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Abstract. Kenmotsu geometry is a valuable part of contact geometry with nice applications in other fields
such as theoretical physics. In this article, we study the statistical counterpart of a Kenmotsu manifold, that
is, Kenmotsu statistical manifold with some related examples. We investigate some statistical curvature
properties of Kenmotsu statistical manifolds. It has been shown that a Kenmotsu statistical manifold is not
a Ricci-flat statistical manifold by constructing a counter-example. Finally, we prove a very well-known
Chen-Ricci inequality for statistical submanifolds in Kenmotsu statistical manifolds of constantφ−sectional
curvature by adopting optimization techniques on submanifolds. This article ends with some concluding
remarks.

1. Introduction

The geometry of a manifold has an important place in statistics as the statistical model often forms a
geometrical manifold. The theory of statistical manifolds was first initiated by Amari in [1] and applied by
Lauritzen in [9].

A Riemannian manifold (B, 1) with a Riemannian metric 1 is said to be a statistical manifold (B,∇, 1) if
∇1 is symmetric and a pair of torsion-free affine connections ∇ and ∇

∗

on B satisfies

G11(E1,F1) = 1(∇G1 E1,F1) + 1(E1,∇
∗

G1
F1),

for any E1,F1,G1 ∈ Γ(TB). Here ∇
∗

is called the dual connection on B.

Remark 1.1. We have

(1) ∇ = (∇
∗

)∗.

(2) 2∇
1

= ∇ + ∇
∗

,
where ∇

1
is the Levi-Civita connection of 1 on B.
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(3) if (∇, 1) is a statistical structure on B, then (∇
∗

, 1) is again a statistical structure.

For a statistical manifold (B,∇, 1), setK = ∇ − ∇
1
. ThenK ∈ Γ(TB

(1,2)
)

KE1 F1 = KF1 E1, 1(KE1 F1,G1) = 1(F1,KE1 G1)

hold for any E1,F1,G1 ∈ Γ(TB). Conversely, ifK satisfies above relations, then (B,∇ = ∇
1

+K, 1) becomes a
statistical manifold and writeKE1 F1 asK(E1,F1).

The statistical curvature tensor field S
∇,∇

∗

= S with respect to ∇ and ∇
∗

of (B,∇, 1) is [7]

S(E1,F1)G1 = R
1
(E1,F1)G1 + [KE1 ,KF1 ]G1, (1)

for any E1,F1,G1 ∈ Γ(TB). Here R
1

denotes the curvature tensor field with respect to ∇
1
.

K. Kenmotsu [8] studied the third class (that is, the warped product spaces B×s M, where B is a line and
M a Kaehlerian manifold) in Tanno’s classification of connected almost contact metric manifolds whose
automorphism group has a maximum dimension. He analysed the properties of B ×s M and characterized
it as tensor equations. Nowadays such a manifold is known by Kenmotsu manifold. Lately, Furuhata et
al. [7] studied the statistical counterpart of a Kenmotsu manifold and introduced the notion of Kenmotsu
statistical manifolds by putting an affine connection on a Kenmotsu manifold. They gave a method how
to express a Kenmotsu statistical manifold as the warped product of a holomorphic statistical manifold [6]
and a line.

In 1993, B.-Y. Chen [3] initiated the study to establish some bonds between the intrinsic and extrinsic
invariants of submanifolds. He [4] proved a relation between the main extrinsic invariant squared mean
curvature and the main intrinsic invariant Ricci curvature for any submanifold in real space forms. This
inequality is celebrated as Chen-Ricci inequality. Since then numerous geometers obtained the similar
inequalities for different classes of submanifolds and ambient spaces. T. Oprea [15] used optimization
techniques applied in the setup of Riemannian geometry to derive the Chen-Ricci inequality. With a pair of
dual connections, Aydin et al. [2] derived a Chen-Ricci inequality for statistical submanifolds in a statistical
manifold of constant curvature. Also, A. Mihai et al. [11] established a similar inequality with respect to
a sectional curvature of the ambient Hessian manifold. Recently, Siddiqui et al. studied statistical warped
products as submanifolds of statistical manifolds. For statistical warped products statistically immersed in
a statistical manifold of constant curvature, they proved Chen’s inequality involving scalar curvature, the
squared mean curvature, and the Laplacian of warping function (with respect to the Levi–Civita connection)
in [17].

Motivated by the above studies, we establish the Chen-Ricci inequality with respect to a statistical
sectional curvature of the ambient Kenmotsu statistical manifold by using the most interesting result,
namely, optimization on Riemannian submanifolds as follows:

Let (N, 1) be a Riemannian submanifold of a Riemannian manifold (B, 1) and f : B→ R be a differentiable
function. Let

min
x0∈N

f (x0) (2)

be the constrained extremum problem.

Theorem 1.2. [14] If x ∈ N is the solution of the problem (2), then

(1) (1rad f )(x) ∈ T⊥x N,

(2) the bilinear form Θ : TxN × TxN→ R,

Θ(E,F) = Hess f (E,F) + 1(h
′

(E,F), (1rad f )(x))

is positive semi-definite, where h′ is the second fundamental form of N in B and 1rad f denotes the gradient of f .
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We prove the following main theorem of the article:

Theorem 1.3. Let (B(c),∇, 1, φ, ξ) be a (2s + 1)−dimensional Kenmotsu statistical manifold of constant φ−sectional
curvature c and (N,∇, 1) be an (k + 1)−dimensional statistical submanifold in B(c). Then

(1) For each unit vector E1 ∈ TpN, p ∈ N,

Ric∇,∇
∗

(E1) ≥ 2Ric0(E1) −
{3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]
}

−
(k + 1)2

8
[||H||2 + ||H ∗||2], (3)

where Ric0 denotes the Ricci curvature with respect to Levi-Civita connection.

(2) Moreover, the equality holds in the inequality (3) if and only if

2h(E1,E1) = (k + 1)H(p), 2h∗(E1,E1) = (k + 1)H ∗(p),
h(E1,F1) = 0, h∗(E1,F1) = 0,

for all F1 ∈ TpN orthogonal to E1.

2. Preliminaries

Let (N,∇, 1) and (B,∇, 1) be two statistical manifolds. An immersion ι : N → B is called a statistical
immersion if (∇, 1) coincides with the induced statistical structure, that is, if

(∇E11)(F1,G1) = (∇F11)(E1,G1) (4)

holds for any E1,F1,G1 ∈ Γ(TB). If a statistical immersion exists between two statistical manifolds, then we
call (N,∇, 1) as a statistical submanifold in (B,∇, 1). Then the Gauss formulae are [18]

∇E1 F1 = ∇E1 F1 + h(E1,F1), (5)

and

∇
∗

E1
F1 = ∇

∗

E1
F1 + h∗(E1,F1), (6)

for any E1,F1 ∈ Γ(TN). We denote the dual connections on Γ(TN⊥) by D⊥ and D⊥∗. Then the corresponding
Weingarten formulae are [18]:

∇E1U = −AUE1 + D⊥E1
U, (7)

and

∇
∗

E1
U = −A∗

U
E1 + D⊥∗E1

U, (8)

for any E1 ∈ Γ(TN) and U ∈ Γ(TN⊥). The symmetric and bilinear embedding curvature tensors of N in B
with respect to ∇ and ∇

∗

are denoted by h and h∗ respectively. The linear transformations AU and A∗
U

are
given by [18]

1(h(E1,F1),U) = 1(A∗
U

E1,F1), (9)

and

1(h∗(E1,F1),U) = 1(AUE1,F1), (10)
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for any E1,F1 ∈ Γ(TN) andU ∈ Γ(TN⊥).
We denote the Riemannian curvature tensor fields with respect to ∇ and ∇

∗

by R and R
∗

, respectively.
Also, R and R∗ are the the Riemannian curvature tensor fields with respect to the induced connections ∇
and ∇∗ of ∇ and ∇

∗

, respectively. Then the Gauss equations are [18]

1(R(E1,F1)G1,H1) = 1(R(E1,F1)G1,H1) + 1(h(E1,G1), h∗(F1,H1))
−1(h∗(E1,H1), h(F1,G1)), (11)

and

1(R
∗

(E1,F1)G1,H1) = 1(R∗(E1,F1)G1,H1) + 1(h∗(E1,G1), h(F1,H1))
−1(h(E1,H1), h∗(F1,G1)), (12)

for any E1,F1,G1,H1 ∈ Γ(TN). Also, we have

2S = R + R
∗

, (13)

and

2S = R + R∗, (14)

where S∇,∇∗ = S ∈ Γ(TN(1,3)) denotes the statistical curvature tensor field with respect to∇ and∇∗ of (N,∇, 1).
In general, one cannot define a sectional curvature with respect to the dual connections (which are

not metric) by the standard definitions. However, B. Opozda [12, 13] defined a sectional curvature on a
statistical manifold as follows:

K (E1 ∧ F1) = 1(S(E1,F1)F1,E1)

=
1
2

(1(R(E1,F1)F1,E1) + 1(R
∗

(E1,F1)F1,E1)), (15)

for any orthonormal vectors E1,F1 ∈ Γ(TB).
Suppose that dim(N) = k and dim(B) = s. Given a local orthonormal frame {e1, . . . , ek} of TpN and

{ek+1, . . . , es} of TpN⊥, p ∈ N. Then the mean curvature vectorsH andH ∗ are

kH =

k∑
i=1

h(ei, ei), kH ∗ =

k∑
i=1

h∗(ei, ei).

From Remark 1.1, it can be easily verified that

2h0 = h + h∗, and hence 2H0 = H +H ∗,

where h0 and H0 are the second fundamental form and the mean curvature field with respect to ∇
1

respectively. We set

hr
i j = 1(h(ei, e j), er), h∗ri j = 1(h∗(ei, e j), er),

for i, j = {1, . . . ,m} and r = {k + 1, . . . ,n}. Then the squared norm of mean curvature vectors are

k2
||H||

2 =

s∑
r=k+1

( k∑
i=1

hr
ii

)2

, k2
||H

∗
||

2 =

s∑
r=k+1

( k∑
i=1

h∗rii

)2

.

Kenmotsu geometry is a branch of differential geometry with nice applications in mechanics of dy-
namical systems with time dependent Hamiltonian, geometrical optics, thermodynamics and geometric
quantization. Also, the study of submanifolds in Kenmotsu ambient spaces is a valuable subject in Ken-
motsu geometry, which has been analysed by many geometers.
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Definition 2.1. [7] Let (B,∇, 1, φ, ξ) be a Kenmotsu manifold. A quadruplet (B,∇ = ∇
1

+ K, 1, φ, ξ) is called a
Kenmotsu statistical manifold if (∇, 1) is a statistical structure on B and the formula

K(E1, φF1) = −φK(E1,F1) (16)

holds for any E1,F1 ∈ Γ(TB). Here we call (∇, 1, φ, ξ) a Kenmotsu statistical structure on B.

A Kenmotsu statistical manifold (B,∇, 1, φ, ξ) is said to be of constant φ−sectional curvature c ∈ R if [7]

R(E1,F1)G1 =
c − 3

4
{1(F1,G1)E1 − 1(E1,G1)F1}

+
c + 1

4
{1(φF1,G1)φE1 − 1(φE1,G1)φF1

−21(φE1,F1)φG1 − 1(F1, ξ)1(G1, ξ)E1

+1(E1, ξ)1(G1, ξ)F1 + 1(F1, ξ)1(G1,E1)ξ
−1(E1, ξ)1(G1,F1)ξ}, (17)

for E1,F1,G1 ∈ Γ(TB). We denote it by B(c).
Let (N,∇, 1) be a statistical submanifold in a Kenmotsu statistical manifold (B,∇, 1, φ, ξ). Then, the

corresponding Gauss equation is given by (for details see [6])

R(E1,F1)G1 =
c − 3

4
{1(F1,G1)E1 − 1(E1,G1)F1}

+
c + 1

4
{1(φF1,G1)φE1 − 1(φE1,G1)φF1

−21(φE1,F1)φG1 − 1(F1, ξ)1(G1, ξ)E1

+1(E1, ξ)1(G1, ξ)F1 + 1(F1, ξ)1(G1,E1)ξ
−1(E1, ξ)1(G1,F1)ξ}

+
1
2
{Ah(F1,G1)E1 + A∗h∗(F1,G1)E1}

−
1
2
{Ah(E1,G1)F1 + A∗h∗(E1,G1)F1}, (18)

for any E1,F1,G1 ∈ Γ(TN).
Any E1 ∈ Γ(TN) can be decomposed uniquely into its tangent and normal parts PE1 and CE1 respectively,

φE1 = PE1 + CE1.

The squared norm of P is defined by

||P||2 =

k+1∑
i, j=1

12(Pei, e j),

where {e1, . . . , ek+1} denotes a local orthonormal frame of TpN.
A statistical submanifold (N,∇, 1) in a Kenmotsu statistical manifold (B,∇, 1, φ, ξ) is said to be invariant,

C = 0, (respectively, anti-invariant, P = 0) if φE1 ∈ Γ(TN) for any E1 ∈ Γ(TN) (respectively, φE1 ∈ Γ(TN⊥) for
any E1 ∈ Γ(TN)).

3. Statistical Curvature Properties

Before going to prove the results, first we recall the following results of [7]:
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Proposition 3.1. [7] Let (B̃, 1̃, J) be an almost Hermitian manifold. Set B = B̃×R, 1 = e2α1+ (dα)2, ξ = ∂
∂α ∈ Γ(TB)

and define φ ∈ Γ(TB
(1,1)

) by φE2 = JE2 for any E2 ∈ Γ(TB̃) and φξ = 0. Then,

(1) The triple (1, φ, ξ) is an almost contact metric structure on B.

(2) The pair (1̃, J) is a Kähler structure on B̃ if and only if the triple (1, φ, ξ) is a Kenmotsu structure on B.

Theorem 3.2. [7] Let (B̃, 1̃, J) be a Kähler manifold, (B = B̃ × R, 1, φ, ξ) the Kenmotsu manifold as in Proposition

3.1, and (∇ = ∇1 +K, 1) a statistical structure on B. DefineA ∈ Γ(TB
(0,2)
⊗ TB̃), Θ ∈ Γ(TB

(0,2)
) andK ∈ Γ(TB̃(1,2))

by

K(E1,F1) = A(E1,F1) + Θ(E1,F1)ξ, and K(E2,F2) = A(E2,F2),

for E1,F1 ∈ Γ(TB) and E2,F2 ∈ Γ(TB̃). Then the following conditions are equivalent:

(1) (∇, 1, φ, ξ) is a Kenmotsu statistical structure on B.

(2) (∇̃ = ∇1̃ +K, 1̃, J) is a holomorphic statistical structure on N, and the formulae A(E1, ξ) = 0, Θ(E1,F2) = 0
hold for E1 ∈ Γ(TB) and F2 ∈ Γ(TB̃).

Proposition 3.3. [7] Let (B̃, ∇̃ = ∇1̃ + K, 1̃, J) be a holomorphic statistical manifold, and (B = B̃ × R, 1, φ, ξ) the

Kenmotsu manifold as in Proposition 3.1. For any β ∈ C∞(B), defineK ∈ Γ(TB
(1,2)

) by

K(E2,F2) = K(E2,F2), K(E2, ξ) = K(ξ,E2) = 0, and K(ξ, ξ) = βξ,

for any E2,F2 ∈ Γ(TB̃). Then (∇ = ∇1 +K, 1, φ, ξ) is a Kenmotsu statistical structure on B.

Here we construct an easy example on Kenmotsu statistical manifold by using above Propositions 3.1
and 3.3. This is as follows:

Example 3.4. Let us consider a holomorphic statistical manifold (B̃2, ∇̃ = ∇1̃ +K, 1̃, J) [16], where

B̃2 = {t(x, y) ∈ R2
|x > 0}, 1̃ = x[(dx)2 + (dy)2],

J∂1 = ∂2, J∂2 = −∂1, ∂i =
∂

∂xi , i = 1, 2,

K(∂1, ∂1) = −λ∂1, K(∂1, ∂2) = K(∂2, ∂1) = λ∂2, K(∂2, ∂2) = λ∂1,

The affine connections ∇̃ on B̃2 are defined by

∇̃∂1∂1 = (
1
2

(x)−1
− λ)∂1,

∇̃∂1∂2 = ∇̃∂2∂1 = (
1
2

(x)−1 + λ)∂2,

∇̃∂2∂2 = −(
1
2

(x)−1
− λ)∂1.

We take a product, that is, B
3

= B̃ × R, and (B
3
, 1, φ, ξ) is the Kenmotsu manifold as given in Proposition 3.1.

For this, we define

φ(x, y, α) = (−y, x, 0), ξ =
∂
∂α

= ∂α,

φ∂1 = −∂2, φ∂2 = ∂1, φξ = 0,
1 = e2α[(dx)2 + (dy)2] + (dα)2,
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where (x, y, α) denotes the coordinates of B
3
. For β = 1, we define a (1, 2)−tensor fieldK ∈ Γ(TB

3
) by

K(∂1, ∂1) = −λ∂1, K(∂1, ∂2) = K(∂2, ∂1) = λ∂2, K(∂α, ∂α) = ∂α,

K(∂2, ∂2) = λ∂1, K(∂i, ∂α) = K(∂α, ∂i) = 0, i = 1, 2.

Thus, by Proposition 3.3, we conclude that (∇ = ∇1 +K, 1, φ, ξ) is a Kenmotsu statistical structure on B
3
.

We recall the definition of Jacobi operator [10] and give the following statistical version of the definition
of Jacobi operator:

Definition 3.5. Let (B,∇, 1) be a statistical manifold. For any tangent vector field E1 at p ∈ B, the Jacobi operator
RE1 is defined by

(RE1 F1)(p) = (R(F1,E1)E1)(p), (19)

for any F1 ∈ Γ(TB).

Remark 3.6. In particular, we replace E1 by ξ in the equation (19), then we call Rξ as structure Jacobi operator.

We give the following propositions:

Proposition 3.7. Let (B̃, ∇̃ = ∇1̃ +K, 1̃, J) and (B,∇ = ∇1 +K, 1, φ, ξ) be a holomorphic statistical manifold, and
the Kenmotsu statistical manifold as in Theorem 3.2, respectively. Then the structure Jacobi operator is parallel with
respect to ∇.

Proof. From (3.18) of [7] and (19), we have Rξ(E2) = R(E2, ξ)ξ = −E2, for any E2 ∈ Γ(TB̃). For any F2 ∈ Γ(TB̃),
we have

(∇F2 Rξ)(E2) = ∇F2 Rξ(E2) − Rξ(∇F2 E2) = −∇F2 E2 + ∇F2 E2 = 0.

Hence, we get our assertion.

Remark 3.8. In the same Proposition 3.7, one can prove that the structure Jacobi operator is parallel with respect to
∇
∗

also.

Definition 3.9. A statistical manifold is said to be a Ricci-flat statistical manifold if its Ricci curvature vanishes.

Proposition 3.10. Let (B̃, ∇̃ = ∇1̃ +K, 1̃, J) and (B,∇ = ∇1 +K, 1, φ, ξ) be a holomorphic statistical manifold, and
the Kenmotsu statistical manifold as in Theorem 3.2, respectively. If B is of constant φ−sectional curvature c and
dim(B̃) = 2s, then Ricci tensor R̃ic of (B̃, ∇̃, 1̃) is given by

R̃ic = e2α(
(c + 1)(s + 1)

2
)1̃,

for any s ∈ R. Furthermore, B̃ is Ricci-flat statistical manifold if c = −1.
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Proof. Let {ẽ1, . . . , ẽ2s} be a local orthonormal frame of TpB̃, p ∈ B̃. From Proposition 3.9. of [7], we get

R̃ic(E2) =

2s∑
i=1

1̃(R̃(ẽi,E2)E2, ẽi)

= e2α(
c + 1

4
)

2s∑
i=1

{1̃(E2,E2)1̃(ẽi, ẽi) − 1̃(ẽi,E2)1̃(E2, ẽi)

+1̃(JE2,E2)1̃(Jẽi, ẽi) − 31̃(Jẽi,E2)1̃(JE2, ẽi)}

= e2α(
c + 1

4
){(2s − 1)||E2||

2 + 31̃(JE2, JE2)}

= e2α(
c + 1

4
)(2s + 2)||E2||

2

= e2α (c + 1)(s + 1)
2

||E2||
2,

where R̃ denotes the statistical curvature tensor field of (∇̃, 1̃), s ∈ R and E2 ∈ Γ(TB̃). If we take c = −1,
R̃ic = 0 implies that Ricci curvature of B̃ vanishes, and hence B̃ is Ricci-flat statistical manifold. This is the
required assertion.

Proposition 3.11. Let (B̃, ∇̃ = ∇1̃ + K, 1̃, J) and (B,∇ = ∇1 + K, 1, φ, ξ) be a holomorphic statistical manifold,
and the Kenmotsu statistical manifold as in Proposition 3.3, respectively. If K(E2,F2) = 0, and K(E1,F1) =

β1(E1, ξ)1(F1, ξ)ξ, for any E2,F2 ∈ Γ(TB̃), β ∈ C∞(B) and E1,F1 ∈ Γ(TB). Then the following formulae hold:

(1) R(E1,F1)ξ = 1(F1, ξ)E1 − 1(E1, ξ)F1.

(2) R(ξ,E1)F1 = 1(E1,F1)ξ − 1(ξ,F1)E1.

(3) R(φE1, ξ)F1 = 1(ξ,F1)φE1 − 1(φE1,F1)ξ.

(4) R(E1, φF1)ξ + R(ξ,E1)φF1 = −R(φF1, ξ)E1.

(5) The sectional curvatureK for a plane section containing ξ is equal to 1(E1,E1) − 1(E1, ξ)2 at every point of B,
that is,

K (E1 ∧ ξ) = 1(R(E1, ξ)ξ,E1) = 1(E1,E1) − 1(E1, ξ)2.

Proof. By using (1) and straightforward computation, we have our assertions (1), (2) and (3). We get (4)
easily by adding (1) and (2). Furthermore, we evaluate 1(R(E1,F1)G1,H1) for H1 = E1 and F1 = G1 = ξ and
use (1), we get our last assertion (5).

Proposition 3.12. Let (B̃, ∇̃ = ∇1̃ +K, 1̃, J) and (B,∇ = ∇1 +K, 1, φ, ξ) be a holomorphic statistical manifold, and
the Kenmotsu statistical manifold as in Proposition 3.11, respectively. If B is of constant φ−sectional curvature c and
dim(B) = 2s + 1, then the Ricci tensor Ric of B has the following forms:

(1) Ric(E1,F1) = t1 1(E1,F1) + t2 1(E1, ξ)1(F1, ξ), where

t1 =
c(s + 1) − 3s + 1

2
, and t2 =

−(c + 1)(s + 1)
2

.

Moreover, B is not a Ricci-flat statistical manifold.

(2) Ric(E1, ξ) = −2s1(E1, ξ).
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(3) Ric(φE1, φF1) = Ric(E1,F1) + 2s1(E1, ξ)1(F1, ξ).

Proof. From (1) and our assumptions, we have

1(R(E1,F1)G1,H1) = 1(R
1
(E1,F1)G1,H1).

It is known that R
1

is written as the right hand side of (1)-(3) (see [19]). We see that the Ricci curvature of B
never vanish. Thus, B can not be a Ricci-flat statistical manifold.

Example 3.13. We recall Examples 3.3 and 3.10 of [7]. (H2s+1,∇ = ∇1 + K, 1, φ, ξ) is a Kenmotsu statistical
manifold of constant φ−sectional curvature c = −1. By Proposition 3.12, we conclude thatH2s+1 is not a Ricci-flat
statistical manifold.

Proposition 3.14. Let (B(c),∇, 1, φ, ξ) be a Kenmotsu statistical manifold of constant φ−sectional curvature c and
(N,∇, 1) be a statistical submanifold in B(c) such that ξ is tangent to N and φ(TN) ⊂ TN. Suppose that

(1) c = −1;

(2) h(E1,F1) = 1(E1,F1)H and h∗(E1,F1) = 1(E1,F1)H ∗, for any E1,F1 ∈ Γ(TN).

Then N is a statistical manifold of constant curvature 1(H ,H ∗) − 1 whenever 1(H ,H ∗) is a constant.

Proof. By using equation (18) and given condition (2), we get

R(E1,F1)G1 =
c − 3

4
[1(F1,G1)E1 − 1(E1,G1)F1] + 1(H ,H ∗)[1(F1,G1)E1 − 1(E1,G1)F1].

Taking into account of condition (1), we obtain our assertion, that is,

R(E1,F1)G1 = (1(H ,H ∗) − 1)[1(F1,G1)E1 − 1(E1,G1)F1],

for any E1,F1,G1 ∈ Γ(TN).

4. Chen-Ricci Inequality for Statistical Submanifolds

Proof of Theorem 1.3:
We choose {e1, . . . , ek+1} as the orthonormal frame of TpN such that e1 = E1 and ||E1|| = 1, and {ek+2, . . . , e2s+1}

as the the orthonormal frame of TpN⊥. Then by formulae (11)-(14), we have

2S(e1, ei, e1, ei) = 2S(e1, ei, e1, ei) − 1(h(e1, e1), h∗(ei, ei))
−1(h∗(e1, e1), h(ei, ei)) + 21(h(e1, ei), h∗(e1, ei))

= 2S(e1, ei, e1, ei) − {41(h0(e1, e1), h0(ei, ei))
−1(h(e1, e1), h(ei, ei)) − 1(h∗(e1, e1), h∗(ei, ei))
−41(h0(e1, ei), h0(e1, ei)) + 1(h(e1, ei), h(e1, ei))
+1(h∗(e1, ei), h∗(e1, ei))}

= 2S(e1, ei, e1, ei) − 4
s∑

r=k+1

(h0r
11h0r

ii − (h0r
1i )

2)

+

s∑
r=k+1

(hr
11hr

ii − (hr
1i)

2) +

s∑
r=k+1

(h∗r11h∗rii − (h∗r1i)
2),

where we have used the notation

S(E1,F1,G1,H1) = 1(S(E1,F1)H1,G1).
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Summing over 2 ≤ i ≤ k + 1 and using (17), we arrive at

2{
3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]}

= 2Ric∇,∇
∗

(E1) − 4
2s+1∑

r=k+2

k+1∑
i=2

(h0r
11h0r

ii − (h0r
1i )

2)

+

2s+1∑
r=k+2

k+1∑
i=2

(hr
11hr

ii − (hr
1i)

2) +

2s+1∑
r=k+2

k+1∑
i=2

(h∗r11h∗rii − (h∗r1i)
2),

where Ric∇,∇∗ (E1) denotes the Ricci curvature of N with respect to ∇ and ∇∗ at p. Further, we derive

2Ric∇,∇
∗

(E1) − 2{
3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]}

= 4
2s+1∑

r=k+2

k+1∑
i=2

(h0r
11h0r

ii − (h0r
1i )

2) −
2s+1∑

r=k+2

k+1∑
i=2

(hr
11hr

ii − (hr
1i)

2)

−

2s+1∑
r=k+2

k+1∑
i=2

(h∗r11h∗rii − (h∗r1i)
2). (20)

By Gauss equation with respect to ∇
1
, it follows that

Ric0(E1) − {
3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]}

=

2s+1∑
r=k+2

k+1∑
i=2

(h0r
11h0r

ii − (h0r
1i )

2).

Substituting into (20), we arrive at

2Ric∇,∇
∗

(E1) − 2{
3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]}

= 4Ric0(E1) − {3(c + 1)||PE1||
2 + k[(c + 1)(1 − 12(E1, ξ)) − 4]}

−

2s+1∑
r=k+2

k+1∑
i=2

(hr
11hr

ii − (hr
1i)

2) −
2s+1∑

r=k+2

k+1∑
i=2

(h∗r11h∗rii − (h∗r1i)
2).

On simplifying the previous relation, we get

−Ric∇,∇
∗

(E1) − {
3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]}

+2Ric0(E1)

=

2s+1∑
r=k+2

k+1∑
i=2

(hr
11hr

ii − (hr
1i)

2) +

2s+1∑
r=k+2

k+1∑
i=2

(h∗r11h∗rii − (h∗r1i)
2)

≤

2s+1∑
r=k+2

k+1∑
i=2

hr
11hr

ii +

2s+1∑
r=k+2

k+1∑
i=2

h∗r11h∗rii . (21)

Let us define the quadratic form θr, θ∗r : Rk+1
→ R by

θr(hr
11, h

r
22, . . . , h

r
kk) =

2s+1∑
r=k+2

k+1∑
i=2

hr
11hr

ii,

θ∗r(h
∗r
11, h

∗r
22, . . . , h

∗r
kk) =

2s+1∑
r=k+2

k+1∑
i=2

h∗r11h∗rii .
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We consider the constrained extremum problem maxθr subject to

Q :
k+1∑
i=1

hr
ii = ar,

where ar is a real constant. The gradient vector field of the function θr is given by

1rad θr = (
k+1∑
i=2

hr
ii, h

r
11, h

r
11, . . . , h

r
11).

For an optimal solution p = (hr
11, h

r
22, . . . h

r
kk) of the problem in question, the vector 1rad θr is normal to Q

at the point p. It follows that

hr
11 =

k+1∑
i=2

hr
ii =

ar

2
.

Now, we fix x ∈ Q. The bilinear form π : TxQ × TxQ→ R has the following expression:

π(E1,F1) = Hessθr (E1,F1)+ < h
′

(E1,F1), (1rad θr)(x) >,

where h′ denotes the second fundamental form of Q inRk+1 and < ·, · > denotes the standard inner product
on Rk+1. The Hessian matrix of θr is given by

Hessθr =


0 1 . . . 1
1 0 . . . 0
...
...

. . .
...

1 0 . . . 0
1 0 . . . 0


.

We consider a vector E1 ∈ TxQ, which satisfies a relation E2 + · · · + Ek+1 = −E1. As h′ = 0 in Rk+1, we get

π(E1,E1) = Hessθr (E1,E1) = 2E1(E2 + · · · + Ek+1)
= (E1 + E2 + · · · + Ek+1)2

− (E1)2
− (E2 + · · · + Ek+1)2

= −2(E1)2
≤ 0.

However, the point p is the only optimal solution, i.e., the global maximum point of problem. Thus, we
obtain

θr ≤
1
4

(
k+1∑
i=1

hr
ii)

2 =
(k + 1)2

4
(H r)2. (22)

Next, we deal with the constrained extremum problem maxθ∗r subject to

Q∗ :
k+1∑
i=1

h∗rii = a∗r,

where a∗r is a real constant. By similar arguments as above, we find

θ∗r ≤
1
4

(
k+1∑
i=1

h∗rii )2 =
(k + 1)2

4
(H ∗r)2. (23)

On combining (21), (22) and (23), we get our desired inequality (3). Moreover, the vector field E1 satisfies
the equality case if and only if

hr
1i = 0, h∗r1i = 0, i ∈ {2, . . . , k + 1}

hr
11 = (

k + 1
2

)H , h∗r11 = (
k + 1

2
)H ∗.

Thus, it proves our assertion.
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5. Conclusions and Remarks

Remark 5.1. We recall some important results given by Furuhata et al. [7] and add more new results to a Kenmotsu
statistical manifold (the warped product of a holomorphic statistical manifold and a line) of constant φ−sectional
curvature with some related examples. It is known that the Ricci tensor of a statistical manifold is not symmetric,
unlike the Riemannian case where the Ricci tensor of the Riemannian connection is symmetric and has a precise
geometric and physical meaning. For a torsion-free affine connection on a simply connected n−manifold, the Ricci
tensor is symmetric if and only if the connection preserves a volume n−form. But this is not true in the case of Kenmotsu
statistical manifolds. So, it is unnatural to consider the condition that Ricci tensor (that is non-symmetric) to be
proportional with the metric tensor. We also conclude that a Kenmotsu statistical manifold of constant φ−sectional
curvature can not be a Ricci-flat statistical manifold (by Proportion 3.12 (1)). For instance, a Kenmotsu statistical
manifold (H2s+1,∇ = ∇1 +K, 1, φ, ξ) of constant φ−sectional curvature −1 is not a Ricci-flat statistical manifold.

Remark 5.2. As we know that 2H0 = H +H ∗. Then the inequality (3) can be rewritten as

Corollary 5.3. Let (B(c),∇, 1, φ, ξ) be a (2s+1)−dimensional Kenmotsu statistical manifold of constant φ−sectional
curvature c and (N,∇, 1) be an (k + 1)−dimensional statistical submanifold in B(c). Then for each unit vector
E1 ∈ TpN, we have

Ric∇,∇
∗

(E1) ≥ 2Ric0(E1) − {
3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]}

−
(k + 1)2

2
||H

0
||

2 +
(k + 1)2

4
1(H ,H ∗).

Corollary 5.4. Let (B(c),∇, 1, φ, ξ) be a (2s+1)−dimensional Kenmotsu statistical manifold of constant φ−sectional
curvature c and (N,∇, 1) be an (k + 1)−dimensional statistical submanifold in B(c). Suppose that N is minimal with

respect to ∇
1
, then for each unit vector E1 ∈ TpN, we have

Ric∇,∇
∗

(E1) ≥ 2Ric0(E1) − {
3(c + 1)

4
||PE1||

2 +
k
4

[(c + 1)(1 − 12(E1, ξ)) − 4]} +
(k + 1)2

4
1(H ,H ∗).

Further, we derive

Corollary 5.5. Let (B(c),∇, 1, φ, ξ) be a (2s+1)−dimensional Kenmotsu statistical manifold of constant φ−sectional
curvature c and (N,∇, 1) be an (k + 1)−dimensional statistical submanifold in B(c).

(1) For each unit vector E1 ∈ TpN orthogonal to ξ, we have

Ric∇,∇
∗

(E1) ≥ 2Ric0(E1) − {
3(c + 1)

4
||PE1||

2 +
(c − 3)k

4
} −

(k + 1)2

8
[||H||2 + ||H ∗||2]. (24)

(1.1) If N is invariant, then

Ric∇,∇
∗

(E1) ≥ 2Ric0(E1) −
c(k + 3) + 3(1 − k)

4
−

(k + 1)2

8
[||H||2 + ||H ∗||2]. (25)

(1.2) If N is anti-invariant, then

Ric∇,∇
∗

(E1) ≥ 2Ric0(E1) −
k(c − 3)

4
−

(k + 1)2

8
[||H||2 + ||H ∗||2]. (26)

(2) Moreover, the equality holds in the inequalities (24)-(26) if and only if

2h(E1,E1) = (k + 1)H(p), 2h∗(E1,E1) = (k + 1)H ∗(p),
h(E1,F1) = 0, h∗(E1,F1) = 0,

for all F1 ∈ TpN orthogonal to E1.



A. N. Siddiqui et al. / Filomat 35:2 (2021), 591–603 603

Remark 5.6. By Theorem 3.2, Proposition 3.9 of [7], we say that c = −1 and (B̃, ∇̃, 1̃, J) is of constant holomorphic
sectional curvature 0. Thus, from Theorem 1.3, one can easily obtain the following result:

Corollary 5.7. Let (B̃, ∇̃ = ∇̃1̃+K̃, 1̃, J) and (B,∇ = ∇
1
+K, 1, φ, ξ) be a holomorphic statistical manifold of constant

holomorphic sectional curvature 0, and be the Kenmotsu statistical manifold of constant φ−sectional curvature −1
as in Proposition 3.9 of [7], respectivley. If (N,∇, 1) is a statistical submanifold in B with dim(B) = 2s + 1 and
dim(N) = k + 1, then

(1) For each unit vector E1 ∈ TpN, p ∈ N,

Ric∇,∇
∗

(E1) ≥ 2Ric0(E1) + 4 −
(k + 1)2

8
[||H||2 + ||H ∗||2]. (27)

(2) Moreover, the equality holds in the inequality (27) if and only if

2h(E1,E1) = (k + 1)H(p), 2h∗(E1,E1) = (k + 1)H ∗(p),
h(E1,F1) = 0, h∗(E1,F1) = 0,

for all F1 ∈ TpN orthogonal to E1.
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