarly it can be shown that |b1| < c (p) E (9),,,, ,- This facts implies that

p()w

*

(26)

2, =l cosx+ bysinxi,, < 2l + 161D < ¢ () Eo )y

Since there exists a constant such that Eo (9),, ., < ¢(p) Eo (f),(,,,, - by (25) and (26) we obtain

EO (g)p(~),m <c (p) {EO (f)p(~),m + Z ka_lEk (f)li(),ﬂ)} .
k=1
This inequality and (24) complete the proof. [
Proof of Theorem 1.14. Let f € L’;(')(T), p() € Po(M), r=1,2,.. () € Ay, (T). Applying Theorem 1.7
and using inequalities (6) and (7) we have

n

¢ (p/ 7’) - r—1 _ ¢ (p/ 1’) - r—1
Q}’ (g/ 1/n)p(-),w < n ; (V + 1) EV (g)p(-),m - —r EO (g)p(A),(L) + ; (V + 1) EV (g)p(~),a) <

C(p/ 7’) {EO (f)p( Z a— 1E (f)p()w} C(pr )Z( + 1)1’ 1[ aE (f)p( Z ka—lEk (f)p(.),w} <
v=l k=v+1
C(p/r){z(v+1a 1E (f) i Z v1E, (f)p( }
v=n+1
+C(Z;r) {Zl( +1)r+a 1E (f)p()w+2(v+1)r lkzlka 1Ek(f)p( }

2c(p,r) rrael 2c(p,1) r—1 a-1
<= Z;‘ W+ 1) E (e + — Z_; (v+1) kz_:k Ec ()0 <

C(PIT) - r+a—1
< Z(;(V+1)+ Ev (o +

C(P/ )Z( +1)" 1[Zka 1Ek(f)p()m+ Z Ko 1Ek(f)p()m} <

k=n+1
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C(P,I’) - r+a—

< TZ::(VH) "Es (Dyiy +

C(p/ ) Z( +1)r 1 Zka 1Ek(f)p()w + V+1)r 1 Z K 1Ek(f)p()m <

=1 V= k=n+1

< C(P, 1’) i (V + 1)r+a71 E (f) + C(p/ 7') ika—lE (f) i (V + 1)?—1
S T L v p6w o K b6 v:l

C(Pr’) Z K Ex (e Z(v+1)’ !

k=n+1

<

C(P,I’) - r+a—1 C(p,?’) - r+a—1
TZ(‘;(VHV Ey (g + ot ;(kﬂ)* E (o *

n+1) v .
rep) DY B, <

k=n+1

2 v PN e
SC(p/r) FZ(V+1)+ 1EV(f)p(-),w+2 Z k 1Ek(f)ﬁ(')/w <

v=0 k=n+1

<c(pr) Z<v+1>*+“1E Py + 2 “E (P

v=n+1

and this compete the proof. [
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