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Abstract. In this paper we consider unbounded weighted conditional type (WCT) operators on Lp-space.
We provide some conditions under which WCT operators on Lp-spaces are densely defined. Specifically,
we obtain a dense subset of their domain. Moreover, we get that a WCT operator is continuous if and only
if it is every where defined. A description of polar decomposition, spectrum, spectral radius, normality
and hyponormality of WCT operators in this context are provided. Finally, we apply some results of
hyperexpansive operators to WCT operators on the Hilbert space L2(Σ). As a consequence hyperexpansive
multiplication operators are investigated.

1. Introduction

In the present paper we consider a class of unbounded linear operators on Lp-spaces having the form
MwEMu, where E is a conditional expectation operator and Mu and Mw are multiplication operators.
What follows is a brief review of the operators E and multiplication operators, along with the notational
conventions we will be using.
Let (Ω,Σ, µ) be a σ-finite measure space and letA be a σ-subalgebra of Σ such that (Ω,A, µ) is also σ-finite.
We denote the collection of (equivalence classes modulo sets of zero measure of) Σ-measurable complex-
valued functions on Ω by L0(Σ) and the support of a function f ∈ L0(Σ) is defined as S( f ) = {t ∈ Ω; f (t) , 0}.
Moreover, we set Lp(Σ) = Lp(Ω,Σ, µ). We also adopt the convention that all comparisons between two
functions or two sets are to be interpreted as holding up to a µ-null set. For each σ-finite subalgebra A of
Σ, the conditional expectation, EA( f ), of f with respect toA is defined whenever f ≥ 0 or f ∈ Lp(Σ). In any
case, EA( f ) is the uniqueA-measurable function for which∫

A
f dµ =

∫
A

EA f dµ, ∀A ∈ A.

As an operator on Lp(Σ), EA is an idempotent and EA(Lp(Σ)) = Lp(A). If there is no possibility of confusion
we write E( f ) in place of EA( f ) [10, 12]. This operator will play a major role in our work and we list here
some of its useful properties:

• If 1 isA-measurable, then E( f1) = E( f )1.
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• |E( f )|p ≤ E(| f |p).
• If f ≥ 0, then E( f ) ≥ 0; if f > 0, then E( f ) > 0.

• |E( f1)| ≤ E(| f |p)|
1
p E(|1|q)|

1
q , (Hölder inequality) for all f ∈ Lp(Σ) and 1 ∈ Lq(Σ), in which 1

p + 1
q = 1.

• For each f ≥ 0, S( f ) ⊆ S(E( f )).
Let u ∈ L0(Σ). The corresponding multiplication operator Mu on Lp(Σ) is defined by f → u f . Our interest
in operators of the form MwEMu stems from the fact that such products tend to appear often in the study
of those operators related to conditional expectation. This observation was made in [1, 2, 5, 8, 9]. In this
paper, first we investigate some properties of unbounded weighted conditional type operators on the space
Lp(Σ) and then, we apply some results of hyperexpansive operators to WCT operators on the Hilbert space
L2(Σ). As a consequence hyperexpansive multiplication operators are investigated.

2. Unbounded weighted conditional type operators

Let X stand for a Banach space and B(X) for the Banach algebra of all linear operators on X. By an
operator in X we understand a linear mapping T : D(T) ⊆ X → X defined on a linear subspace D(T) of X
which is called the domain of T. The linear map T is called densely defined if D(T) is dense in X and it is
called closed if its graph G(T) is closed in X × X, where G(T) = {( f ,T f ) : f ∈ D(T)}. We studied bounded
weighted conditional type operators on Lp-spaces in [4]. Also we investigated unbounded weighted
conditional type operators of the form EMu on the Hilbert space L2(Σ) in [3]. Here we consider unbounded
weighted conditional type operators of the form of MwEMu on Lp(Ω,Σ, µ), in which (Ω,Σ, µ) is a σ-finite
measure space. Let f be a positive Σ-measurable function on Ω. Define the measure µ f : Σ→ [0,∞] by

µ f (E) =

∫
E

f dµ, E ∈ Σ.

It is clear that the measure µ f is also σ-finite, since µ is σ-finite. From now on we assume that u and w
are conditionable (i.e., E(u) and E(w) are defined). Operators of the form of MwEMu( f ) = wE(u. f ) acting in
Lp(µ) with D(MwEMu) = { f ∈ Lp(µ) : u. f ∈ D(E), wE(u. f ) ∈ Lp(µ)} are called weighted conditional type
operators (or briefly WCT operators). In the first proposition we provide a condition under which the WCT
operator MwEMu is densely defined on Lp-spaces.

Theorem 2.1. Let 1 ≤ p, q < ∞ such that 1
p + 1

q = 1 and E(|w|p)
1
p E(|u|q)

1
q < ∞ a.e. Then the linear transformation

MwEMu is densely defined on Lp(Ω,Σ, µ).

Proof. For each n ∈N, define

An = {t ∈ Ω : n − 1 ≤ E(|w|p)(t)E(|u|q)
p
q (t) < n}.

It is clear that each An is an A-measurable set and Ω is expressible as the disjoint union of {An}
∞

n=1,
Ω = ∪∞n=1An.
Let f ∈ Lp(Σ) and ε > 0. Then, there exists N > 0 such that∫

∪∞n=NAn

| f |pdµ =

∞∑
n=N

∫
An

| f |pdµ < ε.

Define the sets
BN = ∪∞n=NAn, CN = ∪N−1

n=1 An.

Then,
∫

BN
| f |pdµ < ε and CN = {t ∈ Ω : E(|w|p)(t)E(|u|q)

p
q (t) < N − 1}. Next, we define 1 = f .χCN . Clearly

1 ∈ Lp(Σ) and E(1) = E( f ).χCN . Now, we show that 1 ∈ D = D(MwEMu). By an straightforward calculations
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we have∫
Ω

|wE(u1)|pdµ =

∫
Ω

|wE(u f )χCN |
pdµ

=

∫
CN

E(|w|p)|E(u f )|pdµ

≤

∫
CN

E(|w|p)E(|u|q)
p
q | f |pdµ

≤ (N − 1)
∫

CN

| f |pdµ < ∞.

Thus, wE(u f ) ∈ Lp(Σ). Now, we show that ‖1 − f ‖p < ε:

‖1 − f ‖pp =

∫
X
|1 − f |pdµ

=

∫
CN

|1 − f |pdµ < ε.

ThereforeD is dense in Lp(Σ).

Here we obtain a dense subset of Lp(µ) that we need it to proof our next results.

Lemma 2.2. Let 1 < p, q < ∞ such that 1
p + 1

q = 1, J = 1 + E(|w|p)E(|u|q)
p
q , E(|w|p)

1
p E(|u|q)

1
q < ∞ a.e, µ, and

dν = Jdµ. Then we get that S(J) = Ω and
(i) Lp(ν) ⊆ D(MwEMu),

(ii) Lp(ν)
‖.‖µ

= D(MwEMu)
‖.‖µ

= Lp(µ).

Proof. Let f ∈ Lp(ν). Then
‖ f ‖pdµ ≤ ‖ f ‖pν < ∞,

and so f ∈ Lp(µ). Also, by conditional-type Hölder-inequality we have

‖MwEMu( f )‖pdµ ≤
∫

Ω

E(|w|p)E(|u|q)
p
q E(| f |p)dµ

=

∫
Ω

E(|w|p)E(|u|q)
p
q | f |pdµ

≤ ‖ f ‖pν < ∞.

This implies that f ∈ D(MwEMu). Now we prove that Lp(ν) is dense in Lp(µ). By Riesz representation
theorem we have

(Lp(ν))⊥ = {1 ∈ Lq(µ) :
∫

Ω

f .1dµ = 0, ∀ f ∈ Lp(ν)}.

Suppose that 1 ∈ (Lp(ν))⊥. For A ∈ Σ we set An = {t ∈ A : J(t) ≤ n}. It is clear that An ⊆ An+1 and Ω = ∪∞n=1An.
Also, Ω is σ-finite, hence Ω = ∪∞n=1Ωn with µ(Ωn) < ∞. If we set Bn = An ∩ Ωn, then Bn ↗ A and so
1.χBn ↗ 1.χA a.e. µ. Since ν(Bn) ≤ (n + 1)µ(Bn) < ∞, we have χBn ∈ Lp(ν) and then by our assumptions we
have

∫
Bn

f dµ = 0. Therefore by Fatou’s lemma we get that
∫

A 1dµ = 0. Consequently, for all A ∈ Σ we have∫
A 1dµ = 0. This means that 1 = 0 a.e. µ and so Lp(ν) is dense in Lp(µ).

By the Lemma 2.2 we get that Lp(ν) is a core of MwEMu. Here we give a condition that we will use it in the
next theorem.
(F) If (Ω,A, µ) is a σ-finite measure space and J − 1 = (E(|u|q))

p
q E(|w|p) < ∞ a.e. µ, then there exists a

sequence {An}
∞

n=1 ⊆ A such that µ(An) < ∞ and J−1 < n a.e. µ on An for every n ∈N and An ↗ Ω as n→∞.
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Theorem 2.3. If u,w : Ω → C are Σ-measurable and 1 < p, q < ∞ such that 1
p + 1

q = 1, then the following are
equivalent:

(i) MwEMu is densely defined on Lp(Σ),

(ii) J − 1 = E(|w|p)(E(|u|q))
p
q < ∞ a.e., µ.

(iii) µJ−1 |A is σ-finite.

Proof. (i) → (ii) Let E = {E(|w|p)(E(|u|q))
p
q = ∞}. Clearly, we have f |E= 0 a.e., µ for every f ∈ Lp(ν). This

implies that f .J |E= 0 a.e. So we have J.χA∩E = 0 a.e., µ for all A ∈ Σ, with µ(A) < ∞. By σ-finiteness of µ, we
have J.χE = 0 a.e., µ. Since S(J) = Ω, we get that µ(E) = 0.
(ii)→ (i) Evident.

(ii)→ (iii) Let {An}
∞

n=1 be in (F). We have

µJ−1 |A (An) =

∫
An

E(|w|p)(E(|u|q))
p
q dµ ≤ nµ(An) < ∞, n ∈N.

This yields (iii).

(iii)→ (i) Let {An}
∞

n=1 ⊆ A such that An ↗ Ω as n→∞ and µJ−1 |A (An) < ∞, for every k ∈N. It follows

from the definition of µJ−1 that J − 1 = E(|w|p)(E(|u|q))
p
q < ∞ a.e., µ on Ω. Applying Theorem 2.1, we get

(i).

Let X,Y be Banach spaces and T : X→ Y be a linear operator. If T is densely defined, then there is a unique
maximal operator T∗ fromD(T∗) ⊂ Y∗ into X∗ such that

y∗(Tx) = 〈Tx, y∗〉 = 〈x,T∗y∗〉 = T∗y∗(x), x ∈ D(T), y∗ ∈ D(T∗).

T∗ is called the adjoint of T.
Riesz representation theorem for Lp- spaces states that 〈 f ,F〉 = F( f ) =

∫
Ω

f F̄dµ, when f ∈ Lp(Σ), F ∈ Lq(Σ) =

(Lp(Σ))∗ and 1
p + 1

q = 1. By Theorem 2.3 easily we get that the operator MwEMu is densely defined if and
only if the operator MūEMw̄ is densely defined. In the next proposition we obtain the adjoint of the WCT
operator MwEMu on the Banach space Lp(Σ).

Proposition 2.4. If the linear transformation T = MwEMu is densely defined on Lp(Σ), then MūEMw̄ is a densely
defined operators on Lq(Σ) and T∗ = MūEMw̄, where 1

p + 1
q = 1.

Proof. Let f ∈ D(T) and 1 ∈ D(T∗). Then we have

〈T f , 1〉 =

∫
Ω

wE(u f )1̄dµ

=

∫
Ω

f uE(w1̄)dµ

= 〈 f ,MūEMw̄1〉.

Therefore T∗ = MūEMw̄.

In the next proposition we prove that every densely defined WCT operator is closed.

Proposition 2.5. If (E(|u|q))
p
q E(|w|p) < ∞ a.e., µ, then the linear transformation MwEMu : D(MwEMu)→ Lp(Σ) is

closed.
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Proof. Assume that fn ∈ D(MwEMu), fn → f , wE(u fn)→ 1, and let h ∈ D(MūEMw̄). Then

〈 f ,MūEMw̄h〉 = lim
n→∞
〈 fn,MūEMw̄h〉

= lim
n→∞
〈wE(u fn), h〉 = 〈1, h〉.

This calculation ( which uses the continuity of the inner product and the fact that fn ∈ D(MwEMu))
shows that f ∈ D(MwEMu) and wE(u f ) = 1, as required.

In the next theorem we provide an equivalent condition to continuity of WCT operator MwEMu.

Theorem 2.6. If (E(|u|q))
p
q E(|w|p) < ∞ a.e.,µ, then the WCT operator MwEMu : D(MwEMu)→ Lp(Σ) is continuous

if and only if it is every where defined i.e.,D(MwEMu) = Lp(Σ).

Proof. Let MwEMu be continuous. By Lemma 2.2 it is closed. Hence easily we get thatD(MwEMu) is closed
and soD(MwEMu) = Lp(Σ). The converse is easy by closed graph theorem.

We denote the range of the operator T as R(T) i.e., R(T) = {T(x) : x ∈ D(T)}.

Proposition 2.7. If E(|u|2)E(|w|2) < ∞ a.e., µ and MwEMu : D(MwEMu) ⊂ L2(Σ) → L2(Σ), then R(MwEMu) is
closed if and only if R(MūEMw̄) is closed.

Proof. Let P1 : L2(Σ) × L2(Σ) → G(MwEMu) be a projection and P2 : L2(Σ) × L2(Σ) → {0} × L2(Σ) be the
canonical projection. It is clear that R(MwEMu) � R(P2P1). Also, R(MūEMw̄) � R((I − P2)(I − P1)). Since P1
and P2 are orthogonal projections, then R(P2P1) is closed if and only if R((I − P2)(I − P1)). Thus we obtain
the desired result.

It is well-known that for a densely defined closed operator T fromH1 intoH2, there exists a partial isometry
UT with initial spaceN(T)⊥ = R(T∗) = R(|T|) and final spaceN(T∗)⊥ = R(T) such that

T = UT |T|.

Now we are going to find the polar decomposition of WCT operator MwEMu on the Hilbert space L2(Σ).

Theorem 2.8. Let MwEMu be densely defined on L2(Σ) and MwEMu = U|MwEMu| be its polar decomposition. Then

(i) |MwEMu| = Mu′EMu, where u′ = ( E(|w|2)
E(|u|2) )

1
2 .χS.ū and S = S(E(|u|2)),

(ii) U = Mw′EMu, where w′ : Ω→ C is an a.e. µ well-defined Σ-measurable function such that

w′ =
w

(E(|w|2)E(|u|2))
1
2

.χS∩G,

in which G = S(E(|w|2)).

Proof. (i). For every f ∈ D(Mu′EMu), we have

‖Mu′EMu( f )( f )‖2 = ‖|MwEMu|( f )‖2.

Also, by Lemma 2.2 we conclude that D(Mu′EMu) = D(|MwEMu|) and it is easily seen that Mu′EMu is a
positive operator. These observations imply that |MwEMu| = Mu′EMu.
(ii). For f ∈ L2(Σ) we have ∫

Ω

|w′E(u f )|2dµ =

∫
Ω

χS∩G

E(|w|2)E(|u|2)
|wE(u f )|2dµ,
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which implies that the operator Mw′EMu is well-defined and N(MwEMu) = N(Mw′EMu). Also, for f ∈
D(MwEMu) 	N(MwEMu) we have

U(|MwEMu|( f )) = wE(u f ).χS∩G = wE(u f ).

Thus ‖U( f )‖ = ‖ f ‖ for all f ∈ R(|MwEMu|) and since U is a contraction, then it holds for all f ∈ N(MwEMu)⊥ =

R(|MwEMu|).

Here we remind that: if T : D(T) ⊂ X→ X is a closed linear operator on the Banach space X, then a complex
number λ belongs to the resolvent set ρ(T) of T, if the operator λI − T has a bounded everywhere on X
defined inverse (λI − T)−1, called the resolvent of T at λ and denoted by Rλ(T). The set σ(T) := C \ ρ(T) is
called the spectrum of the operator T.
It is known that, if a, b are elements of a unital algebra A, then 1 − ab is invertible if and only if 1 − ba is
invertible. A consequence of this equivalence is that σ(ab) \ {0} = σ(ba) \ {0}. Now, in the next theorem we
compute the spectrum of WCT operator MwEMu as a densely defined operator on L2(Σ).

Proposition 2.9. Let MwEMu be densely defined andA  Σ. Then

(i) essrange(E(uw)) \{0} ⊆ σ(MwEMu).

(ii) If L2(A) ⊆ D(EMuw), then σ(MwEMu) \ {0} ⊆ essrange(E(uw)) \{0}.

Proof. Since σ(MwEMu) \ {0} = σ(EMuMw) \ {0} = σ(EMuw) \ {0}, then by Theorem 2.8 of [3] we get the
proof.

By a similar method that we used in the proof of Theorem 2.8 of [3] we have the same assertion for the
spectrum of the densely defined operator EMu on the space Lp(Σ), i.e.,

(i) essrange(E(u))∪{0} ⊆ σ(EMu).

(ii) If Lp(A) ⊆ D(EMu), then σ(EMu) ⊆ essrange(E(u))∪{0}.
By these observations we have the next remark.

Remark 2.10. Let MwEMu be densely defined operator on Lp(Σ) andA  Σ. Then

(i) essrange(E(uw)) \{0} ⊆ σ(MwEMu).

(ii) If Lp(A) ⊆ D(EMuw), then σ(MwEMu) \ {0} ⊆ essrange(E(uw)) \{0}.

As we know the spectral radius of a densely defined operator T is denoted by r(T) and is defined as:
r(T) = supλ∈σ(T) |λ|. Hence we have the next corollary.

Corollary 2.11. If the WCT operator MwEMu is densely defined on Lp(Σ) and Lp(A) ⊆ D(EMuw), then σ(MwEMu)\
{0} = essrange(E(uw)) \{0} and r(MwEMu) = ‖E(uw)‖∞.

A densely defined operator T on the Hilbert space H is said to be hyponormal if D(T) ⊆ D(T∗) and
‖T∗( f )‖ ≤ ‖T( f )‖, for all f ∈ D(T). Also, it is to be normal if T is closed and T∗T = TT∗. For the WCT operator
T = MwEMu on L2(Σ) we have T∗ = MūEMw̄ and we recall that T is densely defined if and only if T∗ is
densely defined. If T is densely defined, then by the Lemma 2.2 we get that L2(ν) ⊆ D(T), L2(ν) ⊆ D(T∗) and

L2(ν)
‖.‖µ

= D(T)
‖.‖µ

= D(T∗)
‖.‖µ

= L2(µ),

in which dν = Jdµ and J = 1 + E(|w|2)E(|u|2). Also, we have T∗T = ME(|w|2)ūEMu and TT∗ = ME(|u|2)wEMw̄.
Similarly, we have L2(ν′) ⊆ D(T∗T), L2(ν′) ⊆ D(TT∗) and

L2(ν′)
‖.‖µ

= D(T∗T)
‖.‖µ

= D(TT∗)
‖.‖µ

= L2(µ),

in which dν′ = J′dµ and J′ = 1 + (E(|w|2))2(E(|u|2))2. By these observations we have next assertions.
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Proposition 2.12. Let WCT operator MwEMu be densely defined on L2(Σ). Then we have the followings:
(i) If u(E(|w|2))

1
2 = w̄(E(|u|2))

1
2 with respect to the measure µ, then T = MwEMu is normal.

(ii) If T = MwEMu is normal, then E(|w|2)|E(u)|2 = E(|u|2)|E(w)|2 with respect to the measure µ.

Proof. (i) Direct computations show that

T∗T − TT∗ = MūE(|w|2)EMu −MwE(|u|2)EMw̄,

on L2(ν′). Hence for every f ∈ L2(ν′),

〈T∗T − TT∗( f ), f 〉 =

∫
X

E(|w|2)E(u f )ū f − E(|u|2)E(w̄ f )w f̄ dµ

=

∫
X
|E(u(E(|w|2))

1
2 f )|2 − |E((E(|u|2))

1
2 w̄ f )|2dµ.

This implies that if

(E(|u|2))
1
2 w̄ = u(E(|w|2))

1
2 ,

then 〈T∗T − TT∗( f ), f 〉 = 0, for all f ∈ L2(ν′). Thus T∗T = TT∗.

(ii) Let T be normal. By (i), we have∫
X
|E(u(E(|w|2))

1
2 f )|2 − |E((E(|u|2))

1
2 w̄ f )|2dµ = 0,

for all f ∈ L2(ν′). Now, let A ∈ A, with 0 < ν′(A) < ∞. By replacing f with χA, we have∫
A
|E(u(E(|w|2))

1
2 )|2 − |E((E(|u|2))

1
2 w̄)|2dµ = 0

and so ∫
A
|E(u)|2E(|w|2) − |E(w)|2E(|u|2)dµ = 0.

Since A ∈ A is arbitrary and µ� ν′ (absolutely continuous), then |E(u)|2E(|w|2) = |E(w)|2E(|u|2) with respect
to µ.

In the next proposition we obtain some necessary and sufficient conditions for hyponormality of WCT
operators.

Proposition 2.13. Let the WCT operator MwEMu be densely defined on L2(Σ). Then we have the followings:

(i) If u(E(|w|2))
1
2 ≥ w̄(E(|u|2))

1
2 with respect to µ, then T = MwEMu is hyponormal.

(ii) If T = MwEMu is hyponormal, then E(|w|2)|E(u)|2 ≥ E(|u|2)|E(w)|2 with respect to the measure µ.

Proof. By a similar method of 2.12 we can get the proof.

If we set w ≡ 1, then we have the next remark.

Remark 2.14. Let EMu be a densely defined operator on L2(Σ). Then EMu is norma if and only if u ∈ L0(A) if and
only if EMu is hyponormal.
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3. Hyperexpansive WCT operators

In this section we provide some conditions under which WCT operator MwEMu on L2(Σ) is k-isometry,
k-expansive, k-hyperexpansive and completely hyperexpansive. For an operator T on the Hilbert spaceH
we set

ΘT,n( f ) =
∑

0≤i≤n

(−1)i
(

n
i

)
‖Ti( f )‖2, f ∈ D(Tn), n ≥ 1.

By means of this definition an operator T onH is said to be:

(i) k-isometry (k ≥ 1) if ΘT,k( f ) = 0, for f ∈ D(Tk),

(ii) k-expansive (k ≥ 1) if ΘT,k( f ) ≤ 0, for f ∈ D(Tk),

(iii) k-hyperexpansive (k ≥ 1) if ΘT,n( f ) ≤ 0, for f ∈ D(Tn) and n = 1, 2, ..., k.

(iv) completely hyperexpansive if ΘT,n( f ) ≤ 0, for f ∈ D(Tn) and n ≥ 1.

For more details one can see [6, 7, 11]. It is easily seen that for each f ∈ L2(Σ),

‖MwEMu( f )‖2 = ‖EMv( f )‖2,

where v = u(E(|w|2))
1
2 .

Let T1 = MwEMu and T2 = EMv. By the above information we have, T1 is k-isomerty if and only if
T2 is k-isometry, T1 is k-expansive if and only if T2 is k-expansive, T1 is k-hyperexpansive if and only if T2
is k-hyperexpansive and T1 is completely hyperexpansive if and only if T2 is completely hyperexpansive.
Thus without loss of generality we can consider the operator EMv instead of MwEMu in our discussion.
Now we present our main results. The next lemma is a direct consequence of Theorem 2.3.

Lemma 3.1. For every n ∈ N the operator (EMv)n on L2(Σ) is densely-defined if and only if the operator EMv is
densely defined on L2(Σ).

In the Theorem 3.2 we give some necessary and sufficient conditions for k-isometry and k-expansive WCT
operators EMv.

Theorem 3.2. LetD(EMv) be dense in L2(µ). Then we have the followings.

(i) If the operator EMv is k-isometry (k ≥ 1), then A0
k(|E(v)|2) = 0, a.e.

(ii) If (1 + E(|v|2)A1
k(|E(v)|2)) = 0, a.e., and |E(v f )|2 = E(|v|2)E(| f |2), a.e., for all f ∈ D(EMv), then the operator

EMv is k-isometry.

(iii) If the operator EMv is k-expansive, then A0
k(|E(v)|2) ≤ 0, a.e.

(iv) If (1 + E(|v|2)A1
k(|E(v)|2)) ≤ 0, a.e., and |E(v f )|2 = E(|v|2)E(| f |2), a.e., for each f ∈ D(EMv), then the operator

EMv is k-expansive, in which

A0
k(|E(v)|2) =

∑
0≤i≤k

(−1)i
(

k
i

)
|E(v)|2i, A1

k(|E(v)|2) =
∑

1≤i≤k

(−1)i
(

k
i

)
|E(v)|2(i−1).
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Proof. Suppose that the operator EMv is k-isometry. So for all f ∈ D((EMv)k) we have

0 = ΘT,k( f )

=
∑

0≤i≤k

(−1)i
(

n
i

)
‖(EMv)i( f )‖2

=

∫
Ω

| f |2dµ +
∑

1≤i≤k

(−1)i
(

n
i

) ∫
Ω

|E(v)|2(i−1)
|E(v f )|2dµ.

Hence for allA-measurable functions f ∈ D((EMv)k)

0 =

∫
Ω

| f |2dµ +
∑

1≤i≤k

(−1)i
(

n
i

) ∫
Ω

|E(v)|2(i−1)
|E(v)|2| f |2dµ

=

∫
Ω

 ∑
0≤i≤k

(−1)i
(

n
i

)
|E(v)|2i

 | f |2dµ.

Since (EMv)k is densely defined, then we get that Ak(|E(v)|2) = 0, a.e.
(ii) Let 1 + E(|v|2)A1

k(|E(v)|2) = 0 and |E(v f )|2 = E(|v|2)E(| f |2), a.e., for all f ∈ D((EMv)k). Then for each
f ∈ D((EMv)k),

ΘT,k( f ) =
∑

0≤i≤k

(−1)i
(

n
i

)
‖(EMv)i( f )‖2

=

∫
Ω

| f |2dµ +
∑

1≤i≤k

(−1)i
(

n
i

) ∫
Ω

|E(v)|2(i−1)
|E(v f )|2dµ

=

∫
Ω

| f |2dµ +

∫
Ω

 ∑
1≤i≤k

(−1)i
(

n
i

)
(E(|v|2))2(i−1)

 E(|v|2)E(| f |2)dµ

=

∫
Ω

(1 + E(|v|2)Ak(|E(v)|2))| f |2dµ

= 0.

This implies that the operator EMv is k-isometry.
(iii), (iv). By the same method that is used in (i) and (ii), easily we get (iii) and (iv).

Here we recall that if the linear transformation T = EMv is densely defined on L2(Σ), then T = EMv is closed
and T∗ = Mv̄E. Also, ifD(EMv) is dense in L2(Σ) and v is almost every where finite valued, then the operator
EMv is normal if and only if v ∈ L0(A) [3]. Hence we have the Remark 3.3 for normal WCT operators.

Remark 3.3. Suppose that the operator EMv is normal and D(EMv) is dense in L2(µ), for a fixed k ≥ 1. If
|E( f )|2 = E(| f |2), a.e., on S(v) for all f ∈ D((EMv)k), then:

(i) The operator EMv is k-isometry (k ≥ 1) if and only if Ak(|v|2) = 0, a.e,;

(ii) The operator EMv is k-expansive if and only if Ak(|v|2) ≤ 0, a.e.

Proof. Since EMv is normal, then |E(v)|2 = E(|v|2) = |v|2, a.e. Thus by Theorem 3.2 we have (i) and (ii).
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Here we give some properties of 2-expansive WCT operators and as a corollary for 2-expansive multiplica-
tion operators.

Proposition 3.4. IfD(EMv) is dense in L2(µ) and EMv is 2-expansive, then:

(i) EMv leaves its domain invariant:

(ii) |E(v)|2k
≥ |E(v)|2(k−1) a.e., µ, for all k ≥ 1.

Proof. (i). Since EMv is 2-expansive, we get that for each f ∈ D(EMv),

‖(EMv)2( f )‖2 =

∫
Ω

|E(v)|2|E(v f )|2dµ

≤ 2
∫

Ω

|E(v f )|2dµ −
∫

Ω

| f |2dµ

< ∞,

so EMv( f ) ∈ D(EMv).

(ii) Since EMv leaves its domain invariant, thenD(EMv) ⊆ D∞(EMv). So by lemma 3.2 (iii) of [7] we get
that ‖(EMv)k( f )‖2 ≥ ‖(EMv)k−1( f )‖2, for all f ∈ D(EMv) and k ≥ 1. Also, we have∫

Ω

|E(v)|2(k−1)
|E(v f )|2dµ ≥

∫
Ω

|E(v)|2(k−2)
|E(v f )|2dµ.

Hence ∫
Ω

(|E(v)|2(k−1)
− |E(v)|2(k−2))|E(v f )|2dµ ≥ 0,

for all f ∈ D(EMv). This leads to |E(v)|2k
≥ |E(v)|2(k−1) a.e., µ.

Corollary 3.5. IfD(Mv) is dense in L2(µ) and Mv is 2-expansive, then we have:

(i) Mv leaves its domain invariant:

(ii) v2k
≥ v2(k−1) a.e. µ for all k ≥ 1.

Recall that a real-valued map φ on N is said to be completely alternating if
∑

0≤i≤n(−1)i

(
n
i

)
φ(m + i) ≤ 0

for all m ≥ 0 and n ≥ 1. The next remark is a direct consequence of Lemma 3.1 and Theorem 3.2.

Remark 3.6. IfD(EMv) is dense in L2(µ) and k ≥ 1 is fixed, then:

(i) If the operator EMv is k-hyperexpansive (k ≥ 1), then A0
n(|E(v)|2) ≤ 0 for n = 1, 2, ..., k;

(ii) If (1 + E(|v|2)A1
n(|E(v)|2)) ≤ 0 and |E(v f )|2 = E(|v|2)E(| f |2) for all f ∈ D(EMv)n and n = 1, 2, ..., k, then the

operator EMv is k-hyperexpansive (k ≥ 1);

(iii) If the operator EMv is completely hyperexpansive, then

(a) the sequence {|E(v)(t)|2}∞n=0 is a completely alternating sequence for almost every t ∈ Ω,
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(b) A0
n(|E(v)|2) ≤ 0 for n ≥ 1.

(iv) If (1+E(|v|2)A1
n(|E(v)|2)) ≤ 0 and |E(v f )|2 = E(|v|2)E(| f |2) for all f ∈ D((EMv)n) and n ≥ 1, then the operator

EMv is completely hyperexpansive.

By Remark 3.6 and some properties of normal WCT operators we get the next remark for k-hyperexpansive
and completely hyperexpansive normal WCT operators.

Remark 3.7. Let the operator EMv be normal,D(EMv) be dense in L2(µ) and k ≥ 1 be fixed. If |E( f )|2 = E(| f |2) on
S(v) for all f ∈ D((EMv)k), then

(i) EMv is k-hyperexpansive (k ≥ 1) if and only if An(|v|2) ≤ 0 for f ∈ D(Tn) and n = 1, 2, ..., k.

(ii) EMv is completely hyperexpansive if and only if the sequence {|u(t)|2}∞n=0 is a completely alternating sequence
for almost every t ∈ Ω,

If all functions v2i for i = 1, ...,n are finite valued, then we set

4v,n(x) =
∑

0≤i≤n

(−1)i
(

n
i

)
|v|2i(t).

Also, ifA = Σ, then E = I. So we have next two corollaries.

Corollary 3.8. IfD(Mv) is dense in L2(µ) for a fixed n ≥ 1, then:

(i) Mv is k-expansive if and only if 4v,n(x) ≤ 0 a.e. µ.

(ii) Mv is k-isometry if and only 4v,n(x) = 0 a.e. µ.

Corollary 3.9. LetD(Mv) be dense in L2(µ) and k ≥ 1 be fixed. Then

(i) Mv is k-hyperexpansive (k ≥ 1) if and only if 4v,n(t) ≤ 0 a.e., µ for n = 1, 2, ..., k.

(ii) Mv is completely hyperexpansive if and only if the sequence {|u(t)|2}∞n=0 is a completely alternating sequence
for almost every t ∈ Ω.

Finally we give some examples.

Example 3.10. Let Ω = [−1, 1], dµ = 1
2 dx andA =< {(−a, a) : 0 ≤ a ≤ 1} > (Sigma algebra generated by symmetric

intervals). Then

EA( f )(t) =
f (t) + f (−t)

2
, t ∈ Ω,

where EA( f ) is defined. If v(t) = et, then EA(v)(t) = cosh(t) and we have the followings:

1) EAMv is densely defined and closed on Lp(Ω).

2) σ(EAMv) = R(cosh(t)).

3) EAMv is not 2-expansive, since

1 − 2|E(v)|2(t) + |E(v)|4(t) = 1 − 2 cosh2(t) + cosh4(t)

= (cosh2(t) − 1)2
≥ 0.
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Example 3.11. Let Ω = N, G = 2N and let µ({t}) = pqt−1, for each t ∈ Ω =, 0 ≤ p ≤ 1 and q = 1 − p.
Elementary calculations show that µ is a probability measure on G. LetA be the σ-algebra generated by the partition
B = {Ω1 = {3n : n ≥ 1},Ωc

1} of Ω. So, for every f ∈ D(EA) we have

E( f ) = α1χΩ1 + α2χΩc
1

and direct computations show that

α1( f ) =

∑
n≥1 f (3n)pq3n−1∑

n≥1 pq3n−1

and

α2( f ) =

∑
n≥1 f (n)pqn−1

−
∑

n≥1 f (3n)pq3n−1∑
n≥1 pqn−1 −

∑
n≥1 pq3n−1 .

So, if u and w are real functions on Ω. Then we have the followings:

1) If α1((|u|q)
p
q )α1(|w|p) < ∞ and α2((|u|q)

p
q )α2(|w|p) < ∞ , then the operator MwEMu is a densely defined and

closed operator on Lp(Ω).

2) σ(MwEMu) = {α1(E(uw)), α2(E(uw))}.

Example 3.12. Let Ω = [0, 1] × [0, 1], dµ = dtdt′, Σ the Lebesgue subsets of Ω and let A = {A × [0, 1] :

A is a Lebesgue set in [0, 1]}. Then, for each f in L2(Σ), (E f )(t, t′) =
∫ 1

0 f (t, s)ds, which is independent of the second
coordinate. Hence for v(t, t′) = tm we get that v isA-measurable and EMv is k-expansive and k-isometry if∑

0≤i≤k

(−1)i
(

k
i

)
x2mi
≤ 0,

∑
0≤i≤k

(−1)i
(

k
i

)
t2mi = 0,

respectively. This example is valid in the general case as follows:
Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two σ-finite measure spaces and Ω = Ω1 ×Ω2, Σ = Σ1 × Σ2 and µ = µ1 × µ2.
PutA = {A ×Ω2 : A ∈ Σ1}. ThenA is a sub-σ-algebra of Σ. Then for all f in domain EA we have

EA( f )(t1) = EA( f )(t1, t2) =

∫
Ω2

f (t1, s)dµ2(s) µ − a.e.

on Ω.

Also, if (Ω,Σ, µ) is a finite measure space and k : Ω ×Ω→ C is a Σ ⊗ Σ-measurable function such that∫
Ω

|k(., s) f (s)|dµ(s) ∈ L2(Σ)

for all f ∈ L2(Σ). Then the operator T : L2(Σ)→ L2(Σ) defined by

T f (t) =

∫
Ω

k(t, s) f (s)dµ, f ∈ L2(Σ),

is called kernel operator on L2(Σ)). We show that T is a weighted conditional type operator.[5] Since L2(Σ)×{1} � L2(Σ)
and v f is a Σ ⊗ Σ-measurable function, when f ∈ L2(Σ). Then by taking v := k and f ′(t, s) = f (s), we get that

EA(v f )(t) = EA(v f ′)(t, s)

=

∫
Ω

v(t, t′) f ′(, t′)dµ(t′)

=

∫
Ω

v(t, t′) f (t′)dµ(t′)

= T f (t).
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Hence T = EMv, i.e, T is a weighted conditional type operator. This means all assertions of this paper are valid for a
class of integral type operators.
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