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Abstract. Let H+
n (R) be the cone of all positive semidefinite n × n real matrices. Two of the best known

partial orders that were mostly studied on subsets of square complex matrices are the Löwner and the
minus partial orders. Motivated by applications in statistics we study these partial orders on H+

n (R). We
describe the form of all surjective maps on H+

n (R), n > 1, that preserve the Löwner partial order in both
directions. We present an equivalent definition of the minus partial order on H+

n (R) and also characterize
all surjective, additive maps on H+

n (R), n ≥ 3, that preserve the minus partial order in both directions.

1. Introduction

Let Mm,n(F) whereF = R orF = C be the set of all m×n real or complex matrices, let At
∈Mn,m(F) denote

the transpose, A∗ ∈ Mn,m(F) the conjugate transpose, Im A the image (i.e. the column space), and Ker A the
kernel (the nullspace) of A ∈ Mm,n(F). Any matrix which is a solution X = A− ∈ Mn,m(F) to the equation
AXA = A is called an inner generalized inverse of A ∈ Mm,n(F). Note that every matrix A ∈ Mm,n(F) has
an inner generalized inverse (see e.g. [24]). If m = n, then we will write Mn(F) instead of Mn,n(F). We say
that A ∈ Mn(F) is symmetric if A = At and Hermitian (or self-adjoined) if A = A∗. A symmetric matrix
A ∈ Mn(R) is said to be positive semidefinite if xtAx ≥ 0 for every x ∈ Rn. More generally, a Hermitian
matrix A ∈ Mn(C) is said to be positive semidefinite if z∗Az ≥ 0 for every z ∈ Cn. The study of positive
semidefinite matrices is a flourishing area of mathematical investigation (see e.g. the monograph [1] and
the references therein). Moreover, positive semidefinite matrices have become fundamental computational
objects in many areas of statistics, engineering, quantum information, and applied mathematics. They
appear as variance-covariance matrices (also known as dispersion or covariance matrices) in statistics, as
elements of the search space in convex and semidefinite programming, as kernels in machine learning,
as density matrices in quantum information, and as diffusion tensors in medical imaging. It is known
(see e.g. [6]) that every variance-covariance matrix is positive semidefinite, and that every (real) positive
semidefinite matrix is a variance-covariance matrix of some multivariate distribution.
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There are many partial orders which may be defined on various sets of matrices. We will next present
two of the best known. Let A,B ∈Mn(R) be symmetric matrices. Then we say that A is below B with respect
to the Löwner partial order and write

A ≤L B if B − A is positive semidefinite. (1)

Löwner partial order has many applications in statistics especially in the theory of linear statistical models.
Let

y = Xβ + ε

be the matrix form of a linear model. Here y is a real n × 1 random vector of observed quantities which we
try to explain with other quantities that determine the matrix X ∈Mn,p(R). It is assumed that E(ε) = 0 and
V(ε) = σ2D, i.e. the errors have the zero mean and covariances are known up to a scalar (real number). Here
V denotes the variance-covariance matrix. The nonnegative parameter σ2 and the vector of parameters
(real numbers) β are unspecified, and D ∈ Mn(R) is a known positive semidefinite matrix. We denote this
linear model with the triplet (y,Xβ, σ2D).

Classical inference problems related to the linear model (y,Xβ, σ2D) usually concern a vector linear
parametric function (LPF), Aβ (here A is a real matrix with p columns). We try to estimate it by a linear
function of the response Cy (here C is a real matrix with n columns). We say that the statistic Cy is a linear
unbiased estimator (LUE) of Aβ if E(Cy) = Aβ for all possible values of β ∈ Rp. A vector LPF is said to be
estimable if it has an LUE. The best linear unbiased estimator (BLUE) of an estimable vector LPF is defined
as the LUE having the smallest variance-covariance matrix. Here, the “variance-covariance” condition is
expressed in terms of the Löwner order ≤L. Let Aβ be estimable. Then Ly is said to be BLUE of Aβ if (i)
E(Ly) = Aβ for all β ∈ Rp and (ii) V(Ly) ≤L V(My) for all β ∈ Rp and all My satisfying E(My) = Aβ.

The second partial order which also has many applications in statistics (see [24, Sections 15.3, 15.4]) may
be defined on the full set Mm,n(R). For A,B ∈ Mm,n(R) we say that A is below B with respect to the minus
partial order (know also as the rank substractivity partial order) and write

A ≤− B when A−A = A−B and AA− = BA−

for some inner generalized inverse A− of A. It is known (see e.g. [24]) that for A,B ∈Mm,n(R),

A ≤− B if and only if rank(B − A) = rank(B) − rank(A). (2)

Note that both orders may be defined in the same way on sets of complex matrices [24]. Moreover, the
minus partial order was introduced by Hartwig in [11] and independently by Nambooripad in [27] on a
general regular semigroup however it was mostly studied on Mn(F) (see [23] and the references therein).
More recently, Šemrl generalized in [34] this order to B(H), the algebra of all bounded linear opearators on
a Hilbert space H , and studied preservers of this order (see also [18]). Let A be some subset of B(H) and
denote by ≤ one of the above orders (i.e. ≤L or ≤−). We say that that a map ϕ : A → A preserves an order
≤ in both directions when

A ≤ B if and only if ϕ(A) ≤ ϕ(B)

for every A,B ∈ A.
Motivated by applications in quantum mechanics and quantum statistics Molnár studied preservers that

are connected to certain structures of bounded linear operators which appear in mathematical foundations
of quantum mechanics, i.e. he studied automorphisms of the underlying quantum structures or, in other
words, quantum mechanical symmetries. Let A∗ be the adjoint operator of A ∈ B(H), and let

B+(H) =
{
A ∈ B(H) : A = A∗ and 〈Ax, x〉 ≥ 0 for every x ∈ H

}
be the set of all positive operators in B(H). Note that in case when dimH < ∞, the set B+(H) may
be identified with the set of all positive semidefinite n × n matrices. Note also that we may generalize
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definition (1) to the set of all self-adjoined operators in B(H) in the following way: For two self-adjoined
operators A,B ∈ B(H) we write A ≤L B when B−A ∈ B+(H). Under assumption thatH is a complex Hilbert
space with dimH > 1, Molnár described in [25] the form of all bijective maps on B+(H) that preserve the
Löwner partial order in both directions. It turns out that every such a map ϕ is of the form

ϕ(A) = TAT∗, A ∈ B+(H) (3)

where T :H →H is an invertible bounded either linear or conjugate-linear operator. Since we expect that
maps preserving the Löwner order in both directions on the set of all real positive semidefinite matrices
may have interesting applications in statistics (e.g. in the theory of comparison of linear models [32]), we
will study such maps in Section 3. We will show that a similar result to Molnár’s Theorem 1 from [25] holds
also in the real matrix case, i.e. we will characterize surjective maps (omitting the injectivity assumption)
on the set of all n×n, n ≥ 2, positive semidefinite real matrices that preserve the order ≤L in both directions.
In Section 4, we will study the minus partial order, search for applications of this order in statistics, and
describe the form of all surjective, additive maps on the set of all n × n, n ≥ 3, positive semidefinite real
matrices that preserve the minus partial order in both directions.

2. Preliminaries

Let us present some tools that will be useful throughout the paper. As before, let F = R or F = C. Let
Hn(F) be the set of all Hermitian (symmetric in the real case) matrices in Mn(F), denote by H+

n (F) the set of
all positive semidefinite matrices in Hn(F) and by Pn(F) the set of all idempotent matrices in H+

n (F) (i.e. the
set of all orthogonal projection matrices in Mn(F)). Let V be a subspace of Fn. By PV ∈ Pn(F) we will denote
the orthogonal projection matrix with Im PV = V. Recall that a convex cone C is a subset of a vector space
V over an ordered field that is closed under all linear combinations with nonnegative scalars. For every
convex cone C, we will from now on assume that C ∩ (−C) = {0}. Observe that then every convex cone C
induces a partial ordering ≤ onV so that we write

x ≤ y when y − x ∈ C.

Note that H+
n (F) is a convex cone which is closed in the real normed vector space Hn(F). The following

result of Rothaus [31] will be one of the main tools in the proof of our first theorem.

Proposition 2.1. LetD be the interior of a closed convex coneC in a real normed vector spaceV. Supposeϕ : D→D
is a bijective map where

x ≤ y if and only if ϕ(x) ≤ ϕ(y)

for every x, y ∈ D. Then the map ϕ is linear.

We say that two Hermitian (symmetric) matrices A,B ∈ Mn(F) are adjacent if rank(A − B) = 1. Huang
and Šemrl characterized in [15] maps ϕ : Hn(C)→Hm(C), m,n ∈N, n > 1, such that matrices ϕ(A) and ϕ(B)
are adjacent whenever A and B are adjacent, A,B ∈ Hn(C). In [20] Legiša considered adjacency preserving
maps from Hn(R) to Hm(R) and proved the following result.

Proposition 2.2. Let n ≥ 2 and let ϕ : Hn(R)→Hm(R) be a map preserving adjacency, i.e. if A,B ∈ Hn(R) and
rank(A − B) = 1, then rank(ϕ(A) − ϕ(B)) = 1. Suppose ϕ(0) = 0. Then either

(i) there is a rank-one matrix B ∈ Hm(R) and a function f : Hn(R)→ R such that for every A ∈ Hn(R)

ϕ(A) = f (A)B, or

(ii) there exist c ∈ {−1, 1} and an invertible matrix R ∈Mm(R) such that for every A ∈ Hn(R)

ϕ(A) = cR
[

A 0
0 0

]
Rt.

(Obviously, in this case m ≥ n. If m = n, the zeros on the right-hand side of the formula are absent.)



I. Golubić, J. Marovt / Filomat 35:2 (2021), 617–632 620

We will conclude this section with an auxiliary result. Note first that for A,B ∈ Hn(F), B ≤L A implies
Im B ⊆ Im A (see e.g. [24, Corollary 8.2.12]).

Lemma 2.3. Let A,B ∈ H+
n (F) and let rank(A) = 1. If B ≤L A, then B = λA for some scalar λ ∈ [0, 1].

Proof. Since A is of rank-one and A ∈ H+
n (F), it follows by the spectral theorem [7, page 46] that A = αP

where α > 0 and P ∈ Pn(F) with rank(P) = 1. Let B ≤L A for some B ∈ H+
n (F). Then Im B ⊆ Im A and thus

rank(B) ≤ 1. Again, by the spectral theorem B = βQ for some β ≥ 0 and a rank-one Q ∈ Pn(F). If β = 0, then
B = 0 and thus B = λA for λ = 0. Suppose β , 0. Since Im B ⊆ Im A, we have Im Q = Im P and thus (since P
and Q are orthogonal projection matrices) P = Q. Let λ =

β
α . We have

λA =
β

α
αP = βP = B.

Moreover, from B ≤L A it clearly follows that λ ∈ [0, 1].

3. Preservers of the Löwner partial order

Let S ∈ Mn(R) be an invertible matrix and A,B,C ∈ Hn(R). It is easy to see ([24, Theorem 8.2.7, Remark
8.2.8]) that then

A ≤L B if and only if SASt
≤

L SBSt. (4)

Also, if A ≤L B, then A + C ≤L B + C and λA ≤L λB for every λ ≥ 0. Let us now state and prove our
main result. The proof will follow some ideas from [25, the proof of Theorem 1] however for the sake of
completeness and since we are dealing here with real matrices, we will not skip the details and will present
it in its entirety.

Theorem 3.1. Let n ≥ 2 be an integer. Then ϕ : H+
n (R) → H+

n (R) is a surjective map that preserves the Löwner
order ≤L in both directions if and only if there exists an invertible matrix S ∈Mn(R) such that

ϕ(A) = SASt

for every A ∈ H+
n (R).

Proof. If ϕ : H+
n (R) → H+

n (R) is of the form ϕ(A) = SASt, A ∈ H+
n (R), where S ∈ Mn(R) is invertible, than it

preserves by (4) the order ≤L in both directions and is clearly surjective.
Conversely, let ϕ : H+

n (R) → H+
n (R) be a surjective map that preserves the Löwner order ≤L in both

directions. We will split the proof into several steps.
1. ϕ is bijective. Let ϕ(A) = ϕ(B) for A,B ∈ H+

n (R). The order ≤L is reflexive so ϕ(A) ≤L ϕ(B) and
ϕ(B) ≤L ϕ(A). Since ϕ preserves the order ≤L in both directions, we have A ≤L B and B ≤L A. It follows that
A = B, since ≤L is antisymmetric. Thus, ϕ is injective and therefore bijective.

2. ϕ(0) = 0. Note that 0 ≤L A for every A ∈ H+
n (R). So, on the one hand 0 ≤L ϕ(0) and on the other hand,

since ϕ−1 has the same properties as ϕ, 0 ≤L ϕ−1(0) and thus ϕ(0) ≤L 0.
3. ϕ preserves the set of all matrices of rank-one. Let us first show that A ∈ H+

n (R) is of rank-one if and only
if for every B,C ∈

{
D ∈ H+

n (R) : D ≤L A
}
≡ [0,A] we have B ≤L C or C ≤L B, i.e. the order ≤L is linear on

[0,A].
Let A ∈ H+

n (R) be of rank-one and suppose first B,C ∈ [0,A]. By Lemma 2.3 we have B = λA and C = µA
for some λ, µ ∈ [0, 1]. If λ = 0 or µ = 0, then clearly B ≤L C or C ≤L B. Suppose λ , 0 and µ , 0. It follows
that µB = λC and thus

B − C =
(
1 −

µ

λ

)
B.
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Clearly, then 0 ≤L B − C or 0 ≤L C − B, i.e. C ≤L B or B ≤L C.
Conversely, suppose that the order ≤L is linear on [0,A] and assume that rank(A) > 1. By the spectral

theorem there exist P1,P2 ∈ Pn(R) of rank-one with Im P1 ∩ Im P2 = {0}, and λ1, λ2 ∈ (0,∞), such that
λ1P1 ≤

L A and λ2P2 ≤
L A, i.e. λ1P1, λ2P2 ∈ [0,A] . This yields by assumption λ1P1 ≤

L λ2P2 or λ2P2 ≤
L λ1P1

and therefore in either case Im P1 = Im P2, a contradiction.
Since ϕ preserves the order ≤L in both directions, [0,A] is linearly ordered if and only if

[
0, ϕ(A)

]
is

linearly ordered. Thus, A ∈ H+
n (R) is of rank-one if and only if ϕ(A) is of rank-one.

4. ϕ preserves the set of all invertible (i.e. positive definite) matrices. For every matrix P ∈ Pn(R) of rank r
there exists an orthogonal matrix Q ∈Mn(R) such that

P = Q
[

Ir 0
0 0

]
Qt

where Ir is the r × r identity matrix. Let I denote the identity matrix in Mn(R). Since then

I − P = Q
[

0 0
0 In−r

]
Qt

it follows by the definition (1) that P ≤L I for every matrix P ∈ Pn(R). This implies, εP ≤L εI for every
ε ≥ 0. Let ε > 0 be arbitrary but fixed. Let us show that then ϕ(εI) is invertible. By the transitivity of ≤L,
αP ≤L εI for every P ∈ Pn(R) and any scalar α where 0 ≤ α ≤ ε. Suppose ϕ(εI) is not invertible. Then there
exists a rank-one Q ∈ Pn(R) such that Im Q * Imϕ(εI). Since ϕ is surjective and sends rank-one matrices
to rank-one matrices, there exists a rank-one P ∈ Pn(R) and α > 0 such that ϕ(αP) = Q. Here α > ε since
ϕ preserves the order in both directions. From εP ≤L αP we have ϕ(εP) ≤L ϕ(αP) = Q. Both εP and Q
are of rank-one and therefore Imϕ(εP) = Im Q. This is a contradiction since ϕ(εP) ≤L ϕ(εI) and therefore
Imϕ(εP) ⊆ Imϕ(εI). So, ϕ(εI) is invertible for any ε > 0.

Let now T ∈ H+
n (R) be an invertible (i.e. positive definite) matrix. By [29, page 93] there exists ε > 0

such that εI ≤L T. It follows that ϕ(εI) ≤L ϕ(T) and thus Rn = Imϕ(εI) ⊆ Imϕ(T). So, ϕ(T) is invertible.
Since ϕ−1 has the same properties as ϕ, we may conclude that T ∈ H+

n (R) is invertible if and only if ϕ(T) is
invertible.

5. ϕ is linear on the set of all invertible matrices in H+
n (R). The interior of the set H+

n (R) of all positive
semidefinite matrices is the set of all invertible (i.e. positive definite) matrices in H+

n (R) (see [17, page 239]).
Since H+

n (R) is a convex cone which is closed in the real normed vector space Hn(R) and since ϕ preserves
the set of all invertible matrices, we may conclude by Proposition 2.1 that ϕ is linear (additive and positive
homogenous) on the set of all invertible matrices in H+

n (R).
6. ϕ is a linear map. Let A,B ∈ H+

n (R) and let Ak = A + 1
k I, Bk = B + 1

k I, k ∈ N. Then {Ak} and {Bk} are
sequences of positive definite (invertible) matrices in H+

n (R). Observe that both sequences are monotone
decreasing with respect to≤L and note that the sequence {Ak} converges to A and the sequence {Bk} converges
to B in the strong operator topology. Also, infk Ak = A and infk Bk = B where inf denotes the infimum of
a sequence. We have A + B = infk(Ak + Bk). Since ϕ preserves the order, it follows that ϕ(A) = infk ϕ(Ak),
ϕ(B) = infk ϕ(Bk), and ϕ(A + B) = infk ϕ(Ak + Bk). Therefore,

{
ϕ(Ak)

}
,
{
ϕ(Bk)

}
, and

{
ϕ(Ak + Bk)

}
are monotone

decreasing sequences bounded from below. By [5, Definition 2.8 and Example 2.10] (see also [30, page 263])
there exist the limits (in the strong sense) of these sequences that equal their infima. Thus,

ϕ(A) = lim
k→∞

ϕ(Ak), ϕ(B) = lim
k→∞

ϕ(Bk), ϕ(A + B) = lim
k→∞

ϕ(Ak + Bk).

Step 5 yields that ϕ(Ak + Bk) = ϕ(Ak) + ϕ(Bk) and hence

ϕ(A + B) = lim
k→∞

ϕ(Ak + Bk) = lim
k→∞

ϕ(Ak) + lim
k→∞

ϕ(Bk) = ϕ(A) + ϕ(B),

i.e. ϕ is additive. To show that ϕ is also (positive) homogenous, let λ ≥ 0 be any scalar. Clearly,
λA = infk(λAk). Again, by the previous step it follows that

ϕ(λA) = lim
k→∞

ϕ(λAk) = λ lim
k→∞

ϕ(Ak) = λϕ(A).
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7. We will extend the map ϕ from H+
n (R) to Hn(R). Let A ∈ Hn(R). There exists an orthogonal matrix

Q ∈Mn(R) such that A = QtDQ where D is a diagonal matrix having the eigenvalues of A on the diagonal, i.e.
D =diag(λi : 1 ≤ i ≤ n). Let D+ =diag

(
λ+

i : 1 ≤ i ≤ n
)

and D− =diag
(
λ−i : 1 ≤ i ≤ n

)
where λ+

i = max {λi, 0}
and λ−i = max {−λi, 0}. Clearly, then A = QtD+Q −QtD−Q. Note that both QtD+Q,QtD−Q ∈ H+

n (R). We call
the matrices QtD+Q and QtD−Q the positive and the negative part of A, respectively. We may now extend
the map ϕ to the map ϕ̂ : Hn(R)→Hn(R) in the following way:

ϕ̂(C) = ϕ(C+) − ϕ(C−), C ∈ Hn(R),

where C+ and C− are the positive and the negative part of C, respectively. Recall that ϕ(0) = 0. Take
C ∈ H+

n (R) and note that then C+ = C and C− = 0. So, ϕ̂(C) = ϕ(C) − ϕ(0) = ϕ(C).
8. ϕ̂ is a linear map. Let A,B ∈ H+

n (R) and C = A − B. So, C ∈ Hn(R). From C+
− C− = C = A − B, we have

C+ + B = A + C− ∈ H+
n (R). Recall that ϕ is additive hence ϕ(C+) + ϕ(B) = ϕ(A) + ϕ(C−) and thus

ϕ̂(A − B) = ϕ̂(C) = ϕ(C+) − ϕ(C−) = ϕ(A) − ϕ(B). (5)

Let us show that ϕ̂ is additive. Let C,D ∈ Hn(R). Then by (5)

ϕ̂(C + D) = ϕ̂(C+
− C− + D+

−D−) = ϕ̂((C+ + D+) − (C− + D−))
= ϕ(C+ + D+) − ϕ(C− + D−) = ϕ(C+) − ϕ(C−) + ϕ(D+) − ϕ(D−)
= ϕ̂(C) + ϕ̂(D).

Let us now prove that ϕ̂ is homogenous. Let C ∈ Hn(R) and let λ ∈ R. Suppose first λ ≥ 0. Then
(λC)+ = λC+ and (λC)− = λC− are the positive and the negative part of λC, respectively. Sinceϕ is (positive)
homogenous, we have

ϕ̂(λC) = ϕ(λC+) − ϕ(λC−) = λϕ(C+) − λϕ(C−) = λϕ̂(C).

Let now λ < 0. Then (λC)+ = −λC− and (λC)− = −λC+. So, ϕ̂(λC) = ϕ̂(−λC− − (−λC+)) and therefore by (5)

ϕ̂(λC) = ϕ(−λC−) − ϕ(−λC+) = −λϕ(C−) − (−λ)ϕ(C+) = λ(ϕ(C+) − ϕ(C−)) = λϕ̂(C).

9. ϕ̂ preserves the order ≤L in both directions. Since ϕ̂(C) = ϕ(C) for every C ∈ H+
n (R), we observe that

0 ≤L C if and only if 0 ≤L ϕ̂(C). Let C1,C2 ∈ Hn(R). Then C1 ≤
L C2 if and only if 0 ≤L ϕ̂(C2 − C1). Since ϕ̂ is

linear, this equivalent to ϕ̂(C1) ≤L ϕ̂(C2).
10. ϕ̂ is bijective. Since ϕ̂ preserves the order ≤L in both directions, it is clearly injective (see the first

step). To show that ϕ̂ is surjective, let C ∈ Hn(R). Then we may write C = C+
− C− where C+,C− ∈ H+

n (R).
Since ϕ is surjective, there exist A,B ∈ H+

n (R) such that C+ = ϕ(A) = ϕ̂(A) and C− = ϕ(B) = ϕ̂(B). So,

C = C+
− C− = ϕ̂(A) − ϕ̂(B) = ϕ̂(A − B),

i.e. ϕ̂ is surjective.
11. ϕ̂ is an adjacency preserving map. Let us first show that ϕ̂ preserves the set of all rank-one matrices.

Let C ∈ Hn(R) be a rank-one matrix. By the spectral theorem, C = αP where α ∈ R is nonzero and P ∈ Pn(R)
is of rank-one. Since ϕ̂ is linear and since P ∈ H+

n (R), we have

ϕ̂(C) = αϕ̂(P) = αϕ(P).

Recall thatϕ preserves the set of rank-one matrices. It follows that ϕ̂(C) is of rank-one. Let now A,B ∈ Hn(R)
with rank(A − B) = 1, i.e. let A and B be adjacent. It follows that ϕ̂(A − B) is of rank-one. Since
ϕ̂(A − B) = ϕ̂(A) − ϕ̂(B), we may conclude that ϕ̂(A) and ϕ̂(B) are adjacent.

We are now in the position to conclude the proof of the theorem. Since ϕ̂ : Hn(R)→Hn(R) is a bijective
map that preserves adjacency, it follows by Proposition 2.2 that there exists c ∈ {−1, 1} and an invertible
S ∈Mn(R) such that

ϕ̂(A) = cSASt, A ∈ Hn(R).
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Let A,B ∈ Hn(R), A , B, and A ≤L B. Then on the one hand by (4), SASt
≤

L SBSt. If c = −1, we get on
the one hand, since ϕ̂ preserves the order ≤L, −SASt

≤
L
−SBSt. It follows that SASt = SBSt and therefore

A = B, a contradiction. To conclude, ϕ̂(A) = SASt for every A ∈ Hn(R) and therefore ϕ(A) = SASt for every
A ∈ H+

n (R).

Remark 3.2. The proof of Theorem 3.1 may serve with a few adjustments (e.g. instead of Proposition 2.2 we may use
Theorem 1.2 from [15] (see also [13, 14])) as an alternative proof of finite-dimensional (complex) version (dimH < ∞)
of Molnár’s result (3).

Remark 3.3. Let us present an observation about preservers of the Löwner partial order and linear models. Let L1 =
(y1,X1β, σ2D1) and L2 = (y2,X2β, σ2D2) be two linear models. Here X1 ∈ Mn,p(R), X2 ∈ Mm,p(R), D1 ∈ H+

n (R),
and D2 ∈ H+

m(R). We say (see [33]) that L1 is at least as good as L2 if for any unbiased estimator at
2y2, a2 ∈Mm,1(R),

of a parameter ktβ, k ∈Mp,1(R), there exists an unbiased estimator at
1y1, a1 ∈Mn,1(R), such that V(at

1y1) ≤L V(at
2y2)

(here V(at
i yi), i ∈ {1, 2}, is the variance of at

i yi). If this condition is satisfied, we write L1 � L2. In [32], Stępniak
proved that

L1 � L2 if and only if M2 ≤
L M1

where Mi = Xt
i

(
Di + XiXt

i

)−
Xi, i ∈ {1, 2}. Moreover, Stępniak noted that when Im Xi ⊆ Im Di, i ∈ {1, 2}, we may

replace Xt
i

(
Di + XiXt

i

)−
Xi with Xt

iD
.−
i Xi. When Di = Xi, i ∈ {1, 2}, these matrices may be further simplified to

Mi = Xt
iD

.−
i Xi = Dt

iD
−

i Di = DiD−i Di = Di. For such models L1 = (y1,D1β, σ2D1) and L2 = (y2,D2β, σ2D2) we thus
have

L1 � L2 if and only if D2 ≤
L D1. (6)

Let n > 1. For a random n × 1 vector of observed quanitities yi, an unspecified n × 1 vector βi, and an unspecified
nonnegative scalar σ2

i , letLi be the set of all linear models Li = (yi,Dβi, σ2
i D) where D ∈ H+

n (R) may vary from model
to model. Define a map ψ : L1 → L2 with ψ((y1,Dβ1, σ2

1D)) = (y2, ϕ(D)β2, σ2
2ϕ(D)) where ϕ : H+

n (R)→ H+
n (R) is

a surjective map. Suppose

L1a � L1b if and only if ψ(L1a ) � ψ(L1b )

for every L1a ,L1b ∈ L1. This assumption may be reformulated as D1b ≤
L D1a if and only if ϕ(D1b ) ≤

L ϕ(D1a ),
D1a ,D1b ∈ H+

n (R), and therefore Theorem 3.1 completely determines the form of any such a map ψ.

4. Preservers of the minus partial order

Let A,B ∈Mn(F). It is known (see e.g. [18, page 149]) that

A ≤− B if and only if Im B = Im A ⊕ Im(B − A) if and only if RAL ≤− RBL (7)

for any invertible R,L ∈Mn(F). Let A,B ∈Mn(C). If there exists an invertible matrix S ∈Mn(C) such that

a) B = SASt, then we say that A and B are congruent;

b) B = SAS∗, then we say that A and B are *congruent.

By Sylvester’s law of inertia (see [12, page 282]) two (Hermitian) matrices A,B ∈ Hn(C) are *congruent
if and only if they have the same inertia, i.e. they have the same number of positive eigenvalues and the
same number of negative eigenvalues. Two (real symmetric) matrices A,B ∈ Hn(R) are *congruent via a
complex matrix if and only if they are congruent via a real matrix [12, page 283]. So, Sylvester’s law for the
real case states that A,B ∈ Hn(R) are congruent via an invertible S ∈ Mn(R) (i.e. B = SASt) if and only if A
and B have the same number of positive eigenvalues and the same number of negative eigenvalues. Note
that congruent (respectively, *congruent) matrices have the same rank [12, page 281].

The next theorem gives a characerization of the minus partial order on the cone of all positive semidefinite
matrices. Observe first that if A is an n × n zero matrix, then A ≤− B for every B ∈Mn(F) (see e.g. (7)).
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Theorem 4.1. Let A,B ∈ H+
n (F) and A , 0. Then A ≤− B if and only if there exists an invertible matrix S ∈ Mn

such that

A = S
[

Ir 0
0 0

]
S∗ and B = S

[
Is 0
0 0

]
S∗

where Ir and Is are r × r and s × s, s ≤ n, identity matrices, respectively, and r < s if A , B, and r = s, otherwise.
(Obviously, in case when s = n, the zeros on the right-hand side of the formula for B are absent.)

Proof. To simplify notation we will use the term *congruent for both *congruent complex matrices (via an
invertible complex matrix) and congruent real matrices (via a real invertible matrix). Of course, S∗ = St

when S ∈Mn(R).
Let A ∈ H+

n (F), A , 0. Suppose A ≤− B for some B ∈ H+
n (F). By (2), rank(B−A) = rank(B)− rank(A). Let

C = B − A. So, rank(C) + rank(A) = rank(A + C). Observe that A + C is positive semidefinite (because B is).
All the eigenvalues of the matrix A + C are thus nonnegative and therefore by Sylvester’s law of inertia it
follows that there exists an invertible matrix V ∈Mn(F) such that

V(A + C)V∗ =

[
Is 0
0 0

]
where Is is an s × s, s ≤ n, identity matrix. Let

Q =

[
Is 0
0 0

]
, A1 = VAV∗, and C1 = VCV∗. (8)

Since *congruent matrices have the same rank, it follows that rank(A + C) = rank(Q), rank(A) = rank(A1),
rank(C) = rank(C1), and therefore

rank(Q) = rank(A1) + rank(C1). (9)

Observe that

Im Q = Im(V(A + C)V∗) = Im(VAV∗ + VCV∗) ⊆ Im(VAV∗) + Im(VCV∗). (10)

By (9) and (10) we have Im Q = Im A1+Im C1. Also, if Im A1∩Im C1 , {0}, then rank(A1)+rank(C1) > rank(Q),
a contradiction. Thus,

Im Q = Im A1 ⊕ Im C1. (11)

Let x ∈ Ker Q, i.e. Qx = 0. From Q = A1 + C1, we have 0 = Qx = A1x + C1x. Since 0 = 0 + 0, it follows by (11)
that A1x = 0 and C1x = 0. So, A1(Ker Q) = {0} and C1(Ker Q) = {0}. The matrix Q is clearly a self-adjoined
idempotent, i.e. Q∗ = Q = Q2. So,

Fn = Im Q ⊕ Ker Q

where (Im Q)⊥ = Ker Q.
Consider the representation of a linear operator D : Fn

→ Fn with respect to the decomposition
Fn = Im Q ⊕ Ker Q :

D =

[
D1 D2
D3 D4

]
where D1 : Im Q → Im Q, D2 : Ker Q → Im Q, D3 : Im Q → Ker Q, and D4 : Ker Q → Ker Q are linear
operators. Since we may consider A1 and C1 as operators from Im Q⊕Ker Q to itself, we may conclude that
with respect to this decomposition

A1 =

[
Ã1 0
Ã2 0

]
and C1 =

[
C̃1 0
C̃2 0

]
.
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Observe that A∗1 = (VAV∗)∗ = VA∗V∗ = VAV∗ = A1. Similarly, C∗1 = C1 and hence it follows that Ã2 = 0 and
C̃2 = 0, i.e.

A1 =

[
Ã1 0
0 0

]
and C1 =

[
C̃1 0
0 0

]
.

Since rank(Q) = s (see (8)), it follows by (11) that

Fs = Im Ã1 ⊕ Im C̃1. (12)

Note that Qx = x for every x ∈ Im Q. Let x ∈ Im Ã1. On the one hand x = Ã1x + C̃1x and on the other
hand x = x + 0. By (12) it follows x = Ã1x and 0 = C̃1x. Let now x ∈ Im C̃1. Similarly, then x = Ã1x + C̃1x
and x = 0 + x and therefore 0 = Ã1x and C̃1x = x. So, Ã1 acts as the identity operator on Im Ã1 and as the
zero operator on Im C̃1, and similarly, C̃1 acts as the identity operator on Im C̃1 and as the zero operator on
Im Ã1. This yields by (12) that Im Ã1 = Ker C̃1 and Ker Ã1 = Im C̃1. It follows that Ã1 and C̃1 are pairwise
orthogonal idempotent operators onFs, and therefore Ã1 and C̃1 are simultaneously diagonalizable (see e.g.
[16]). Recall that both Ã1 and C̃1 are self-adjoined. It follows that there exists a unitary (i.e. an orthogonal
in the real case) matrix U ∈Ms(F) such that

UÃ1U∗ =

[
Ir 0
0 0

]
and UC̃1U∗ =

[
0 0
0 Is−r

]
where Ir and Is−r are r × r and (s − r) × (s − r) identity matrices, respectively. Let

Z =

[
U 0
0 In−s

]
.

Note that Z ∈Mn(F) is invertible. Then

ZA1Z∗ =

[
U 0
0 In−s

] [
Ã1 0
0 0

] [
U∗ 0
0 In−s

]
=

[
UÃ1U∗ 0

0 0

]
=

 Ir 0 0
0 0 0
0 0 0

 .
Similarly,

ZC̃1Z∗ =

 0 0 0
0 Is−r 0
0 0 0

 .
Let S = (ZV)−1. Then by (8),

A = V−1A1(V∗)−1 = V−1Z−1

 Ir 0 0
0 0 0
0 0 0

 (Z∗)−1(V∗)−1 = S

 Ir 0 0
0 0 0
0 0 0

 S∗.

Similarly,

C = S

 0 0 0
0 Is−r 0
0 0 0

 S∗

and therefore

B = A + C = S

 Ir 0 0
0 Is−r 0
0 0 0

 S∗.
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So,

A = S
[

Ir 0
0 0

]
S∗ and B = S

[
Is 0
0 0

]
S∗

where r ≤ s. Clearly, if A , B, then r < s, and r = s, otherwise.

Conversely, let A = S
[

Ir 0
0 0

]
S∗ and B = S

[
Is 0
0 0

]
S∗ where r ≤ s. It follows that

B − A = S

 0 0 0
0 Is−r 0
0 0 0

 S∗.

Since congruence preserves rank, we have rank(B − A) = rank(B) − rank(A) and therefore A ≤− B.

As an example of an application of the minus partial order in statistics we present the following two
corollaries to Theorem 4.1. The first result is a direct corollary to Theorem 4.1 and the main result in [4,
page 366].

Corollary 4.2. Consider a linear model (y,Xβ, σ2D). Then the statistics Ly with V(Ly) , V(y) is BLUE of Xβ if
and only if the following conditions hold:

(i) LX = X;

(ii) Im(LD) ⊆ Im X;

(iii) There exist an invertible matrix S ∈Mn(R) such that

V(Ly) = S
[

Ir 0
0 0

]
St and V(y) = S

[
Is 0
0 0

]
St

where Ir is a r × r identity matrix, and Is is a s × s identity matrix with r < s ≤ n.

Note that for a positive semidefinite matrix A ∈ Mn(R), the matrix WtAW ∈ Mm(R) is still positive
semidefinite for any matrix W ∈ Mn,m(F). The following result thus follows directly from Theorem 4.1 and
[2, Theorem 1].

Corollary 4.3. Let A =
∑k

i=1 Ai where Ai ∈ Mn(R) are positive semidefinite matrices, i = 1, 2, . . . , k. Let the n × 1
random vector x follow a multivariate normal distribution with the mean µ and the variance-covariance matrix V.
Let W = (V : µ) be a n × (n + 1) partitioned matrix. Consider the quadratic forms Q = xtAx and Qi = xtAix,
i = 1, 2, . . . , k. Then the following statements are equivalent.

(i) Qi, i = 1, 2, . . . , k, are mutually independent and distributed as chi-squared variables;

(ii) Q is distributed as a chi-squared variable and there exist invertible matrices Si ∈Mn+1(R) such that

WtAiW = Si

[
Iri 0
0 0

]
St

i and WtAW = Si

[
Is 0
0 0

]
St

i

for every i = 1, 2, . . . , k, where Iri are ri× ri identity matrices, and Is is a s× s identity matrix with ri ≤ s ≤ n+1.
(Here Iri = 0 if WtAiW = 0 for some i ∈ {1, 2, . . . , k}.)
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With our final result we will describe the form of all additive, surjective maps on H+
n (R), n ≥ 3, that

preserve the minus partial order in both directions. Denote by Ei j the n × n matrix with all entries equal to
zero except the (i, j)-entry which is equal to one. Let Ek = E11 + E22 + . . . + Ekk. For A,B ∈ Mn(R) we will
write A <− B when A ≤− B and A , B. We will denote by x ⊗ yt a rank one linear operator on Rn defined
with (x ⊗ yt)z =

〈
z, y

〉
x for every z ∈ Rn (here

〈
z, y

〉
= ytz). Note that every rank-one linear operator on Rn

may be written in this form. Moreover, P = x ⊗ xt for some x ∈ Rn with ‖x‖ = 1 if and only if P ∈ Pn(R) and
P is of rank-one. Indeed, let first x ∈ Rn with ‖x‖ = 1. Then (x ⊗ xt)t = x ⊗ xt and for every z ∈ Rn we have
(x ⊗ xt)2z = 〈z, x〉 〈x, x〉 x = 〈z, x〉 x = (x ⊗ xt)z. Conversely, let P ∈ Pn(R) be of rank-one. Then P = x ⊗ yt for
some nonzero x, y ∈ Rn. By transferring the appropriate scalar to the second factor we may assume without
loss of generality that ‖x‖ = 1. Since and P2 = P = Pt, we have x⊗ yt = (x⊗ yt)t = y⊗xt which implies y = µx
for some nonzero µ ∈ R, and (x ⊗ yt)2 = x ⊗ yt then yields µ = 1, i.e. P = x ⊗ xt with ‖x‖ = 1.

Theorem 4.4. Let n ≥ 3 be an integer. Then ϕ : H+
n (R) → H+

n (R) is a surjective, additive map that preserves the
minus order ≤− in both directions if and only if there exists an invertible matrix S ∈Mn(R) such that

ϕ(A) = SASt

for every A ∈ H+
n (R).

Proof. Let ϕ : H+
n (R) → H+

n (R) be of the form ϕ(A) = SASt, A ∈ H+
n (R), where S ∈ Mn(R) is an invertible

matrix. Then ϕ preserves by (7) the order ≤− in both directions and is clearly surjective and additive.
Conversely, let ϕ : H+

n (R) → H+
n (R) be a surjective, additive map that preserves the order ≤− in both

directions. We will again split the proof into several steps.
1. ϕ is bijective andϕ(0) = 0. Since≤− is a partial order and sinceϕ preserves this order in both directions,

the proof that ϕ is bijective and that ϕ(0) = 0 may be the same as in the first two steps of Theorem 3.1.
2. ϕ preserves the rank, i.e. rank(A) = rank(ϕ(A)) for every A ∈ H+

n (R). Let A ∈ H+
n (R) with rank(A) = k. By

Sylvester’s law of inertia there exists an invertible matrix R ∈Mn(R) such that Ek = RARt. Clearly (see (2)),

0 <− E1 <
− E2 <

− . . . <− En = I.

Since congruence preserves rank, we have by (7)

0 <− R−1E1(R−1)t <− R−1E2(R−1)t <− . . . <− R−1Ek(R−1)t <− . . . <− R−1En(R−1)t.

From (R−1)t = (Rt)−1 and since ϕ preserves the order ≤− and is injective, we obtain

0 <− ϕ(R−1E1(Rt)−1) <− ϕ(R−1E2(Rt)−1) <− . . . < ϕ(A) <− . . . <− ϕ(R−1(Rt)−1). (13)

Let C,D ∈Mn(R) with C <− D and rank(C) = rank(D). Then by (2), rank(D−C) = 0 and therefore D = C,
a contradiction. So, if C <− D, then rank(C) < rank(D).

Every succeeding matrix in (13) has the rank that is strictly greater then its predecessor. Since
rankϕ(R−1(Rt)−1) ≤ n, it follows that rankϕ(R−1(Rt)−1) = n and therefore rank(ϕ(A)) = k.

3. We may without loss of generality assume that ϕ(I) = I. By the previous step, ϕ(I) = B where B ∈ H+
n (R)

is an invertible (positive definite) matrix. It follows that there exists a positive definite matrix
√

B ∈ H+
n (R)

such that ϕ(I) =
√

B
√

B. Let ψ : H+
n (R)→ H+

n (R) be defined with

ψ(A) =
(√

B
)−1

ϕ(A)
(√

B
)−1

.

Then ψ is a bijective map that preserves the order ≤− in both directions. Also, ψ(I) = I. We will thus from
now on assume that

ϕ(I) = I.
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4. There exists a bijective, linear map T : Rn
→ Rn such that for every P ∈ Pn(R) the matrix ϕ(P) is the

orthogonal projection matrix on T(Im P), i.e.

ϕ(P) = PT(Im P).

Let P ∈ Mn(R) be an idempotent matrix, i.e. P2 = P. Then Rn = Im P ⊕ Ker P = Im P ⊕ Im(I − P) and
therefore by (7), P ≤− I. Moreover, if Q ∈Mn(R) is an idempotent matrix and if A ≤− Q for A ∈Mn(R), then
by e.g. [22, Lemma 2.9], A2 = A. Thus for P ∈Mn(R) we have

P ≤− I if and only if P2 = P.

Let now P ∈ Pn(R), i.e. P is a symmetric and idempotent matrix. It follows that P ≤− I and therefore
ϕ(P) ≤− ϕ(I) = I. So, ϕ(P) is an idempotent matrix and by the definition of the map ϕ also symmetric, i.e.
ϕ(P) ∈ Pn(R). Since ϕ−1 has the same properties as ϕ, we may conclude that

P ∈ Pn(R) if and only if ϕ(P) ∈ Pn(R),

i.e. ϕ preserves the set of all orthogonal projection matrices. Recall that we may identify subspaces of Rn

with elements of Pn(R). Let C(Rn) be the lattice of all subspaces of Rn. It follows that the map ϕ induces a
lattice automorphisms, i.e. a bijective map τ : C(Rn)→ C(Rn) such that

M ⊆ N if and only if τ(M) ⊆ τ(N)

for all M,N ∈ C(Rn). In [21, page 246] (see also [8, pages 820 and 823] or [28, page 82]) Mackey proved that
for n ≥ 3 every such a map is induced by an invertible linear operator, i.e. there exists an invertible linear
operator T : Rn

→ Rn such that τ(M) = T(M) for every M ∈ C(Rn). For the map ϕ it follows that

ϕ(P) = PT(Im P) (14)

for every P = PIm P ∈ Pn(R).
5. We may without loss of generality assume that ϕ(P) = P for every P ∈ Pn(R). Let x ∈ Rn with ‖x‖ = 1.

Recall that then x ⊗ xt
∈ Pn(R) is of rank-one. So, by steps 2 and 4 there exists a ∈ Rn with ‖a‖ = 1 such that

ϕ(x ⊗ xt) = a ⊗ at.

Let y ∈ Rn,
∥∥∥y

∥∥∥ = 1, and
〈
x, y

〉
= 0. We have ϕ(y ⊗ yt) = b ⊗ bt for some b ∈ Rn, ‖b‖ = 1. Note that

x ⊗ xt + y ⊗ yt
∈ Pn(R) and that it is of rank-two. It follows that ϕ(x ⊗ xt + y ⊗ yt) is a rank-two orthogonal

projection matrix. Since ϕ is additive, we obtain

ϕ(x ⊗ xt + y ⊗ yt) = a ⊗ at + b ⊗ bt.

Since this is a rank-two matrix, we may conclude that a and b are linearly independent vectors. Moreover,
from (

a ⊗ at + b ⊗ bt
)2

= a ⊗ at + b ⊗ bt

and since ‖a‖ = ‖b‖ = 1 we get

〈z, a〉 a + 〈z, b〉 b + 〈z, a〉 〈a, b〉 b + 〈z, b〉 〈b, a〉 a = 〈z, a〉 a + 〈z, b〉 b

and thus 〈z, a〉 〈a, b〉 b = − 〈z, b〉 〈b, a〉 a for every z ∈ Rn. Let z = a and assume that 〈a, b〉 , 0. Then
b = − 〈b, a〉 a, i.e. a and b are linearly dependent, a contradiction. It follows that

〈a, b〉 = 0.
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On the one hand, Imϕ(x ⊗ xt) =Lin{a} and on the other hand by (14) Imϕ(x ⊗ xt) = T (Lin{x}) =Lin{Tx}.
It follows that a and Tx are linearly dependent, i.e. a = µTx for some µ ∈ R\{0}. Similarly, there exists
ν ∈ R\{0} such that b = νTy. This yields

0 =
〈
µTx, νTy

〉
= µν

〈
Tx,Ty

〉
= µν

〈
TtTx, y

〉
and therefore

〈
TtTx, y

〉
= 0. This equation holds for every y ∈ Rn with

∥∥∥y
∥∥∥ = 1 and

〈
x, y

〉
= 0. Since〈

TtTx, y
〉

= ‖x‖
∥∥∥y

∥∥∥ 〈
TtT x

‖x‖ ,
y

‖y‖

〉
, we may conclude that for any fixed x ∈ Rn we have

〈
TtTx, y

〉
= 0 for every

y ∈ Rn with
〈
x, y

〉
= 0. So, TtTx is a scalar multiple of x, i.e. TtT and I are locally linearly dependent. It is

known that for linear operators of rank at least 2, local linear dependence implies (global) linear dependence
(see e.g. [26, page 1869]). Note that TtT ∈ H+

n (R). Therefore,

TtT = αI

for some scalar α > 0. Let now Q = 1
√
α

T. It follows that QtQ = 1
αTtT = I. So, Q is a linear isometry and

since it is also invertible (and thus surjective), it is also coisometry (QQt = I). For any P ∈ Pn(R) we thus
have ϕ(P) = PQ(Im P) where Q is an orthogonal operator, i.e. it may be represented with an (orthogonal)
matrix Q where QQt = QtQ = I. Therefore, for every P ∈ Pn(R)

Imϕ(P) = Q(Im P) = QP(Rn) = QPQt(Rn) = Im QPQt.

Since clearly QPQt
∈ Pn(R), we may conclude that

ϕ(P) = QPQt

for every P ∈ Pn(R).
Let ψ : H+

n (R)→ H+
n (R) be defined with

ψ(A) = Qtϕ(A)Q.

Then ψ still preserves the order ≤− and is bijective. Moreover ψ(P) = P for every P ∈ Pn(R). We will thus
from on assume that

ϕ(P) = P

for every P ∈ Pn(R).
6. ϕ(λP) = λϕ(P) for every P ∈ Pn(R) of rank-one and every λ ∈ [0,∞). Let P ∈ Pn(R) be of rank-one and

let λ > 0. Since ϕ preserves the rank, there exists by the spectral theorem Q ∈ Pn(R) of rank-one and µ > 0
such that

ϕ(λP) = µQ.

Suppose P , Q. Then P + αQ is of rank-two for every scalar α > 0. Since ϕ is additive, we obtain

ϕ(P + λP) = ϕ(P) + ϕ(λP)
= P + µQ.

So, on the one hand ϕ(P + λP) is of rank-two but on the other hand (1 + λ)P is of rank-one and therefore,
since ϕ preserves the rank, ϕ(P +λP) = ϕ((1 +λ)P) is of rank-one, a contradiction. It follows that P = Q and
therefore there exists a function fP : [0,∞)→ [0,∞) such that

ϕ(λP) = fP(λ)P.
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Since ϕ(P) = P and ϕ(0) = 0, we have fP(1) = 1 and fP(0) = 0. From

fP(λ + µ)P = ϕ((λ + µ)P) = ϕ(λP) + ϕ(µP) = fP(λ)P + fP(µ)P

we may conclude that fp is additive, i.e. fP(λ+µ) = fP(λ) + fP(µ) for every λ, µ ∈ [0,∞). Let r be an arbitrary
(but fixed) positive integer. Since fp is additive, it follows that

1 = fP(1) = fP
(
r

1
r

)
= r fP

(1
r

)
and thus fP

(
1
r

)
= 1

r . Let now q
r be any (but fixed) nonnegative rational number (here q and r are nonnegative

and positive integers, respectively). Then, again by the additivity of fp,

fP
(q

r

)
= q fP

(1
r

)
=

q
r
. (15)

Note that fp is monotone increasing. Namely, for λ, µ ∈ [0,∞) with λ ≤ µwe have µ = λ+ ν for some ν ≥ 0.
Thus, fP(λ) ≤ fP(λ) + fP(ν) = fP(µ).

Let λ ∈ (0,∞) be arbitrary. Then λ is a limit of a monotone increasing sequence {si} of nonnegative
rational numbers and a limit of a monotone decreasing sequence {zi} of positive rational numbers. Since
for every i ∈N, we have by (15), fP(si) = si and fp(zi) = zi, it follows by the monotonicity of fP that

fP(λ) = λ

for every λ ∈ (0,∞). Recall that fP(0) = 0. It follows that

ϕ(λP) = λϕ(P) (16)

for every rank-one P ∈ Pn(R) and every λ ∈ [0,∞).
We are now in position to conclude the proof of the theorem. Let A ∈ H+

n (R) be arbitrary. By the spectral
theorem there exist pairwise orthogonal rank-one (idempotent and symmetric) matrices P1,P2, . . . ,Pk ∈

Pn(R) and λ1, λ2, . . . , λk ∈ [0,∞) such that

A = λ1P1 + λ2P2 + . . . + λkPk.

By (16) and since ϕ is additive, we may conclude that

ϕ(A) = A

for every A ∈ H+
n (R). To sum up, taking into account our assumptions, a surjective, additive map ϕ :

H+
n (R)→ H+

n (R), n ≥ 3, that preserves the minus order ≤− in both directions is of the following form:

ϕ(A) = SASt

for every A ∈ H+
n (R) where S ∈Mn(R) is an invertible matrix.

Remark 4.5. We believe that the same result holds also without the additivity assumption and it would be interesting
to find a proof of this conjecture. Also, we expect that a surjective map ϕ : H+

2 (R)→ H+
2 (R) that preserves the minus

order in both directions has the form ϕ(A) = SASt for every A ∈ H+
2 (R) where S ∈M2(R) is an invertible matrix.

5. Concluding remarks

Many other partial orders may be defined on Mn(F) where F = R or F = C. The star partial order ≤∗ is
defined in the following way (see [9]): For A,B ∈Mn(F) we write

A ≤∗ B when A∗A = A∗B and AA∗ = BA∗.
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It is known (see e.g. [24]) that A ≤∗ B implies A ≤− B. Two partial orders that are "related" to the minus and
the star partial orders are the left-star and the-right star partial orders [3]. For A,B ∈ Mn(F) we say that A
is below B with respect to the left-star partial order and write

A∗≤ B when A∗A = A∗B and ImA ⊆ Im B.

Similarly, we define the right-star partial order: For A,B ∈Mn(F) we write

A≤∗B when AA∗ = AB∗ and ImA∗ ⊆ Im B∗.

It is known (see [24]) that for A,B ∈ Mn(F), A ≤∗ B implies both A∗≤ B and A≤∗B and each A∗≤ B and A≤∗B
implies A ≤− B. The converse implications do not hold in general. Note that the left-star partial order has
applications in the theory of linear models (see [24, Theorem 15.3.7, Corollary 15.3.8]).

Let A,B ∈ H+
n (F). Since then A∗A = A∗B if and only if (A∗A)∗ = (A∗B)∗ if and only if A2 = BA which

is equivalent to AA∗ = BA∗, we may conclude that the star, the left-star, and the right-star partial orders
are the same partial order on H+

n (F). Maps on Mn(F) preserving these orders have already been studied
(see [10, 19]). It would be interesting to describe (surjective) maps that preserve the star order (in both
directions) on the set H+

n (F) of all real or complex positive semidefinite matrices.

Acknowledgement. The authors wish to thank the anonymous referee for careful reading of the paper.
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