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On the Value Distribution of the Differential Polynomial
Afnf(k) + Bfn+1 -1

Pulak Sahoo?, Anjan Sarkar®

?Department of Mathematics, University of Kalyani, West Bengal-741235, India.

Abstract. In the paper, we study the value distribution of the differential polynomial Af"f® + Bf™1 —1,
where f is a transcendental meromorphic function and n(> 2), k(# 2) are positive integers. We prove an
inequality for the Nevanlinna characteristic function T(r, f) in terms of reduced counting function only.
The result of the paper not only improves the result due to Q.D. Zhang [J. Chengdu Ins. Meteor., 20(1992),
12-20], also partially improves a recent result of H. Karmakar and P. Sahoo [Results Math., (2018),73:98].

1. Introduction, Definitions and Results

In this paper by meromorphic function we shall always mean meromorphic function in the complex
plane C. We shall use standard notations of the Nevanlinna theory of meromorphic functions as explained
in [2, 6, 12, 13]. We denote by T(r, f) the Nevanlinna characteristic function of a nonconstant meromorphic
function f and by S(r, f) any quantity satisfying S(r, f) = o{T(r, f)} for all r possibly outside a set of finite
logarithmic measure. A meromorphic function £ is said to be a small function of f, if T(r, &) = S(r, f).

In this research work the following definitions will be needed.

Definition 1.1. [13] Let f be a nonconstant meromorphic function and p be a positive integer or infinity. For
a € C U {co}, we denote by Ny(r, f%a) the counting function of those zeros of f(z) — a whose multiplicities are

not greater than p and by Np)(r, ]%a) the corresponding reduced counting function. We denote by N1(r, f%a)
the counting function of those zeros of f(z) — a whose multiplicities are greater than p and by N1 (r, }%ﬂ) the
corresponding reduced counting function. We denote by N,(r, ﬁ) the counting function of those zeros of f(z) —a

whose multiplicities are exactly p.

Definition 1.2. [13] Suppose that f is a nonconstant meromorphic function in the complex plane C, and « is a small
function of f. Let ng,n1,- - ,ny be nonnegative integers. We denote by M(f) = af™(f')" ---(f®) the differential
monomial in f and by n = Zlfso n; the degree of M(f). Also let My(f), Ma(f), -+ , Mi(f) be differential monomials in
f of degree my,my,--- , my respectively. The summation P(f) = Z’];l M;(f) is said to be the differential polynomial
in fand m = max{my, my,--- ,my}, the degree of P(f).
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A great number of research works have been done on value distribution of differential polynomials of
meromorphic functions by many mathematicians across the world (See [4, 8-11, 14, 15]). In 1979, E. Mues
[7] proved a qualitative result in this direction which is as follows.

Theorem 1.1. Let f be a transcendental meromorphic function in the complex plane. Then f2f’ — 1 has infinitely
many zeros.

In 1992, Q.D. Zhang [14] proved the following quantitative result related to Theorem 1.1.

Theorem 1.2. Let f be a transcendental meromorphic function in the complex plane and f(z) is not of the form
C.e‘%z, where A(# 0), B, C are complex constants. Then

T(r, f) < 6N( +S(r, f).

1
VAP Bf - 1)
In 2005, X. Huang and Y. Gu [3] proved the following result related to Theorem 1.2.

Theorem 1.3. Let f be a transcendental meromorphic function in the complex plane and k be a positive integer. Then

T(r, f) < 6N (r, W) +5(r, /).

To find whether the above inequality holds if the counting function is replaced by corresponding reduced
counting function, in 2009, J.F. Xu, H.X. Yi and Z.L. Zhang [10] proved the following theorem.

Theorem 1.4. Let f be a transcendental meromorphic function in the complex plane and L[f] = ax f® +ay_ f*=2 +
-~ +agf, whereag,ay, -+, ax-o, ar(# 0) are small functions of f. For c(# 0), let F = f2L[f] —c. Then

T, f) < MN (1, ) + 50, ),
where M > 0 is a constant which does not depend on f.

Remark 1.1. In the same paper, assuming Ni(r, Jl[) = S(r, ), the authors also proved the inequality

T(r, f) < zﬁ(r, W) +5(r, f).

In 2011, the same authors [11] improved the above result by eliminating the restriction on simple zeros of
f and proved the following result.

Theorem 1.5. Let f be a transcendental meromorphic function in the complex plane. Then

T(r, f) < MN (r, W) +5(r, f),

where M is 6 if k = 1 ork > 3 and M is 10 if k = 2.

Recently, H. Karmakar and P. Sahoo [5] proved the following result which certainly improves Theorems 1.3
and 1.5.

Theorem 1.6. Let f be a transcendental meromorphic function and n(> 2), k(> 1) be integers. Then

6 — 1
T(r, f) < o 3N(r, P01

Now it is natural to ask the following question.

) + 5(r, f).
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Question 1.1. What happens if we replace f"f® —1 by Af"f® + Bf**1 — 1 in Theorem 1.6, where A(+ 0) and B
are complex constants?

In this paper we investigate to find out a partial answer of the above question and obtain the following
result.

Theorem 1.7. Let f be a transcendental meromorphic function, n(> 2), k(# 2) be positive integers and f(z) is not
of the form Zle C;.e"#, where mi‘ + % =0,Ci(i=1, 2, --- k) are arbitrary constants and A(# 0), B are complex
constants. Then

T(r, f) < 2n6_ N L +5(r, f).

3N\ Api w5 B o1
Remark 1.2. Theorem 1.7 improves and generalizes Theorem 1.6, except for k = 2.

Remark 1.3. Obuviously, Theorem 1.7 improves Theorem 1.2.

Remark 1.4. The authors do not know about the validity of the conclusion of Theorem 1.7 when k = 2. So it remains
open for further research.

2. Lemmas

Suppose that f is a transcendental meromorphic function in the complex plane. Let us define g =
Aftf® + Bf*l — 1 and h = J% where n(> 2), k(# 2) are positive integers and A(# 0), B are complex
constants. Also, let

r\2 7\’ ’ ’ \2 7\’ 7 ’ 2
F:al(%) +a2(‘%) +a3% . % +a4(%) +a5(%) +a6§ . % +a7§ . % +a8(§) , (2.1)
where fork =1,
ap =2(4n® + 8n +7), ay = 2(n +2)(4n? - 1),
az = =2(n +2)(2n% + 3n + 4), ag=Mm+2)>%n+1),
as = —(n +2)’(2n - 1), ae = 2(n +2)2n> +9n + 1),
a; = —(n+2)>%m+1)2n + 1), ag = 2n(n + 1)(n + 2)?,

and for k > 2,

ap = {(n — DK = 3(n® - 2n + 1)k? = 3(6n° — 3n + 1)k — (2713 — 4n + 1)},

a; = (n+k+1){(n - Dk + @Bn—-1Hn - 1)k* — (3n* — 5n + 2)k — (9n® — 4n + 1)},
a3 = =2n(n + k + 1){(n — Dk? — (3n® = 5n + 2)k — (9> —4n + 1)},

ay = n’(n— 1)k +1)(n +k +1)?,

as = —n(n—1)k+1)n+k+1)*n-1k+Bn-1)}, ag =a, =ag = 0.

Lemma 2.1. [1] Suppose that f is a transcendental meromorphic function and f"P(f) = Q(f), where P(f) and Q(f)
are differential polynomials in f(z) with functions of small proximity related to f as the coefficient and the degree of
Q(f) is at most n. Then m(r, P(f)) = S(r, ).

Lemma 2.2. [5] For two integers n(> 2), k(> 2), if

flx)

(n— 1)[{(k + Dt + 202 + 5k + 103 + (k + 1)2(k + 2)n2 — (k + 122k + 5)n + (k + 1)3}x2

+

(n+ K+ 1)k + D]k + D)n® + (€ + 4k + 9)n? — 2K + 7k + 5)n + (k + 12}

n(n +k+ 1%k + Df(n - Dk + @n - 1)}],

then f(x) = 0 has no solution in Z.,.
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Lemma 2.3. Let f and g be defined as in the beginning of the section and f(z) be not of the form Y.\, Cie™*, where
mk+ 8 =0and C; (i=1, 2, --- k) are arbitrary constants. Then g is not equivalently constant.

Proof. Suppose Af"f® + Bf™*1 = D(a constant). Obviously, D # 0, otherwise, we get f(z) = Y'r, Cie"*, a
contradiction. Hence we have

LA B

fn+1_D f +D'

Therefore

mlr L) mlr 4 f—(k) + B
" st a "D f D)
ie.,

(k)
(n+1)m (r, ]1() <m (r, %) +m (1’, f?) + m(r, g) +0(1) = S(r, f).

Also, since

1 _1
Afnf(k) + Bfn+1 D’
we have,
1 1 1
N(r, ?) < N(r, AT T Bfm) =N 5) =50, .
Therefore,

T(r, f) =5 f),

a contradiction. Thus Af"f® + Bf"*! is not equivalently constant and hence g is not equivalently con-
stant. [

Lemma 2.4. Let f and g be defined as in the beginning of the section. Then

(n+1)T(r, f) < N(r, f) + N (r, ]1() + Ny (r, %) + kN1 (r, ]1() + N(r, ;) - Np (r, gl) +5(r, f) (2.2)

and

- )5 e -3

+m(r, f) + nm (r, %) < ﬁ(r, é) - Ny (r, }) +5(r, f), (2.3)

where Ny (r, gl) denotes the counting function of those zeros of g’ which are not zero of f or g.

Proof. Given g = Af"f® + Bf"*!1 — 1. By Lemma 2.3, we have g is not equivalently constant. Therefore we
can write
1 *) /
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Now

g = AF S+ nAfLE O 4 B+ 1)ff

Therefore
g f o f
f"+1 =A'7+7’1A'7'7+B(1’1+1)'7
and hence
9 \_
m (r, f”+1) =S(, ). (2.5)
From (2.4) and (2.5) we get
(k) ’
(n+1m (r, ]l() < m (r, f?) +m (r, f‘Zﬂ) +m (r, 5) +0O(1)
< m(r, 5) + 50, f)
< T(r, ;) - N(r, %) +5(r, f)
< N( ,g—,)—N(r, §)+S(r,f)
< N(r,f)+N(r,1)—N r,%)+5(r,f). (2.6)
Let
N(T, ;) = Nooo (1’, }) + Noo (1’, }) + Ny (1’, %) + S(T,f), (27)

where Nygo (r, gl) denotes the counting function of those zeros of g which come from the zeros of g and

Noo (r, 91) denotes the counting function of those zeros of g’ which come from the zeros of f. Therefore

N(V, 1) — Nooo (7", l/) :N(T’, l) (2.8)
9 9 9

Let zg be a zero of f with multiplicity p. If p < k, then z is a zero of g’ with multiplicity at least (np — 1).
If p > k + 1, then z is zero of g’ with multiplicity at least (n + 1)p — k — 1. Therefore

Noo (V, l,)
9

\%

TlNk) (1’, %) - Nk) (1’, %) + (7’1 + 1)N(k+1 (1’, %) - (k + 1)N(k+1 (7’, ]l()

nN (r, %) -N (r, %) + Nt (r, %) — kN1 (r, %) +5(r, ). 2.9)
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From (2.6) - (2.9), we get

m+1DT(rf) = (m+1)m (r, ]l() n+1)N (r, ]lc) + O(1)
< (m+ l)N(r, %) + ITI(r,f) + ZTI(r, !1]) - nN(r, ch) + N(r, %)

- N(k+1 (1’, %) + kN(kH (1’, %) —Np (1’, %) + S(T’,f)
= N(r f)+N(r 1)+N (r 1)+kﬁ (r 1)+ﬁ(r 1)—N (r l)+S(r f (2.10)
y 7 k) 7 (k+1 7 "7 olg, 'S .
which is (2.2). Also

(n+ 1T, f) T(r,f)+n T(r, l) + O(1)

f
- N(rf)+m(rf)+(n—2)N(r 1)+N(r 1)+N (T 1)
- ’ f )TN F
+ N(k+1(r,]l()+nm(r,%)+5(r,f). (2.11)

Combining (2.10) and (2.11) we get

{N(r,f) - N(r,f)} + {N (r, %) - N(r, %)} + {N(k+1 (r, %) - kﬁ(k+1 (r, %)} +(n—-2)N (r, %)
+m(r, f) +nm (r, ch) < ﬁ(r, é) - Ny (r, %) +5(r, f),
which is (2.3). This completes the proof of Lemma 2.4. [

Lemma 2.5. Let f,g,h, F,a;'5(i=1,2,---,8) be defined as in the beginning of the section. Then the simple poles of
f are zero of F.

Proof. Let zg be a simple pole of f. Then in some neighbourhood of of zy, we write

£@) = 2|1+ bulz = 20) + br(z =20 + batz =20 + Oz = 200)|

where a(# 0), by, b1, by are constants. Therefore we get

F(z) = ﬁ[ ~ 14z - 2 + 26z - ) + Oz~ 20)")
1Nk
£96) = TS+ (e =)+ (e = 202)]
1) = (z—a—zo)n[l + nbo(z — 20) + %{n(n — B + 2nb )z — 202 + O((z - 20)3)]
and
n+1
() = (Z_”ZTP + (1 + Dbo(z — zo) + %:;1(71 + )b +2(n + 1)b1}(z —20)* +O((z - 20)3)].

Now we discuss the following two cases separately.
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Case 1. Let k=1. Then

“DA n+1
9@) = Af'@f(@+BfD)-1= Ez —)ZS"”

+ %{n(n — DB + 201 - 1)by — 2(n + 1)b0§}(z 20 +O((z - 20)3)]

[1 + (nbo - g)(z - 2p)

and
9@ AP B
I e R (A R LR VY Gt
- {2(n — Dby + (n + 1)b0§}(z 202 +0((z - 20)3)].
Therefore
! - 2
gg((j)) = 7 _120 [(” +2) - (”bo - g)(z -20) + {nbg —2(n—-1)by + ZbOI% + (g) }(z — z)?
+ Of- 20)3)]? 2.12)
, 2
(gﬂ(zz))) TG —1zO)2 [+27 =21+ 2) (b - )= 20) + {3+ 85— 400~ o + 2
+ %n+®m§4{%H6%§f}@_%y+cwz_%fw (2.13)
’ ’ 5
(Z((zz))) - m[(” +2)- {”bﬁ =2(n=1br + 2bo§ + (%) }(z — 20 +0((z - 20)3)]} (2.14)
Wz -1 2bp— (n+1)2 462 +4(n + 2)(n — 1)by + 2n(n + 1)b 3
hz) Z—Zo[4_ n+2 (Z_ZO)+{ (n +2)2
n+1)2(EY
T T 2()? ) }(Z ~20"+O((z - 20)3)]? (2.15)
ne@\ 1 2by— (n+1)E 9B + 8(n +2)(n — 1)by
(M@) __(Z_%VP6_ +2 @—z@+{4 (n +2)2
4(n +1)(dn — Dby +9(n + 12 (£)’
* (n iAz)z (A) }(Z — 2" + O((z - 20)3)]; (2.16)

2
P\ _ 1 A+ 2001+ Dbo§ + 1+ (2) 40— )by
( h(z) ) T (z—20)? [4 - { (1 +2)72 A—— }(z —z0)" + O((z - 20)3)] (2.17)
and

7Q) W@ _

9(z)  h(z) (z —20)?

; {Z(Zn + 1B — 4G — )by + (n + 7)b0§ +(n+5) (%)2 }(z — 20 +O((z - 20)3)]. (2.18)

[4(n +2)— {Z(Zn + )by — (n + 5)2}@ —20)
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Now substituting these values from (2.12) - (2.18) in the expression (2.1) we get F(z) = O((z - zo)), which
shows that zj is a zero of F.

Case 2. Let k > 2. Then

g(z) = Afn(z)f(k)(z) +Bf™l(z) - 1= H)’V{ﬂ

1
(2 — zo)mHkH [1 + bz = z0) + E{"(” — )b + 211 (z - 2)?
- 40

+ O(z- 20)3)]

and
’ _1\k+1 2
h(z) = fg_(f()z) ¢ (Zl)_ Zok)ﬁf [(n +k+1) + (k+ Dbo(z - 20) — (1 — k= Db (z - 20 + Oz - 20)3)].
Therefore
gg ((j)) = - :120 [(n k1) = nbo(z - 2) + {nbE — 2nby )(z - 20)? + O((z - 20)3)]; (2.19)
7@y _ _1 [(n+k+1)2—2n(n+k+1)b (z = z0) + {n(3n + 2K+ 22
9@)) ~ (@-z) e 0
— dn(n+k+ Dby )(z - 20 + Oz - 20)3)]; (2.20)
(2 ((;)) - _120)2 [(n +k+1) = [ = 2nby)(z — 202 + O((z - 20)3)]; (2.21)
We o -1 (k + 1)bo (k +1)%b; (n—k-1)b
h(z) z—zo[(k+3)_ n+k+1(z_zo +{(n+k+1)2 n+k+1 }(Z_ZO)Z
+ O(z- 20)3)}; (2.22)
He\ 1 (k + 1)(k + 3)bo (k +1)*(2k + 7)b3
(h(z)) - (z—zo)z[(k+3)2_2 nrkel GO +{ n+k+1)2
k —k—1)b
;oo & 3,1)(1: — DL }(z ~ 20 + 0z - 20)3)]; (2.23)
neE)\ 1 (k +1)°b; (n-k-1)b
(h(Z)) = m[(k+3)_{(ﬂ+k+1)2 +2 P }(Z—ZO)2+O((Z—ZO)3)] (2.24)
and

9@ K@ _ 1 [
9(z)  h(z) (z = 20)?

+ {(nk +k+3n+ 1)b2 - 2(nk + k +2n + 1)b1}(z —20)* +O((z - 20)3)]. (2.25)

(n+k+ 1)k +3)— (nk+k+3n+1)by(z — zp)

Now substituting these values from (2.19) - (2.25) in the expression (2.1) we get F(z) = O((z - zo)). This
completes the proof of Lemma 2.5. [

Lemma 2.6. Let f, g, h, F,a;s(i=1,2,---,8) be defined as in the beginning of this section. Then F(z) # 0.
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Proof. 1f possible, we assume that F(z) = 0. Under this hypothesis we first show that
i) g has no zero,
ii) h has no zero.

Suppose that z; is a zero of g of multiplicity /1(> 1). Then it is clear that f(z1) # 0, c0 and z; is a zero of h
with multiplicity (/; — 1). Then from the Laurent series expansion of F(z) we get the coefficient of (z — z;) 2
as

A(ll) = (111 +a3z + 04)1% — ({12 +as + 2a, + 115)11 + (114 + a5).
For k = 1, putting the valuesof a;'s (i =1,2,--- ,5) we get
A(ly) = —{(n + 1)3n? = 2n = 2)B + (n + 2)(4n? = 3n — D]y + (n + 2)*(n - 2)}.

Clearly A(l;) # 0 for any positive integral value of /;.
For k > 2, we get

Al = (n=D{(k+Dn* + 202 + 5k + 10)n° + (k + 1)k + 2)n? — (k + 122k + 5)n + (k + 1)°}3

+

(n+k+ 1)k + Dk + 1) + (2 + 4k + 9)n? — 22 + 7k + 5)n + (k + 1)*Jly

n(n +k+ 120+ D{(n - Dk + @n - 1}].

By Lemma 2.2, we get A(l;) # 0 for any positive integral value of /;. Therefore z; is a pole of F, a contradiction
to our hypothesis. Thus, z; is not a zero of g and hence g has no zero.

Let z; be a zero of 1 of multiplicity . Then z; is neither a zero nor a pole of g. Then from the Laurent
series expansion of F(z) we obtain the coefficient of (z — z,) 2 as

B(lz) = €l4l§ - a512.

Now fork =1, £ = =2l and fork > 2, 2 = —(k+3) + &1 Clearly, B(,) # 0 for any positive integer

n+1
value of I,. Then z, is a pole+ of F, a contradiction. Hence & has no zero.
Set
O S A AL LI

A A AV VRS TS |
Also,

gl h/ fl ll}/

= = and — = -(n-2)=+ —.

L =f and 3=yf Yy

Now substituting these values in the expression (2.1) we get

’

{(n —2)(az + 2a4) — (a2 + a5)}¢f’ = (a1 +az + a4)¢2f2 + {(az +az +2a4 + @)% + (ag + ay) §}¢f

’ 7\ 2 7\’ A ’ 2 2
+[a4(%—(n—2)§) +a5{(%) —(n—Z)(j%) }+a7§ (%—(n—Z)fT)Jrag(%) ]
From this we obtain
_h

= J) +Lf + LS, (2.26)

where I3, I, I3 are differential polynomials of % and J%
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Now let z3 be a zero of f. Then z3 is a pole of I; and atmost a zero of 1. Hence from (2.26), z3 is a pole of
f’, which is a contradiction.

Therefore N (r, %) = 0. Then from (2.3) we get m (r, %) = S(r, f). Therefore

T(r, f) = N(r, ]lc) + m(r, %) +0(1) = 5(r, f),

a contradiction. Hence F(z) #0. O

3. Proof of the Theorem

Proof. By Lemmas 2.5 and 2.6 we have seen that the simple poles of f are zeros of F and F(z) # 0. Now

gl

g=AffO 4 Bf* —1 and h= 1 A[FFSD +nf fOF + (0 + 1)BSS. (3.1)
Let
AFFED 4 nf fO 4+ (n + 1)Bff
g Afrf® 4 Bfr+l — 1
Therefore
-9 3.3
Bf 7 3.3)

Now we consider the poles of B2F. From Lemma 2.5 we observe that the poles of F are of multiplicities
at most 2 and come from the zeros and poles of g or h. From (3.2) we can see that the poles of § are zeros of
g or poles of h. Now poles of g and & come from the poles of f. But we see that a pole of f of order s(> 2)
is a zero of B of order (1 — 1)s — 1 > 1. Therefore poles of f can not be a pole of 2F. Also from (3.1) we can
see that zeros of 1 comes from multiple zeros of f. But multiple zeros of f are pole of F of order at most 2
and zero of f? of order at least 2. Therefore multiple zeros of f can not be a pole of g>F. Hence poles of f*F
comes only from zeros of g.

Let us suppose that z4 be a zero of g of multiplicity f. Then f(z4) # 0 or co. Therefore z4 is a zero of g’
and h with multiplicity (¢ — 1) and hence a simple pole of . Also we remember that the zeros of g and / can
be a pole of F of order at most 2. Therefore z4 is a pole of f°F of order at most 4. Therefore

N(r, °F) < 4N (r, ;) + (1, f). (3.4)

Now from the expression (2.1) we get m(r,F) = S(r, f). Also using Lemma 2.1 we get from (3.3) that
m(r, B?) = S(r, f). Thus m(r, B*F) = S(r, f). Therefore

T(r, B*F) < 4N (r, %) +5(1, f). (3.5)

Now the zeros of f of order u(> k + 1) are zero of § of order atleast (2u — k — 1). Also zeros of f are not
zero of g but a zero of h of order (2u — k — 1) and then a pole of F of order 2. Therefore zeros of f*F are of
multiplicity at least (4u — 2k — 4). Also simple poles of f are zero of f°F. Therefore

Ni(r, f) + 4Nges1 (r, %) —2(k + 2)N o1 (r, 11[) < N(r, ﬁ%) <T (r, ﬁziP) <4N (r, !1]) +5(r, f). (3.6)
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Combining (3.6) with twice of (2.2) we obtain

2(n + 1)T(r, f) - 2N(r, f) = 2N (r, 1) - 2Ny (r, 1) — 2kN 41 ( ! ) +N1(7, f) + 4N (r, 1)

f f " ¥ f
—2(k + 2)Nts1 (r, %) <6N (r, ;) +S(r, f). 3.7)
Now
@n +2)T(r, f) = @n = 3)T(r, f) + T(r, f) + 4T (r, Jl[) > (21 = 3)T(r, f) + N(7, f) + 4N (r, %) : (3.8)
From (3.7) and (3.8) we get
@n-3)T(r,f) + (NG f)+Ni(r, f)=2NG )} + {4N (r, %) -2N (r, %) - 2Ny (r, %)
+ 4N (r, %) — 4(k + 1)N i1 (r, %) < 6N (r, !1]) + (1, ). (3.9)

Now
N, f) + Ni(r, f) =2N(r, f) = Ni(r, f) + Na(r, f) + Ni(r, f) = 2N1(r, f) = 2N(7, f)
Ne(r, f) = 2Ne(r, f) 2 0

< (n % ) o (r/ % ) 4N (7, %) — 4(k + DN (r, %)

) S 3]s

Therefore from (3.9) we have

>
<
—_
N
=
~————
|

6 —( 1
T(T,f) < mN(T’, 5) + S(T’,f)

This completes the proof of the theorem. [
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