
Filomat 35:2 (2021), 679–706
https://doi.org/10.2298/FIL2102679T

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A General Multi-Step Matrix Splitting Iteration Method for
Computing PageRank

Zhaolu Tiana, Xiaojing Lib, Zhongyun Liuc

aCollege of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, P.R.China
bDepartment Party Committee, Shanxi University of Finance and Economics, Taiyuan 030006, P.R.China

cSchool of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410076, P.R.China

Abstract. Based on the general inner-outer (GIO) iteration method [5,34] and the iteration framework
[6], we present a general multi-step matrix splitting (GMMS) iteration method for computing PageRank,
and analyze its overall convergence property. Moreover, the same idea can be used as a preconditioning
technique for accelerating the Krylov subspace methods, such as GMRES method. Finally, several numerical
examples are given to illustrate the effectiveness of the proposed algorithm.

1. Introduction

With the booming advance of the Internet and its technology, web search engines have become the
most popular tools to retrieve information. The PageRank algorithm, as the key technology of Google, has
attracted much attention in the scientific community for last decades.

Firstly, let us review the mathematical background of the PageRank problem, for more details, readers
can refer to [1,15]. In fact, the link structure of web pages can be viewed as a direct graphW, each of the
n pages is a node. If there is a link from node i to node j, then we have an edge for node i to node j. The
nonnegative link matrix P̃ ∈ Rn×n is defined by

P̃i j =


1
ni
, i→ j,

0, otherwise,

where the scalar ni is the number of outlinks of page i, and i→ j denotes page i can link to page j.
Let d be the n-dimensional column vector, which elements satisfy

di =

{
1, if ni = 0,
0, otherwise,

2010 Mathematics Subject Classification. Primary 15A24; Secondary 65F30, 65F35
Keywords. PageRank, Inner-outer iteration, Convergence, Matrix splitting, Precondition
Received: 11 May 2019; Revised: 09 May 2020; Accepted: 18 May 2020
Communicated by Yimin Wei
Research supported by the National Natural Science Foundation of China (Grant No. 11371075), the Hunan Key Laboratory of

mathematical modeling and analysis in engineering
Email address: tianzhaolu2004@126.com (Zhaolu Tian)

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 680

that identifies the nodes with outdegree 0.
Define an n-dimensional column vector

v =
[1
n

]
n×1

,

which represents a uniform probability distribution over all n nodes. Then the matrix P̂ can be expressed
as follows:

P̂ = P̃ + dvT,

where vT is the transpose of v. Hence, the matrix P̂ is now a proper row stochastic matrix.
From the ergodic theorem [30], it follows that the stationary distribution of the Markov chain is unique

and the limiting distribution starting from any initial distribution when the transition matrix is aperiodic
and irreducible. For PageRank problem, a convex combination of P̂ with a certain rank-1 matrix can achieve
these desirable properties, so we define

P̄ = αP̂ + (1 − α)evT,

where α ∈ (0, 1) is the damping factor, e is a column vector of all ones, and v is called the personalization or
the teleportation vector. The PageRank vector x satisfies the following relation:

Ax = x, (1.1)

whereA = P̄T = αP + (1− α)veT is the Google matrix with P = P̂T, and x is a nonnegative vector with x ≥ 0.
Since ‖x‖1 = 1, then the PageRank problem (1.1) can be rewritten as the following linear system [4,8,15]:

(I − αP)x = (1 − α)v, (1.2)

where I is an n × n identity matrix. The PageRank problem (1.1) often arises in web ranking [2,5,7,10], for
example, the hyperlink structure of the web and modeling the graph by the Markov chain, etc.

In the last decades, a large amount of numerical algorithms have been proposed for computing the
PageRank vector. However, the fast eigenvector solvers by using matrix inversions or decompositions
are unsuitable and prohibitive due to the large and sparse matrix A. Instead, the iteration methods only
requiring matrix-vector products have been popular for the PageRank problem. The power method [1,16]
is the original method used to compute the PageRank vector. For the case that the largest eigenvalue is not
well separated from the second one, the power method may perform poorly, so many extrapolation methods
[3,12,19,21] are proposed to accelerate the power method. Since the matrix I−αP is a nonsingular M−matrix
[20,27,29], based on the regular splittings of the matrix I−αP, a class of splitting iteration methods [9] were
presented for solving (1.2). The Krylov subspace methods have also been used for solving the PageRank
problem. In [10], two strategies to accelerate the Arnoldi-type algorithm were proposed. Moreover,
theoretical analysis verified that the new algorithms can improve the efficiency of the original Arnoldi-type
algorithm, and circumvent the drawback of stagnation considerably. In [31], an Arnoldi-type algorithm was
presented, which is a variant of the restarted Arnoldi method [23]. By combining the power method with
the thick restarted Arnoldi algorithm [25], the Power-Arnoldi algorithm was constructed in [26]. A Ritz-
value-based Arnoldi-Extrapolation algorithm [18] was developed, which periodically knits extrapolation
method with the Arnoldi-type algorithm. By using the thick restarted Arnoldi method to accelerate the
inner-outer method [24], an Arnoldi-Inout algorithm was proposed in [22]. Many other algorithms are also
established for solving the PageRank problem, such as [32,33,35-41], etc.

Recently, by applying the two-step splitting iteration framework, Gu et al. [11] constructed the PIO
iteration method by combining the power method with the IO iteration [24]. Next, Wen et al. [6] gave the
MPIO iteration method, which is a variant of the PIO iteration. Inspired by these iteration frameworks in
[6,11], based on multi-step matrix splitting iterations and GIO iteration [5,34], we propose the GMMS itera-
tion method for solving the linear system (1.2). In addition, by choosing appropriate matrix splittings and
parameters, the GMMS iteration method can reduce to the MPIO and PIO iteration methods, respectively.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 681

The remainder of this paper is organized as follows. In Section 2, the PIO and MPIO iteration methods
are reviewed. In the following section, we present the GMMS iteration method and analyze its global
convergence in detail. In Section 4, some comparison results are given for the GMMS iteration method. In
Section 5, we consider how to use the GMMS iteration as a preconditioner to accelerate the Krylov subspace
methods, and discuss the effectiveness of the preconditioner by analyzing the clustering of eigenvalues of
the preconditioned coefficient matrices. The choices of the parameters are discussed in the GMMS iteration
method in Section 6. Several numerical examples are provided in Section 7 to show the efficiency of the
proposed algorithm. Finally, we draw some conclusions in Section 8.

2. The PIO and MPIO iteration methods

Applying the power method to solve the linear system (1.2), then we have the following iteration
sequence:

xk+1 = αPxk + (1 − α)v, k = 0, 1, 2, · · · . (2.1)

On the other hand, Gleich et al. [24] proposed an IO iteration method for solving the linear system (1.2).
First, (1.2) is reformulated as

(I − βP)x = (α − β)Px + (1 − α)v, (2.2)

with 0 < β < α, then the outer iteration for solving (2.2) is given by

(I − βP)xk+1 = (α − β)Pxk + (1 − α)v, k = 0, 1, · · · . (2.3)

In order to speed up the outer iteration (2.3), an inner Richardson iteration is used to approximate xk+1.
Setting the right-hand side of (2.3) as

f = (α − β)Pxk + (1 − α)v,

and defining the following inner linear system

(I − βP)y = f , (2.4)

then the inner iteration for solving (2.4) is

y j+1 = βPy j + f , j = 0, 1, 2, · · · , l − 1, (2.5)

where y0 is given by xk as the initial guess and yl is assigned as the new xk+1.
Combining (2.1) with the outer iteration (2.3), Gu et al. [11] developed the PIO iteration method as

follows:
The PIO iteration method: xk+ 1

2
= αPxk + (1 − α)v,

(I − βP)xk+1 = (α − β)Pxk+ 1
2

+ (1 − α)v,
(2.6)

Theorem 2.1 [11]. The iteration matrix of the PIO iteration (2.6) is given by

RPIO = α(α − β)(I − βP)−1P2,

and the modulus of its eigenvalues is bounded by

s̃ =
α(α − β)

1 − β

with 0 < α < 1 and 0 < β < α. Then, ρ(RPIO) ≤ s̃ < 1 holds, where ρ(RPIO) denotes the spectral radius of
the matrix RPIO, which implies that the PIO iteration method converges to the exact solution of the linear
system (1.2) for any initial vector x0.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 682

By using multi-step power method and the IO iteration [24], Wen et al. [6] presented the following
MPIO iteration method:
The MPIO iteration method: 

xk+ 1
m̃+1

= αPxk + (1 − α)v,

xk+ 2
m̃+1

= αPxk+ 1
m̃+1

+ (1 − α)v,

...

xk+ m̃
m̃+1

= αPxk+ m̃−1
m̃+1

+ (1 − α)v,

(I − βP)xk+1 = (α − β)Pxk+ m̃
m̃+1

+ (1 − α)v,

(2.7)

where 0 < β < α and 0 < α < 1, m̃ (m̃ ≥ 2) is the iteration number of using the power method. If m̃ = 1, then
the MPIO iteration method is just the PIO iteration method (2.6).
Algorithm 1: The MPIO iteration method
Input: P, α, β, v, τ̃, κ, m̃ (m̃ ≥ 2)
Output: x
1: x← v
2: z← Px
3: while ‖αz + (1 − α)v − x‖1 ≥ τ̃
4: for i=1:m̃
5: x← αz + (1 − α)v
6: z← Px
7: end
8: f ← (α − β)z + (1 − α)v
9: for i=1:κ
10: x← f + βz
11: z← Px
12: end
13: end while
14: x← αz + (1 − α)v
Theorem 2.2 [6]. The iteration matrix of the MPIO iteration (2.7) is defined by

RMPIO = αm̃(α − β)(I − βP)−1Pm̃+1,

and the modulus of its eigenvalues is bounded by

ŝ =
αm̃(α − β)

1 − β

with 0 < α < 1 and 0 < β < α. Therefore, the relation ρ(RMPIO) ≤ ŝ < 1 holds, and the MPIO iteration
method converges to the exact solution of the linear system (1.2) for any initial vector x0.

3. The GMMS iteration method

In this section, we firstly review the GIO iteration method [5,34], then propose the GMMS iteration
method, and analyze its global convergence without imposing any restrictions on the damping factors and
the stopping tolerances.
Lemma 3.1 [27]. For all operator norms ρ(W) ≤ ‖W‖. For all W and for all ε > 0, there is an operator norm
‖W‖? ≤ ρ(W) + ε. The norm ‖ · ‖? depends on both W and ε.
Lemma 3.2 [27]. Let ‖AB‖ ≤ ‖A‖ · ‖B‖. Then ‖X‖ < 1 implies that I − X is invertible, (I − X)−1 =

∑
∞

i=0 Xi, and
‖(I − X)−1

‖ ≤
1

1−‖X‖ .

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 683

3.1. The GIO iteration method [5,34]

Let
I − αP = M −N, (3.1)

where M is an invertible matrix, then from (3.1) the iteration sequence for solving the linear system (1.2)
has the following form:

Mxk+1 = Nxk + (1 − α)v (3.2)

The outer iteration method for solving (1.2) is defined by

(M − ψN)xk+1 = (1 − ψ)Nxk + (1 − α)v, k = 0, 1, 2, · · · (3.3)

with 0 < ψ < 1.
Let 1 = (1 − ψ)Nxk + (1 − α)v, then the inner iteration can be described as

My j+1 = ψNy j + 1, j = 0, 1, 2, · · · ,mk − 1, (3.4)

where we take y0 = xk as the initial guess and ymk as the new xk+1. If M = I,N = αP and β = αψ, then the
GIO iteration method reduces to the IO iteration method [24].
Algorithm 2: The GIO iteration method
Input: M,N, α, ψ, ε,mk, v
Output: x
1: x← v
2: w← Nx
3: while ‖(1 − α)v −Mx + w‖1 ≥ ε
4: 1← (1 − ψ)w + (1 − α)v
5: for i=1:mk
6: Mx← ψw + 1
7: w← Nx
8: end
9: end while
10: Mx← w + (1 − α)v
Theorem 3.1 [5]. Let I − αP = M − N be a matrix splitting with ρ(M−1N) < 1, 0 < ψ < 1, and mk be the
number of the inner iteration steps at the k−th outer iteration. Then the iteration sequence {xk}

∞

k=0 derived
from the GIO iteration method converges to the exact PageRank vector for any initial vector x0. Moreover,
the GIO iteration method converges faster than the iteration sequence (3.2).

3.2. The GMMS iteration method

By combining the multi-step matrix splitting iterations (3.2) with the GIO iteration in Section 3.1, we
obtain the following GMMS iteration method:
The GMMS iteration method: 

Mxk+ 1
m+1

= Nxk + (1 − α)v,

Mxk+ 2
m+1

= Nxk+ 1
m+1

+ (1 − α)v,

...

Mxk+ m
m+1

= Nxk+ m−1
m+1

+ (1 − α)v,

(M − ψN)xk+1 = (1 − ψ)Nxk+ m
m+1

+ (1 − α)v,

(3.5)

where the GIO iteration is used for the last iteration in (3.5). If M = I, N = αP and β = αψ, then the GMMS
iteration becomes the MPIO iteration (2.7). Let m = 1, then we obtain the following general two-step matrix
splitting (GTMS) iteration method:

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 684

The GTMS iteration method: Mxk+ 1
2

= Nxk + (1 − α)v,

(M − ψN)xk+1 = (1 − ψ)Nxk+ 1
2

+ (1 − α)v,
(3.6)

Let M = I, N = αP and β = αψ, then the GTMS iteration is just the PIO iteration (2.6).
Algorithm 3: The GMMS iteration method
Input: M, N, α, ψ, v, ζ, mk, m (m ≥ 2)
Output: x
1: x← v
2: w← Nx
3: while ‖w + (1 − α)v −Mx‖1 ≥ ζ
4: for i=1:m
5: Mx← w + (1 − α)v
6: w← Nx
7: end
8: 1← (1 − ψ)w + (1 − α)v
9: for i=1:mk
10: Mx← ψw + 1
11: w← Nx
12: end
13: end while
14: Mx← w + (1 − α)v

Next, we will analyze the global convergence of the GMMS iteration method. In fact, the GMMS
iteration method can be written as the following two-stage matrix splitting iteration framework [17,28]:

xk,0 = xk, xk+1 = xk,mk ,

Mxk, j+1 = ψNxk, j + (1 − ψ)N(M−1N)mxk + (1 − α)

(1 − ψ)N
m−1∑
i=0

(M−1N)iM−1 + I

 v,

k = 0, 1, 2, · · · , j = 0, 1, 2, · · · ,mk − 1.

(3.7)

Theorem 3.2. Let I − αP = M −N be a matrix splitting with ρ(M−1N) < 1, 0 < ψ < 1, and mk be the number
of the inner iteration steps at the k−th outer iteration with mk ≥ 1. Then the iteration sequence {xk}

∞

k=0
generated by (3.7) converges to the PageRank vector for any initial vector x0.
Proof. From (3.7), we have

xk, j+1 =

(
(ψR) j+1 + (1 − ψ)

j∑
t=0

(ψR)tRm+1

)
xk

+(1 − α)
j∑

t=0
(ψR)t

(
(1 − ψ)N

m−1∑
i=0

(M−1N)iM−1 + I
)

v

with R = M−1N. For j = mk − 1, then it follows that

xk+1 = Hkxk + Fkv, k = 0, 1, 2, · · · , (3.8)

where 
Hk = (ψR)mk + (1 − ψ)

mk−1∑
t=0

(ψR)tRm+1,

Fk = (1 − α)
mk−1∑
t=0

(ψR)t

(1 − ψ)N
m−1∑
i=0

(M−1N)iM−1 + I

 v, k = 0, 1, 2, · · · .

(3.9)

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 685

Let x∗ be the exact solution to the linear system (1.2), then from (3.7), (3.8) we obtain

x∗ = Hkx∗ + Fkv, k = 0, 1, 2, · · · . (3.10)

Subtracting (3.10) from (3.8), then

xk+1 − x∗ = Hk(xk − x∗) = · · · = HkHk−1 · · ·H0(x0 − x∗), k = 0, 1, 2, · · · .

Let ν(k)
i be an eigenvalue of Hk and λi be an eigenvalue of R, respectively. From (3.9), we have

ν(k)
i = (ψλi)mk + (1 − ψ)λm+1

i

mk−1∑
t=0

(ψλi)t

= (ψλi)mk + (1 − ψ)λm+1
i

1−(ψλi)mk

1−ψλi

=
(ψλi)mk (1−ψλi)+(1−ψ)λm+1

i (1−(ψλi)mk)
1−ψλi

.

Since 0 < ψ < 1 and |λi| < 1, then

|ν(k)
i | =

∣∣∣∣ (ψλi)mk (1−ψλi)+(1−ψ)λm+1
i (1−(ψλi)mk)

1−ψλi

∣∣∣∣
≤

∣∣∣∣ (ψρ(R))mk (1+ψρ(R))+(1−ψ)ρ(R)m+1(1+(ψρ(R))mk)
1−ψρ(R)

∣∣∣∣
<

∣∣∣∣ (ψρ(R))mk (1+ψρ(R))+(1−ψ)ρ(R)m+1(1+(ψρ(R))mk)
1−ψ

∣∣∣∣
= ρ(R)m+1 < 1

as mk →∞, so ρ(Hk) < 1.
Let σ = max

k
{ρ(Hk)} < 1 (k = 0, 1, 2, · · ·) and ξi be an eigenvalue of HkHk−1 · · ·H0, then we have

ξi = Πk
s=0

(ψλi)ms (1 − ψλi) + (1 − ψ)λm+1
i (1 − (ψλi)ms)

1 − ψλi
,

so
ρ(HkHk−1 · · ·H0) ≤ ρ(Hk)ρ(Hk−1) · · ·ρ(H0) ≤ σk+1 < φk+1

with 0 < σ < φ < 1.
From Lemma 3.1, there exists an operator norm ‖ · ‖% such that

‖HkHk−1 · · ·H0‖% < φ
k+1.

Then
‖xk+1 − x∗‖% ≤ ‖HkHk−1 · · ·H0‖%‖x0 − x∗‖% < φk+1

‖x0 − x∗‖% → 0 (3.11)

as k→ ∞. Therefore, the iteration sequence {xk}
∞

k=0 converges to the exact PageRank vector x∗ according to
(3.11), and the proof is completed. �

Let P = D + L + U, where D is the diagonal part of P, and L,U are the strictly lower and upper triangular
parts of P, respectively. Then the matrix splitting of the AOR iteration method [14] for solving the linear
system (1.2) is

MA =
1
ω

(I − αD − γαL), NA =
1
ω

((1 − ω)(I − αD) + (ω − γ)αL + ωαU), (3.12)

where ω, γ are two real parameters with ω , 0.
For different ω and γ, we can obtain the corresponding iteration methods from (3.12):
(1) Jacobi method: ω = 1, γ = 0.
(2) Gauss-Seidel method: ω = γ = 1.
(3) SOR method: ω = γ.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 686

Theorem 3.3. Let GA = M−1
A NA and J = (I−αD)−1(αL +αU) be the AOR iteration matrix and Jacobi iteration

matrix for solving the linear system (1.2), respectively. If 0 < ω < 2
1+ρ(J) and 0 ≤ γ ≤ ω, then

ρ(GA) ≤ |1 − ω| + ωρ(J) < 1.

Proof. This is a special case of Theorem 3.3 [13]. �
Remark 1. For different ω and γ in the AOR splitting (3.12), we can construct the GMMS iteration method
based on the corresponding splittings, such as the Jacobi and Gauss-Seidel splittings, etc.

4. Some comparison results for the GMMS iteration method

Definition 4.1 [20]. For a matrix A ∈ Rn×n, A = M−N is a regular splitting if M is nonsingular with M−1
≥ 0

and N ≥ 0.
Theorem 4.1 [20]. Let A = M −N be a regular splitting of A. If A−1

≥ 0, then

ρ(M−1N) =
ρ(A−1N)

1 + ρ(A−1N)
< 1.

Theorem 4.2 ([20]). Let A = M1−N1 = M2−N2 be two regular splittings of A, where A−1
≥ 0. If N2 ≥ N1 ≥ 0,

then
0 ≤ ρ(M−1

1 N1) ≤ ρ(M−1
2 N2) < 1.

Theorem 4.3. Let I−αP = Mi−Ni (i = 1, 2) be two regular splittings and 0 < ψ < 1. If ρ(M−1
1 N1) < ρ(M−1

2 N2),
then the GMMS iteration method derived from (M1,N1) converges faster than that based on (M2,N2) for
any initial vector x0.
Proof. From (3.5), the iteration sequence of the GMMS iteration method is

xk+1 = (1 − ψ)(M − ψN)−1N(M−1N)mxk

+(1 − α)(M − ψN)−1
(
(1 − ψ)N

∑m−1
i=0 (M−1N)iM−1 + I

)
v, (4.1)

which iteration matrix is
RGMMS = (1 − ψ)(M − ψN)−1N(M−1N)m

= (1 − ψ)(I − ψR)−1Rm+1.
(4.2)

Let λi be an eigenvalue of R, then

θi =
(1 − ψ)λm+1

i

1 − ψλi
(4.3)

is an eigenvalue of RGMMS.
From (4.3), it follows that

|θi| =

∣∣∣∣∣∣ (1 − ψ)λm+1
i

1 − ψλi

∣∣∣∣∣∣ ≤ (1 − ψ)|λi|
m+1

1 − ψ|λi|
≤

(1 − ψ)ρ(R)m+1

1 − ψρ(R)

with 0 < ψ < 1 and ρ(R) < 1. Thus,

ρ(RGMMS) ≤
(1 − ψ)ρ(R)m+1

1 − ψρ(R)
. (4.4)

Since I − αP = Mi −Ni(i = 1, 2) is a regular splitting, by [29] and Theorem 4.1, it is clear that the matrix
Ri = M−1

i Ni is a nonnegative matrix and ρ(Ri) is an eigenvalue of Ri with ρ(Ri) < 1.
Let G(Ri) be the iteration matrix of the GMMS iteration method based on (Mi,Ni). From (4.4), it is clear

that

ρ(G(Ri)) =
(1 − ψ)ρ(Ri)m+1

1 − ψρ(Ri)
, (i = 1, 2). (4.5)

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 687

Let f (η) =
(1−ψ)ηm+1

1−ψη (0 < η < 1), by some simple calculations, we obtain

f ′(η) =
(1 − ψ)ηm((m + 1)(1 − ψη) + ψη)

(1 − ψη)2 > 0 (4.6)

with 0 < ψ < 1, which means f (η) is monotonically increasing. From the assumption ρ(R1) < ρ(R2) and
(4.6), it follows that

ρ(G(R1)) < ρ(G(R2)),

and the proof is completed. �
Theorem 4.4. Let I−αP = M−N be a matrix splitting and ρ(M−1N) < ρ(αP) or ρ(M−1N) < α, then the GMMS
iteration method obtained from (M,N) is faster than the MPIO iteration method for any initial vector x0.
Proof. From Definition 4.1, it is clear that the matrix splitting

I − αP = M̂ − N̂

with M̂ = I and N̂ = αP is a regular splitting and M̂−1N̂ = αP. From (4.5), we have

ρ(RMPIO) =
(1 − ψ)ρ(αP)m+1

1 − ψρ(αP)
. (4.7)

For the matrix splitting I − αP = M −N, it follows from (4.4) that

ρ(RGMMS) ≤
(1 − ψ)ρ(R)m+1

1 − ψρ(R)
(4.8)

with R = M−1N.
In fact, the assumption ρ(M−1N) < ρ(αP) is equivalent to ρ(M−1N) < α. Since P is a column-stochastic

matrix, then
eT(αP) = αeT, (4.9)

where e is a column vector of all ones, so α is an eigenvalue of αP with the corresponding eigenvector eT.
By Lemma 3.1 and (4.9), then we obtain

α ≤ ρ(αP) ≤ ‖αP‖1 = α

with ‖P‖1 = 1. Therefore, ρ(αP) = α.
By (4.6), (4.7), (4.8) and the assumption ρ(R) < ρ(αP), then we have

(1 − ψ)ρ(R)m+1

1 − ψρ(R)
<

(1 − ψ)ρ(αP)m+1

1 − ψρ(αP)
.

Thus
ρ(RMMSIO) < ρ(RMPIO)

and the proof is completed. �
Theorem 4.5. Let J = (I − αD)−1(αL + αU) be the Jacobi iteration matrix and 0 ≤ γ ≤ ω. If 1−α

1−ρ(J) < ω <
1+α

1+ρ(J)
and ω , 1, then the GMMS iteration method based on (3.12) converges faster than the MPIO iteration
method.
Proof. For ω = 1 and γ = 0, the Jacobi splitting from (3.12) is

MJ = I − αD,NJ = αL + αU.

Since
NJ = α(L + U) ≤ N̂ = αP,

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 688

by Theorem 4.2, then we have
ρ(J) ≤ ρ(αP)⇔ ρ(J) ≤ α. (4.10)

Case 1: 1−α
1−ρ(J) < ω < 1. It follows from (4.10) and Theorem 3.3 that

ρ(GA) ≤ |1 − ω| + ωρ(J)
= 1 − ω + ωρ(J)
= 1 − ω(1 − ρ(J))
< 1 − 1−α

1−ρ(J) (1 − ρ(J))
= α.

(4.11)

Case 2: 1 < ω < 1+α
1+ρ(J) . From (4.10) and Theorem 3.3, then we obtain

ρ(GA) ≤ |1 − ω| + ωρ(J)
= ω − 1 + ωρ(J)
= ω(1 + ρ(J)) − 1
< 1+α

1+ρ(J) (1 + ρ(J)) − 1
= α.

(4.12)

From the assumptions, (4.11) and (4.12), we have ρ(GA) < α. Thus, the proof is completed by Theorem 4.4.
�
Corollary 4.1. Let I−αP = M−N be a matrix splitting. If ρ(M−1N) < ρ(αP) or ρ(M−1N) < α, then the GTMS
iteration method based on (M,N) converges faster than the PIO iteration method for any initial vector x0.
Proof. The proof can be easily completed by referring to Theorem 4.4. �

In fact, the above results are derived from the assumption that the inner iteration in the GIO iteration
method is a precise iteration. In practice, the inner iteration is an inaccurate iteration, so we need to compare
the overall convergence rate of the GMMS iteration method.
Theorem 4.6. Let I−αP = Mi−Ni (i = 1, 2) be two regular splittings, 0 < ψ < 1, and mk be the number of the
inner iteration steps at the k−th outer iteration. If ρ(M−1

1 N1) < ρ(M−1
2 N2), then the GMMS iteration method

with the matrix splitting (M1,N1) performs better than that with the matrix splitting (M2,N2) for any initial
vector x0.
Proof. Let mk = τ(k = 0, 1, 2, · · ·), then from (3.9) it follows that the iteration matrix of the GMMS iteration
method is

HGMMS = (ψR)τ + (1 − ψ)
τ−1∑
t=0

(ψR)tRm+1.

Let δi be an eigenvalue of the matrix HGMMS and λi be an eigenvalue of the matrix R, respectively. Then,

δi = (ψλi)τ + (1 − ψ)
τ−1∑
t=0

(ψλi)tλm+1
i (4.13)

From (4.13), we have

ρ(HGMMS) = max
i
|δi| ≤ (ψρ(R))τ + (1 − ψ)

τ−1∑
t=0

(ψρ(R))t(ρ(R))m+1. (4.14)

Let H(Ri) be the iteration matrix of the GMMS iteration method based on the regular splitting (Mi,Ni)
with Ri = M−1

i Ni. Then it follows from (4.14) that

ρ(H(Ri)) = (ψρ(Ri))τ + (1 − ψ)
τ−1∑
t=0

(ψρ(Ri))t(ρ(Ri))m+1.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 689

Define the function

f̃ (η̃) = (ψη̃)τ + (1 − ψ)
τ−1∑
t=0

(ψη̃)t(η̃)m+1

with 0 < η̃ < 1. Then we have

f̃ ′(η̃) = τψ(ψη̃)τ−1 + (1 − ψ)
τ−1∑
t=1

(t + m + 1)ψtη̃t+m > 0 (4.15)

with 0 < ψ < 1, which implies that f̃ (η̃) is monotonically increasing.
From the assumption ρ(M−1

1 N1) < ρ(M−1
2 N2) and (4.15), thus

ρ(H(R1)) < ρ(H(R2))

and the proof is completed. �
Theorem 4.7. Let I − αP = M −N be a regular splitting, 0 < ψ < 1, and m̃k,mk be the numbers of the inner
iteration steps at the k−th outer iteration in the GIO and GMMS iteration methods, respectively. If m ≥ 1
and m̃k = mk = τ, then the GMMS iteration method converges faster than the GIO iteration method for any
initial vector x0.
Proof. From Theorem 3.1 [5], the iteration matrix of the GIO iteration method is

HGIO = (ψR)τ + (1 − ψ)
τ−1∑
s=0

(ψR)sR.

According to the proof of Theorem 4.6, then

ρ(HGIO) = (ψρ(R))τ + (1 − ψ)
τ−1∑
s=0

(ψρ(R))sρ(R)

and

ρ(HGMMS) = (ψρ(R))τ + (1 − ψ)
τ−1∑
t=0

(ψρ(R))t(ρ(R))m+1.

Since 0 < ψ < 1, m ≥ 1 and ρ(R) < 1, then

ρ(HGMMS) − ρ(HGIO) = (1 − ψ)ρ(R)
τ−1∑
t=0

(ψρ(R))t ((ρ(R))m
− 1

)
< 0.

Therefore, ρ(HGMMS) < ρ(HGIO) and the proof is completed. �
Remark 2. From Theorem 2.11 [5], it shows that the AOR splitting (3.12) is a regular splitting, then the above
comparison results are meaningful. Furthermore, by Theorem 4.6, we can obtain the similar conclusions to
Theorems 4.3, 4.4, 4.5 and Corollary 4.1.

5. Preconditioning for Krylov subspace methods

From (4.1), the matrix splitting of the GMMS iteration method is

I − αP = M̃ − Ñ, (5.1)

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 690

where 
M̃ =

(1 − ψ)N
m−1∑
i=0

(M−1N)iM−1 + I


−1

(M − ψN),

Ñ = (1 − ψ)

(1 − ψ)N
m−1∑
i=0

(M−1N)iM−1 + I)


−1

N(M−1N)m.

Then we can solve the following preprocessed linear system

M̃−1(I − αP)x = M̃−1(1 − α)v (5.2)

by some Krylov subspace methods, such as GMRES method. In Section 3, we have verified that the GMMS
iteration method is unconditionally convergent to the PageRank vector, which means that the spectrum of
the preconditioned matrix M̃−1(I − αP) lies entirely in a circle centered at (1, 0) with radius unity, this is a
desirable property for Krylov subspace acceleration.

Since it is difficult to calculate (M − ψN)−1 in M̃−1, so we consider a Neumann series approximation of
(M − ψN)−1. Assume that ρ(R) = ρ(M−1N) < 1, then by Lemmas 3.1 and 3.2, we obtain

(M − ψN)−1 = (I − ψR)−1M−1 =

 ∞∑
i=0

(ψR)i

 M−1. (5.3)

Here we adopt s + 1 terms of (5.3) as an approximation of (M − ψN)−1 :

(M − ψN)−1
≈

(
I + ψR + (ψR)2 + · · · + (ψR)s

)
M−1. (5.4)

Thus, an approximated preconditioner M̄ for M̃ can be constructed from (5.4) as follows:

M̄ =

(I + ψR + (ψR)2 + · · · + (ψR)s
) (1 − ψ)R

m−1∑
i=0

(M−1N)iM−1 + I



−1

In order to illustrate the efficiency of the preconditioner M̃ and M̄ on the Krylov subspace methods, the
clustering of eigenvalues of the matrices M̃−1(I − αP) and M̄−1(I − αP) will be analyzed, respectively.

For the preconditioner M̃, it follows that

M̃−1(I − αP) = (M − ψN)−1

(
(1 − ψ)N

m−1∑
i=0

(M−1N)iM−1 + I
)

(M −N)

= (I − ψR)−1

(
(1 − ψ)

m−1∑
i=0

Ri+1 + I
)

(I − R)

with I − αP = M −N. Let λi be an eigenvalue of R, then

λ̃i =
(1 − ψ)

(
1 − λm+1

i

)
+ ψ(1 − λi)

1 − ψλi
= 1 +

(ψ − 1)λm+1
i

1 − ψλi
(5.5)

is an eigenvalue of M̃−1(I − αP).
If we precondition (1.2) by using M̄, then

M̄−1(I − αP) =
(
I + ψR + (ψR)2 + · · · + (ψR)s

) (1 − ψ)
m−1∑
i=0

Ri+1 + I

 (I − R)

and

λ̂i =

(
1 − (ψλi)s+1

) (
(ψ − 1)λm+1

i + (1 − ψλi)
)

1 − ψλi
(5.6)

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 691

is an eigenvalue of the matrix M̄−1(I − αP).
From (5.5), we obtain ∣∣∣λ̃i − 1

∣∣∣ =
∣∣∣∣ (ψ−1)λm+1

i
1−ψλi

∣∣∣∣
≤

∣∣∣∣ (ψ−1)ρ(R)m+1

1−ψρ(R)

∣∣∣∣
<

1−ψ
1−ψ = 1

(5.7)

with |λi| < 1. Thus, all the eigenvalues of M̃−1(I − αP) are located in a circle centered at (1,0) with the radius
unity.

According to (5.6), we have∣∣∣λ̂i − 1
∣∣∣ =

∣∣∣∣∣ (1−(ψλi)s+1)((ψ−1)λm+1
i +(1−ψλi))

1−ψλi
− 1

∣∣∣∣∣
=

∣∣∣∣∣ (ψ−1)λm+1
i (1−(ψλi)s+1)−(ψλi)s+1(1−ψλi)

1−ψλi

∣∣∣∣∣
≤

∣∣∣∣∣ (ψ−1)λm+1
i (1−(ψλi)s+1)

1−ψλi

∣∣∣∣∣ + |(ψλi)s+1
|

<
∣∣∣∣λm+1

i

(
1 − (ψλi)s+1

)∣∣∣∣ + |(ψλi)s+1
|

≤ ρ(R)m+1
(
1 + (ψρ(R))s+1

)
+ (ψρ(R))s+1

= ρ(R)m+1 + (ψρ(R))s+1
(
1 + ρ(R)m+1

)
,

(5.8)

then all the eigenvalues of M̄−1(I − αP) are located in a circle centered at (1,0) with the radius ρ(R)m+1 +

(ψρ(R))s+1
(
1 + ρ(R)m+1

)
. Let m = s = 1, if ψ = ρ(R) = 0.7, then

ρ(R)m+1 + (ψρ(R))s+1
(
1 + ρ(R)m+1

)
= 0.847749 < 1,

so M̄ can be used as an appropriate preconditioner for the Krylov subspace methods for solving the linear
system (1.2).

When using Krylov subspace method for the preconditioned linear system (5.2), a residual equation
will be solved as follows:

M̄z = r. (5.9)

Let m = s = 1, then
M̄ =

(
(I + ψM−1N)((1 − ψ)M−1NM−1 + M−1)

)−1
. (5.10)

By making use of (5.10) and z = M̄−1r, then the following algorithm can be obtained for solving (5.9).
Algorithm 4. We can calculate the vector z in (5.9) by the following steps:
(1) Mt = r;
(2) u = (1 − ψ)Nt;
(3) Mv = u;
(4) ζ = t + v.
(5) M$ = ψNζ
(6) z = ζ + $

Moreover, for some special matrix splittings of I − αP, it is simple to obtain the preconditioner M̄. For
example, Based on the matrix splitting M = I and N = αP with m = s = 1, then

M̄ =
(
(I + ψαP)((1 − ψ)αP + I)

)−1 .

For this case, the vector z can be easily computed with several matrix-vector products:
(1) t̃ = α(1 − ψ)Pr;
(2) v̂ = r + t̃;
(3) ζ̂ = αψPv̂;
(4) z = v̂ + ζ̂.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 692

6. The choices of the parameters

In this section, we will discuss the choices of the parameters in the GMMS iteration method, the
preconditioners M̃ and M̄, respectively. Since it is difficult to obtain the optimal parameters, then we only
give some heuristic strategies for the choices of the parameters.

6.1. The choices of the parameters in the GMMS iteration method

It follows from (4.2) that the iteration matrix of the GMMS iteration method is

RGMMS = (1 − ψ)(M − ψN)−1N(M−1N)m

= (1 − ψ)(I − ψR)−1Rm+1 (6.1)

with R = M−1N.
At first, we consider the choice of the parameter ψ. Let λi be an eigenvalue of the matrix R with |λi| < 1,

so
θi = (1 − ψ)(1 − ψλi)−1λm+1

i (6.2)

is an eigenvalue of the iteration matrix RGMMS. Then from (6.2) we have

ρ(RGMMS) = max
i
|θi|

= max
i

∣∣∣(1 − ψ)(1 − ψλi)−1λm+1
i

∣∣∣
≤

(1−ψ)ρ(R)m+1

1−ψρ(R) .

(6.3)

Let f̂ (ψ) =
(1−ψ)ρ(R)m+1

1−ψρ(R) , by simple calculation, then

f̂ ′(ψ) =
ρ(R)m+1(ρ(R) − 1)

(1 − ψρ(R))2 < 0. (6.4)

Thus, f̂ (ψ) is monotonically decreasing, and f̂ (ψ) is smaller for larger ψ. However, similar to the analysis
in [5,24,34], the outer iterations (3.3) converge faster if ψ is close to 1, while the inner iterations (3.4) is faster
if ψ tends to zero. In practice, the values of ψ ∈ [0.5, 1) are appropriate choices for the GMMS iteration
method. It is important to point out that an appropriate parameter ψ only reduces the upper bound of the
spectral radius of the iteration matrix (6.4), but does not decrease the spectral radius itself. However, the
choices of parameter ψ ∈ [0.5, 1) can achieve better numerical results, which is verified in Section 7.

For the parameter mk, just as the analysis in [5,34], which is also true for mk. A larger mk may spend a
long computational time performing inner iterations (3.4), just to implement a single outer iteration (3.3)
and m iterations (3.2) at a time, then slows the overall convergence and takes more computational time.
For a smaller mk, on the other hand, may result in inner iterations (3.4) that do not sufficiently approximate
the exact solution of inner linear system, then do not yield sufficient progress for the exact PageRank
vector. Therefore, mk = 3, 4, 5 may be appropriate choices, which is illustrated through many numerical
experiments in Section 7.

For the parameter m, it is clear that a large m can reduce the upper bound in (6.3) and accelerate the
GMMS iteration method for solving the PageRank problem. From the numerical results in Section 7,
we find that the GMMS iteration method with the values of m around 7 can achieve better convergence
performances.

For the GMMS iteration method based on the AOR splitting (3.12), it is important to analyze the choices
of the parameters ω, γ to improve its convergence rate. Just as the analyses in [5,34], for large and sparse
coefficient matrices in (1.2), the GMMS iteration method converges faster with the values ofω around 1 and
γ = 0, which is confirmed by the numerical results in Section 7.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 693

6.2. The choices of the parameters in the preconditioners M̃ and M̄
For the choices of the parameter m, s. From (5.7) and (5.8), it follows that the preconditioned GMRES

(PGMRES) method with large m, s usually converges faster than that with small m, s. However, in order to
overcome the memory limitation of the computer and reduce the computational cost, small values of m, s
are often the appropriate choices in M̃ and M̄, such as m = s = 1.

For the choice of the parameter ψ. First, we discuss the choice of the parameter ψ in the preconditioner
M̃. From (5.5), we have ∣∣∣λ̃i − 1

∣∣∣ =

∣∣∣∣∣∣ (ψ − 1)λm+1
i

1 − ψλi

∣∣∣∣∣∣ ≤ (1 − ψ)ρ(R)m+1

1 − ψρ(R)
. (6.5)

From (6.4), we know that the function (1−ψ)ρ(R)m+1

1−ψρ(R) is monotonically decreasing with ψ, which means that the
Krylov subspace methods converges faster by using the preconditioner M̃ with a larger ψ.

For large and sparse linear system (1.2), we prefer to m = s = 1 in the preconditioner M̄. For the case
m = s = 1, from (5.6), then we obtain

λ̂i =
(1−(ψλi)2)((ψ−1)λ2

i +(1−ψλi))
1−ψλi

=
(
1 + ψλi

) (
(ψ − 1)λ2

i + (1 − ψλi)
)
.

Thus, ∣∣∣λ̂i − 1
∣∣∣ =

∣∣∣∣(1 + ψλi
) (

(ψ − 1)λ2
i + (1 − ψλi)

)
− 1

∣∣∣∣
=

∣∣∣(ψ − 1 − ψ2)λ2
i + ψ(ψ − 1)λ3

i

∣∣∣
≤ (ψ2

− ψ + 1)ρ(R)2 + (1 − ψ)ψρ(R)3

(6.6)

Let
~f (ψ) = (ψ2

− ψ + 1)ρ(R)2 + (1 − ψ)ψρ(R)3.

By some calculations, we have
~f ′(ψ) = (2ψ − 1)(ρ(R)2

− ρ(R)3).

Since ρ(R)2
− ρ(R)3 > 0 with ρ(R) < 1, then ~f ′(ψ) < 0 if 0 < ψ < 1/2 and ~f ′(ψ) > 0 if 1/2 < ψ < 1, so the

function ~f (ψ) achieves minimum value for ψ = 0.5, which implies that the precondtioned Krylov subspace
methods converges faster with ψ = 0.5. We notice that the optimal ψ = 0.5 only have the minimal upper
bound in (6.6), however, the PGMRES method usually converges faster with the values of ψ around 0.5,
which is verified by Example 3 in Section 7.

For the preconditioner M̄ based on the AOR splitting (3.12), we need to consider the choices of the
parameters ω, γ. From (5.8), the upper bound is sharper with a smaller ρ(R). From analyses of ω, γ in
Section 6.1, the values of ω around 1 and γ = 0 are better choices in preconditioner M̄ for large and sparse
linear system (1.2), which is illustrated clearly by Example 3 in Section 7.

7. Numerical results

In this section, several numerical examples are given to show the effectiveness of the proposed algorithm.
The numerical experiments are performed in Matlab R2010 on an Intel dual core processor (2.30 GHz, 8GB
RAM). Four parameters are used to test these algorithms, which are the iteration step (denoted as IT), the
computing time in seconds (denoted as CPU), the number of matrix-vector product (denoted as MV), and
the relative residual (denoted as RES) defined by ‖rk‖2

‖(1−α)v‖2
with rk = (1−α)v− (I−αP)xk. Six sparse matrices P

for the PageRank problem are listed in Table 1, which are obtained from the Internet (available from [42,43]),
where ”Average Nonzeros” means the average number of the nonzero elements per row. Four damping
factors α = 0.85, 0.90, 0.95, 0.99 are adopted in all numerical experiments. All algorithms in this section are
started with the initial vector x0 = v for the sake of justice, which are terminated once the residual norms
are below 10−8.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 694

Table 1: Five test matrices for PageRank problem.

Name Size Nonzeros Average Nonzeros
Minnesota 2,642× 2,642 6,606 2.50

Email-Enron 36,692×36,692 367,662 10.0
Usroads 129,164× 129,164 330,870 2.60

Stanford-Berkeley 683,446×683,446 7,583,376 11.0
Flickr 820,878×820,878 9,837,214 1.45 × 10−5

Wikipedia-20051105 1,634,989×1,634,989 19,753,078 7.38 × 10−6

Example 1. In this example, we compare the GMMS iteration method with the GIO and MPIO iteration
methods, respectively, where the GMMS and GIO iteration methods are constructed based on the AOR
splitting (3.12). The test matrices are the Minnesota, Usroads, Stanford-Berkeley, Flickr and Wikipedia-
20051105 matrices, respectively. The numerical results are reported in Tables 2-6.

First, we compare the GMMS iteration method with the GIO iteration method, where we choose
ϕ = ψ = 0.5, m̃k = mk = 2 and ω = γ = 1 in Table 2, ϕ = ψ = 0.7, m̃k = mk = 2 and ω = 0.9, γ = 0 in Table 3,
ϕ = ψ = 0.8, m̃k = mk = 2 and ω = 1, γ = 0 in Table 4, respectively. Let m = 1, 3, 5, 7 in the GMMS iteration
method. From Tables 2-4, it follows that the GMMS iteration method performs better than the GIO iteration
method in terms of iteration number and CPU time with m > 1, such as the cases m = 3, 5, 7, which is more
obvious for larger α, for example, the case α = 0.99 in Tables 2-4.

Next, we examine the performance of the GMMS iteration method with the MPIO iteration method. Let
β = αψ,ψ = 0.5, κ = mk = 2 and ω = 1, γ = 0 in Table 5, β = αψ,ψ = 0.7, κ = mk = 2 and ω = 1, γ = 0 in Table
6, respectively. From Tables 5 and 6, we notice that the GMMS iteration method outperforms the MPIO
iteration method in both iteration number and CPU time, especially for larger α, such as the case α = 0.99 in
Table 6. From Tables 2-6, we observe that the GMMS iteration method can achieve better numerical results
for the appropriate values of m, for example, the cases m = 5, 7.

Table 2: Numerical results for the Minnesota matrix

α GIO GMMS(m=1) GMMS(m=3) GMMS(m=5) GMMS(m=7)
IT 33(66) 20(80) 11(66) 8(64) 6(60)

0.85 CPU 0.64520 0.64298 0.49107 0.47011 0.41911
RES 6.50×10−9 4.71×10−9 4.93×10−9 2.15×10−9 2.88×10−9

IT 48(96) 29(116) 16(96) 11(88) 9(90)
0.90 CPU 0.92670 0.93342 0.71608 0.64091 0.64400

RES 9.37×10−9 7.61×10−9 7.87×10−9 8.50×10−9 2.95×10−9

IT 95(190) 57(228) 32(192) 22(176) 17(170)
0.95 CPU 1.78376 1.77767 1.42875 1.25661 1.18939

RES 8.89×10−9 8.45×10−9 7.00×10−9 7.66×10−9 6.52×10−9

IT 453(906) 272(1088) 151(906) 105(840) 80(800)
0.99 CPU 8.46769 8.32363 6.48976 5.85051 4.92910

RES 9.98×10−9 9.78×10−9 9.82×10−9 9.21×10−9 9.68×10−9

Example 2. In this example, we make a comparison of the convergence performances of the GMMS iteration
method with different parameters. The test matrices are the Minnesota, Email-Enron, Usroads, Stanford-
Berkeley, Flickr and Wikipedia-20051105 matrices, respectively. The numerical results are listed in Tables
7-11 and Figs. 1-6.

Tables 7-9 contain the iteration numbers of the GMMS iteration method with different mk, where we
adopt ψ = 0.6, m = 3, ω = 0.7 and γ = 0 in Table 7, ψ = 0.7, m = 3, ω = 0.8 and γ = 0 in Table 8, ψ = 0.8,
m = 3, ω = 0.9 and γ = 0 in Table 9, respectively. From Tables 7-9, it follows that the GMMS iteration
method needs less iteration number for larger mk, but also takes more CPU time and matrix-vector products
at the same time. Thus, mk = 2, 3, 4 can be used for the GMMS iteration method in practice.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 695

Table 3: Numerical results for the Usroads matrix

α GIO GMMS(m=1) GMMS(m=3) GMMS(m=5) GMMS(m=7)
IT 50(100) 32(128) 18(108) 13(104) 10(100)

0.85 CPU 1.18168 1.11038 0.83740 0.75186 0.69099
RES 9.04×10−9 6.88×10−9 8.83×10−9 5.84×10−9 5.89×10−9

IT 76(152) 48(192) 28(168) 20(160) 15(150)
0.90 CPU 1.79363 1.67022 1.29810 1.15489 1.04693

RES 9.37×10−9 8.70×10−9 6.91×10−9 5.34×10−9 7.63×10−9

IT 153(306) 97(388) 56(336) 39(312) 30(300)
0.95 CPU 3.61575 3.38990 2.57614 2.27484 1.44494

RES 9.81×10−9 8.81×10−9 8.16×10−9 8.94×10−9 9.06×10−9

IT 759(1518) 478(1912) 275(1650) 193(1544) 149(1490)
0.99 CPU 17.6137 16.4251 12.5791 11.0476 10.3039

RES 9.97×10−9 9.91×10−9 9.71×10−9 9.64×10−9 9.33×10−9

Table 4: Numerical results for the Flickr matrix

α GIO GMMS(m=1) GMMS(m=3) GMMS(m=5) GMMS(m=7)
IT 55(110) 35(140) 21(126) 15(120) 12(120)

0.85 CPU 21.5950 21.8492 17.0091 15.5959 16.0248
RES 8.38×10−9 9.55×10−9 5.36×10−9 4.18×10−9 2.08×10−9

IT 80(160) 51(204) 30(180) 21(168) 17(170)
0.90 CPU 30.3534 33.2581 25.7794 21.2547 21.0875

RES 8.76×10−9 9.85×10−9 8.13×10−9 9.43×10−9 3.77×10−9

IT 139(278) 90(360) 52(312) 37(296) 29(290)
0.95 CPU 45.0251 53.2527 47.0028 42.3921 40.3794

RES 9.48×10−9 8.05×10−9 9.52×10−9 8.09×10−9 6.10×10−9

IT 480(960) 308(1232) 180(1080) 127(1016) 98(980)
0.99 CPU 199.494 199.026 144.260 140.461 122.419

RES 9.74×10−9 9.95×10−9 9.68×10−9 9.73×10−9 9.91×10−9

Table 5: Numerical results for the Stanford-Berkeley matrix

MPIO GMMS

α m, m̃ IT(MV) CPU RES IT(MV) CPU RES
m=m̃=1 44(176) 9.1916 8.96 × 10−9 36(144) 7.5067 9.57 × 10−9

m=m̃=3 25(150) 5.5432 5.47 × 10−9 20(120) 4.7510 8.85 × 10−9

0.85 m=m̃=5 17(136) 5.8941 7.47 × 10−9 14(112) 5.2092 7.07 × 10−9

m=m̃=7 13(130) 6.3179 7.36 × 10−9 11(110) 5.3592 4.27 × 10−9

m=m̃=1 68(272) 13.886 9.49 × 10−9 56(224) 11.426 8.46 × 10−9

0.90 m=m̃=3 38(228) 10.455 8.13 × 10−9 31(186) 9.4303 8.57 × 10−9

m=m̃=5 26(208) 8.6940 9.94 × 10−9 22(176) 7.6577 5.42 × 10−9

m=m̃=7 20(200) 7.1513 8.83 × 10−9 17(170) 6.0318 5.14 × 10−9

m=m̃=1 140(560) 31.182 9.89 × 10−9 114(456) 27.063 9.74 × 10−9

0.95 m=m̃=3 78(468) 20.433 9.15 × 10−9 64(384) 16.704 7.91 × 10−9

m=m̃=5 54(432) 22.140 9.07 × 10−9 45(360) 16.642 7.45 × 10−9

m=m̃=7 42(420) 22.598 6.51 × 10−9 17(370) 16.578 9.31 × 10−9

m=m̃=1 668(2672) 149.58 9.88 × 10−9 606(2424) 116.52 9.95 × 10−9

0.99 m=m̃=3 371(2226) 102.97 9.89 × 10−9 337(2022) 91.757 9.75 × 10−9

m=m̃=5 257(2056) 101.01 9.76 × 10−9 233(1864) 79.814 9.95 × 10−9

m=m̃=7 197(1970) 87.527 9.32 × 10−9 179(1790) 79.698 9.20 × 10−9

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 696

Table 6: Numerical results for the Wikipedia-20051105 matrix

MPIO GMMS

α m, m̃ IT(MV) CPU RES IT(MV) CPU RES
m=m̃=1 38(152) 98.4163 6.75 × 10−9 32(128) 80.4694 7.02 × 10−9

m=m̃=3 22(132) 78.3030 5.53 × 10−9 18(108) 62.2578 9.23 × 10−9

0.85 m=m̃=5 15(120) 68.6740 9.08 × 10−9 13(104) 57.5893 5.80 × 10−9

m=m̃=7 12(120) 66.5642 4.47 × 10−9 11(110) 61.2265 7.86 × 10−9

m=m̃=10 9(117) 60.7950 3.16 × 10−9 8(104) 54.7985 3.77 × 10−9

m=m̃=1 57(228) 145.039 8.28 × 10−9 48(192) 120.021 8.59 × 10−9

0.90 m=m̃=3 33(198) 117.242 6.95 × 10−9 28(168) 97.3812 6.57 × 10−9

m=m̃=5 23(184) 103.866 7.70 × 10−9 20(160) 88.3542 4.89 × 10−9

m=m̃=7 18(180) 91.8019 5.71 × 10−9 15(150) 77.0139 7.34 × 10−9

m=m̃=10 13(169) 90.8506 9.59 × 10−9 11(143) 75.0639 9.04 × 10−9

m=m̃=1 111(444) 282.749 8.96 × 10−9 93(372) 232.650 9.49 × 10−9

0.95 m=m̃=3 64(384) 218.583 8.23 × 10−9 54(324) 184.198 7.93 × 10−9

m=m̃=5 45(360) 202.861 7.83 × 10−9 38(304) 166.573 7.50 × 10−9

m=m̃=7 35(350) 173.304 6.51 × 10−9 29(290) 146.120 8.60 × 10−9

m=m̃=10 26(338) 167.154 6.61 × 10−9 22(286) 150.403 6.29 × 10−9

m=m̃=1 478(1792) 1166.07 9.71 × 10−9 437(1748) 1083.21 9.72 × 10−9

0.99 m=m̃=3 275(1650) 887.457 9.44 × 10−9 251(1506) 767.024 9.71 × 10−9

m=m̃=5 193(1544) 855.962 9.35 × 10−9 176(1408) 708.473 9.76 × 10−9

m=m̃=7 149(1490) 831.553 8.97 × 10−9 136(1360) 725.923 9.27 × 10−9

m=m̃=10 111(1443) 799.266 8.69 × 10−9 101(1313) 711.993 9.44 × 10−9

Figs. 1-4 depicts the iteration numbers of the GMMS iteration method with different ψ. Let mk = 3, ω =
γ = 0.9 in Fig. 1, mk = 3, ω = 0.8, γ = 0 in Fig. 2, mk = 3, ω = 0.7, γ = 0 in Fig. 3, mk = 3, ω = 1, γ = 0 in
Fig. 4, respectively. From the convergence performances in Figs. 1-4, it is clear that the GMMS iteration
method converges faster for larger ψ, especially for small m, such as the case m = 1. However, for large
m, we observe that the iteration number does not change obviously for ψ ∈ (0.5, 1), for example, the cases
m = 3, 5, 7, then it is better to choose ψ ∈ (0.5, 1) for the GMMS iteration method.

Now, we verify the choices of the parameters ω, γ for the GMMS iteration method based on the AOR
splitting (3.12). The numerical results are reported in Figs. 5, 6 and Tables 10, 11. For large test matrices, it
is appropriate to choose γ = 0 in order to make use of their sparse property. Here we choose ψ = 0.7,mk = 3
in Figs. 5 and 6, ψ = 0.6,m = 3,mk = 2 in Table 10 and ψ = 0.8,m = 3,mk = 2 in Table 11, respectively.
From these numerical experiments, it is clear that the GMMS iteration method performs better in terms of
iteration number and CPU time with larger ω. Moreover, the better numerical results can be obtained as ω
around 1.

Table 7: Numerical results for the Email-Enron matrix with different mk.

mk = 2 mk = 3 mk = 4 mk = 5
IT(MV) 30(180) 28(196) 27(216) 27(243)

α = 0.85 CPU 0.61184 0.51696 0.49001 0.62420
RES 3.67 × 10−9 8.66 × 10−9 8.75 × 10−9 6.31 × 10−9

IT(MV) 44(264) 41(287) 40(320) 39(351)
α = 0.90 CPU 0.76804 0.73140 0.72064 0.72846

RES 9.71 × 10−9 9.64 × 10−9 7.65 × 10−9 8.33 × 10−9

IT(MV) 82(492) 77(539) 74(592) 72(648)
α = 0.95 CPU 1.86866 1.73887 1.43502 2.25038

RES 9.56 × 10−9 8.12 × 10−9 8.05 × 10−9 8.70 × 10−9

IT(MV) 343(2058) 318(2226) 305(2440) 298(2682)
α = 0.99 CPU 5.04836 4.92962 5.73543 5.85459

RES 9.54 × 10−9 9.67 × 10−9 9.62 × 10−9 9.47 × 10−9

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 697

Table 8: Numerical results for the Usroads matrix with different mk.

mk = 2 mk = 3 mk = 4 mk = 5
IT(MV) 21(126) 19(133) 18(144) 17(153)

α = 0.85 CPU 0.87018 0.94585 0.94270 1.07402
RES 6.07 × 10−9 6.79 × 10−9 6.72 × 10−9 9.35 × 10−9

IT(MV) 31(186) 29(203) 27(216) 26(234)
α = 0.90 CPU 1.23563 1.04231 1.12695 1.59546

RES 9.26 × 10−9 6.36 × 10−9 7.64 × 10−9 7.81 × 10−9

IT(MV) 63(378) 57(399) 54(432) 52(468)
α = 0.95 CPU 1.58565 1.40916 1.46817 2.67641

RES 8.46 × 10−9 8.83 × 10−9 8.05 × 10−9 7.88 × 10−9

IT(MV) 309(1854) 280(1960) 263(2104) 252(2268)
α = 0.99 CPU 10.9199 12.7027 13.4229 12.3863

RES 9.92 × 10−9 9.90 × 10−9 9.80 × 10−9 9.91 × 10−9

Table 9: Numerical results for the Stanford-Berkeley matrix with different mk.

mk = 2 mk = 3 mk = 4 mk = 5
IT(MV) 24(144) 21(147) 19(152) 18(162)

α = 0.85 CPU 4.64513 4.13484 4.18906 4.42786
RES 5.17 × 10−9 6.83 × 10−9 9.86 × 10−9 9.89 × 10−9

IT(MV) 36(216) 32(224) 30(240) 28(252)
α = 0.90 CPU 6.29236 6.38801 6.61860 6.87349

RES 8.08 × 10−9 7.69 × 10−9 5.51 × 10−9 6.66 × 10−9

IT(MV) 73(438) 65(455) 59(472) 56(504)
α = 0.95 CPU 12.7336 12.6569 13.0166 13.6287

RES 9.33 × 10−9 8.26 × 10−9 9.88 × 10−9 8.23 × 10−9

IT(MV) 351(2106) 310(2170) 284(2272) 266(2394)
α = 0.99 CPU 59.8736 60.1742 62.5374 78.4841

RES 9.84 × 10−9 9.75 × 10−9 9.47 × 10−9 9.43 × 10−9

Table 10: Numerical results for the Flickr matrix with different ω.

ω=0.3 ω=0.5 ω=0.7 ω=0.9 ω=1 ω=1.15
IT(MV) 76(456) 45(270) 32(192) 24(144) 22(132) 21(126)

α=0.85 CPU 60.7249 42.9220 30.5575 23.1190 20.1690 20.2193
RES 8.73×10−9 8.07 × 10−9 6.24×10−9 8.72×10−9 5.14×10−9 7.29×10−9

IT(MV) 109(654) 65(390) 46(276) 35(210) 32(192) 34(204)
α=0.90 CPU 103.566 57.1506 44.2808 34.0971 29.9100 32.2891

RES 8.49×10−9 7.52×10−9 7.04×10−9 8.39×10−9 5.43×10−9 6.79×10−9

IT(MV) 186(1116) 111(666) 79(474) 61(366) 55(330) 77(462)
α=0.95 CPU 177.450 105.321 75.3854 58.2579 50.6345 60.8820

RES 9.28×10−9 8.94×10−9 8.31×10−9 8.28×10−9 7.42×10−9 8.86×10−9

IT(MV) 628(3768) 377(2262) 269(1614) 209(1254) 188(1128) 180(1080)
α=0.99 CPU 593.937 344.917 251.879 198.522 174.634 167.471

RES 9.99×10−9 9.72×10−9 9.66×10−9 9.60×10−9 9.58×10−9 8.54×10−9

Example 3: In this example, we aim at testing the effectiveness of the preconditioner M̄ for the GMRES
method, where the preconditioner M̄ is generated by the AOR splitting (3.12). The test matrices are the
Minnesota, Email-Enron, Usroads, Stanford-Berkeley, Flickr and Wikipedia-20051105 matrices, respectively.
The numerical results are reported in Tables 12-15 and Figs. 7-8.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 698

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

10

15

20

25

30

ψ

IT

α=0.85

m=1

m=3

m=5

m=7

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

10

15

20

25

30

35

40

45

ψ

IT

α=0.90

m=1

m=3

m=5

m=7

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

60

70

80

90

ψ

IT

α=0.95

m=1

m=3

m=5

m=7

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

350

400

ψ

IT

α=0.99

m=1

m=3

m=5

m=7

(d)

Figure 1: The iteration number for the Minnesota matrix with different ψ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

15

20

25

30

35

40

45

50

55

ψ

IT

α=0.85

m=1

m=3

m=5

m=7

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

60

70

80

90

ψ

IT

α=0.90

m=1

m=3

m=5

m=7

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

40

60

80

100

120

140

160

180

ψ

IT

α=0.95

m=1

m=3

m=5

m=7

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
100

200

300

400

500

600

700

800

900

ψ

IT

α=0.99

m=1

m=3

m=5

m=7

(d)

Figure 2: The iteration number for the Email-Enron matrix with different ψ.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 699

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

15

20

25

30

35

40

45

50

55

60

ψ

IT

α=0.85

m=1

m=3

m=5

m=7

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

60

70

80

90

ψ

IT

α=0.90

m=1

m=3

m=5

m=7

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

40

60

80

100

120

140

160

ψ

IT

α=0.95

m=1

m=3

m=5

m=7

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
100

200

300

400

500

600

700

ψ

IT

α=0.99

m=1

m=3

m=5

m=7

(d)

Figure 3: The iteration number for the Usroads matrix with different ψ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

15

20

25

30

35

40

45

50

ψ

IT

α=0.85

m=1

m=3

m=5

m=7

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

60

70

80

ψ

IT

α=0.90

m=1

m=3

m=5

m=7

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

40

60

80

100

120

140

160

ψ

IT

α=0.95

m=1

m=3

m=5

m=7

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
100

200

300

400

500

600

700

800

ψ

IT

α=0.99

m=1

m=3

m=5

m=7

(d)

Figure 4: The iteration number for the Stanford-Berkeley matrix with different ψ.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 700

0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

140

160

ω

IT

α=0.85

m=1

m=3

m=5

m=7

(a)

0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

ω

IT

α=0.90

m=1

m=3

m=5

m=7

(b)

0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

350

400

450

ω

IT

α=0.95

m=1

m=3

m=5

m=7

(c)

0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800

1000

1200

1400

1600

1800

ω

IT

α=0.99

m=1

m=3

m=5

m=7

(d)

Figure 5: The iteration number for the Email-Enron matrix with different ω.

0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

350

ω

IT

α=0.85

m=1

m=3

m=5

m=7

(a)

0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

140

160

180

ω

IT

α=0.90

m=1

m=3

m=5

m=7

(b)

0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

350

400

ω

IT

α=0.95

m=1

m=3

m=5

m=7

(c)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
100

200

300

400

500

600

700

800

900

1000

ω

IT

α=0.99

m=1

m=3

m=5

m=7

(d)

Figure 6: The iteration number for the Usroads matrix with different ω.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 701

Table 11: Numerical results for the Wikipedia-20051105 matrix with different ω.

ω=0.3 ω=0.5 ω=0.7 ω=0.9 ω=1 ω=1.05
IT(MV) 63(378) 37(222) 26(156) 20(120) 18(108) 22(132)

α=0.85 CPU 219.615 126.709 89.2781 70.6051 60.7606 67.2119
RES 7.99×10−9 8.56 × 10−9 8.42×10−9 7.58×10−9 6.59×10−9 6.48×10−9

IT(MV) 93(558) 55(330) 39(234) 30(180) 27(162) 26(156)
α=0.90 CPU 308.586 173.337 138.215 99.8963 57.9838 82.6035

RES 9.29×10−9 9.74×10−9 9.13×10−9 9.03×10−9 8.24×10−9 6.63×10−9

IT(MV) 178(1068) 106(636) 76(456) 59(354) 53(318) 50(300)
α=0.95 CPU 616.122 319.627 243.726 207.243 180.830 175.913

RES 9.34×10−9 9.57×10−9 8.24×10−9 7.74×10−9 7.60×10−9 8.60×10−9

IT(MV) 822(4932) 493(2958) 352(2112) 273(1638) 246(1476) 327(1962)
α=0.99 CPU 2873.99 1686.01 1247.13 856.421 618.277 712.707

RES 9.85×10−9 9.72×10−9 9.60×10−9 9.84×10−9 9.57×10−9 8.52×10−9

We compare the preconditioned GMRES (PGMRES) method with the GMRES method for solving the
PageRank problem in Tables 12 and 13. Let ψ = 0.8, ω = 1, γ = 0 in Table 12 and ψ = 0.7, ω = 1.1, γ = 0
in Table 13, respectively. It follows from Tables 12, 13 that the PGMRES method converges faster than the
GMRES method in term of the iteration number and CPU time with different m, s in the preconditioner M̄,
especially for larger α, such as the case α = 0.99 in Tables 12, 13.

Next, we will discuss the choice of the parameter ψ in the preconditioner M̄. We choose ω = 1, γ = 0 in
Fig. 7, ω = 0.9, γ = 0 in Fig. 8, m = s = 1, ω = 1.2, γ = 0 in Tables 14, 15, respectively. From Figs. 7, 8 and
Tables 14, 15, we observe that the PGMRES method can obtain better numerical results with ψ around 0.6,
which is more obvious for larger α, such as the case α = 0.99 in Table 14 and the cases α = 0.90, 0.95, 0.99 in
Table 15, respectively.

Finally, we consider how to choose the parameters ω, γwhen the preconditioner M̄ is based on the AOR
splitting (3.12). Fig. 9 depicts the iteration numbers of the PGMRES method for the Email-Enron, Usroads
and Stanford-Berkeley matrices with different ω, respectively. Let γ = 0, m = s = 1 in Fig. 9. From Fig.
9, we can find that the PGMRES method converges faster for larger ω, then it is appropriate to choose the
values of ω around 1 for the PGMRES method.

8. Conclusion

In this paper, we present an iteration method for solving the PageRank problem, which is called the
GMMS iteration method, and analyze its global convergence in detail. Furthermore, the same idea can
be used as a preconditioning technique to accelerate some Krylov subspace methods, such as the GMRES
method. The Numerical results on several PageRank problems have showed the superiority of our proposed
algorithm. Since the GMMS iteration method is rather parameter-dependent, then how to determine the
optimal parameters is an interesting question, which will be further investigated in the future.

9. Acknowledgements

The authors are grateful to thank the anonymous referee for their recommendations and valuable
suggestions and Professor Yimin Wei for the communication.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 702

Table 12: Numerical results of the PGMRES method
for the Minnesota matrix.

m, s IT CPU RES
m=s=1 15 0.07304 2.86 × 10−9

α = 0.85 m=s=2 14 0.07457 6.26 × 10−9

m=s=3 10 0.07278 1.88 × 10−9

m=s=4 10 0.05386 1.96 × 10−9

GMRES 30 0.23252 7.68 × 10−9

m=s=1 18 0.09855 6.13 × 10−9

α = 0.90 m=s=2 18 0.08887 5.05 × 10−9

m=s=3 12 0.06315 4.72 × 10−9

m=s=4 12 0.09452 6.45 × 10−9

GMRES 37 0.25605 9.49 × 10−9

m=s=1 26 0.15018 5.56 × 10−9

α = 0.95 m=s=2 26 0.15217 6.01 × 10−9

m=s=3 17 0.11918 7.25 × 10−9

m=s=4 18 0.10847 5.35 × 10−9

GMRES 53 0.42809 9.45 × 10−9

m=s=1 56 0.39101 7.95 × 10−9

α = 0.99 m=s=2 57 0.42247 8.21 × 10−9

m=s=3 38 0.21893 6.38 × 10−9

m=s=4 40 0.27674 7.01 × 10−9

GMRES 116 1.29084 9.34 × 10−9

Table 13: Numerical results of the PGMRES method
for the Usroads matrix.

m, s IT CPU RES
m=s=1 14 1.10701 8.93 × 10−9

α = 0.85 m=s=2 15 1.45063 7.70 × 10−9

m=s=3 10 1.02632 5.41 × 10−9

m=s=4 11 1.74244 3.90 × 10−9

GMRES 30 2.28122 8.25 × 10−9

m=s=1 17 1.21931 6.43 × 10−9

α = 0.90 m=s=2 19 1.51533 8.24 × 10−9

m=s=3 12 1.26498 4.81 × 10−9

m=s=4 14 1.63505 5.01 × 10−9

GMRES 38 3.92952 6.45 × 10−9

m=s=1 24 2.13781 8.92 × 10−9

α = 0.95 m=s=2 28 3.15262 7.55 × 10−9

m=s=3 16 2.03914 6.90 × 10−9

m=s=4 21 2.78483 4.90 × 10−9

GMRES 54 6.69342 7.94 × 10−9

m=s=1 54 6.68532 9.35 × 10−9

α = 0.99 m=s=2 63 7.62764 9.91 × 10−9

m=s=3 36 4.82273 9.01 × 10−9

m=s=4 48 6.80835 7.03 × 10−9

GMRES 120 21.0056 8.91 × 10−9

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 703

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

ψ

IT

α=0.85

m=s=2

m=s=4

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

ψ

IT

α=0.90

m=s=2

m=s=4

(b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

15

20

25

30

35

40

45

50

ψ

IT

α=0.95

m=s=2

m=s=4

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

60

70

80

90

100

ψ

IT

α=0.99

m=s=2

m=s=4

(d)

Figure 7: The iteration number for the Minnesota matrix with different ψ.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

ψ

IT

α=0.85

m=s=1

m=s=2

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

ψ

IT

α=0.90

m=s=1

m=s=2

(b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

40

45

50

ψ

IT

α=0.95

m=s=1

m=s=2

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

ψ

IT

α=0.99

m=s=1

m=s=2

(d)

Figure 8: The iteration number for the Usroads matrix with different ψ.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 704

Table 14: Numerical results of the PGMRES method for the Flickr matrix with different ψ.

GMRES PGMRES
ψ=0.4 ψ=0.5 ψ=0.6 ψ=0.7 ψ=0.8 ψ=0.9

IT 40 18 18 18 18 19 19
α = 0.85 CPU 22.9441 44.5623 23.7771 26.4502 30.8856 27.4087 25.6504

RES 8.15 × 10−9 5.89 × 10−9 5.40 × 10−9 5.89 × 10−9 7.60 × 10−9 4.94 × 10−9 9.27 × 10−9

IT 49 22 22 22 23 23 24
α = 0.90 CPU 35.3682 64.8491 41.7243 45.6202 44.6981 43.3974 60.1796

RES 8.68 × 10−9 8.86 × 10−9 7.97 × 10−9 8.86 × 10−9 5.39 × 10−9 9.05 × 10−9 8.95 × 10−9

IT 69 31 31 31 32 33 34
α = 0.95 CPU 62.7403 97.9051 66.5882 53.6703 58.0302 59.5976 63.9984

RES 7.52 × 10−9 9.85 × 10−9 8.95 × 10−9 9.85 × 10−9 7.98 × 10−9 7.56 × 10−9 9.87 × 10−9

IT 139 61 60 61 62 64 67
α = 0.99 CPU 233.596 149.861 127.473 137.722 138.494 140.796 176.491

RES 9.85 × 10−9 7.34 × 10−9 8.93 × 10−9 7.34 × 10−9 7.75 × 10−9 8.15 × 10−9 9.10 × 10−9

Table 15: Numerical results of the PGMRES method for the Wikipedia-20051105 matrix with different ψ.

GMRES PGMRES
ψ=0.4 ψ=0.5 ψ=0.6 ψ=0.7 ψ=0.8

IT 42 28 25 23 24 30
α = 0.85 CPU 109.805 118.678 114.002 87.3299 105.547 125.943

RES 8.34 × 10−9 5.75 × 10−9 4.59 × 10−9 8.51 × 10−9 5.99 × 10−9 5.68 × 10−9

IT 54 33 31 30 32 51
α = 0.90 CPU 146.833 179.504 151.817 142.069 174.444 388.379

RES 7.12 × 10−9 9.53 × 10−9 7.04 × 10−9 5.87 × 10−9 5.74 × 10−9 8.18 × 10−9

IT 78 50 48 43 46 49
α = 0.95 CPU 236.994 352.059 296.166 239.445 259.048 334.832

RES 9.84 × 10−9 6.85 × 10−9 9.66 × 10−9 7.00 × 10−9 6.30 × 10−9 9.07 × 10−9

IT 165 94 88 87 94 103
α = 0.99 CPU 814.898 772.323 582.547 588.010 612.619 855.340

RES 8.76 × 10−9 9.47 × 10−9 8.77 × 10−9 9.56 × 10−9 8.96 × 10−9 8.15 × 10−9

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 705

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

10

20

30

40

50

60

70

80

ω

IT

α=0.85

 Email−Enron

Usroads

Stanford−Berkeley

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

10

20

30

40

50

60

70

80

ω

IT

α=0.90

Email−Enron

Usroads

Stanford−Berkeley

(b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

50

100

150

ω

IT

α=0.95

Email−Enron

 Usroads

Stanford−Berkeley

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

50

100

150

200

250

300

350

400

ω

IT

α=0.99

Email−Enron

Usroads

Stanford−Berkeley

(d)

Figure 9: The iteration number for the PGMRES method with different ω.

References

[1] L. Page, S. Brin, R. Motwami, T. Winograd, The Pagerank citation ranking: bringing order to the web, Technical Report, Computer
Science Department, Stanford University, 1998.

[2] P. Boldi, M. Santini,S. Vigna, PageRank as a function of the damping factor,in:Proceedings of the 14th International World Web
Conference, ACM, NewYork,2005.

[3] T.H. Haveliwala, S.D. Kamvar, D. Klein, C. Manning, G.H. Golub, Computing PageRank using power extrapolation, Stanford
University Technical Report, 2003.

[4] A. Arasu, J. Novak, A. Tomkins, J.Tomlin,PageRank computation and the structure of the web: experiments and algorithms,
in:Proceedings of 11th International World Web Conference, Honolulu, 2002.

[5] Z.L. Tian, Y. Liu, Y. Zhang, Z.Y. Liu, M.Y. Tian, The general inner-outer iteration method based on regular splittings for the
PageRank problem, Appl. Math. Comput. 356 (2019) 479-501.

[6] C. Wen, T.Z. Huang, Z.L. Shen, A note on the two-step matrix splitting iteration for computing PageRank, J. Comput. Appl.
Math. 315 (2017) 87-97.

[7] C.Q. Gu, L. Wang, On the multi-splitting iteration method for computing PageRank, J.Appl. Math.Comput. 42 (2013) 479-490.
[8] M. Bianchini, M. Gori, F. Scarselli, Inside PageRank, ACMTrans. Internet Technol. 5 (2005) 92-128.
[9] N. Huang, C.F. Ma, Parallel multisplitting iteration methods based on M-splitting for the PageRank problem, Appl. Math.

Comput. 271 (2015) 337-343.
[10] G. Wu, Y. Zhang, Y. Wei, Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem, J.

Sci. Comput. 57 (2013) 74-104.
[11] C.Q. Gu, F. Xie, K. Zhang, A two-step matrix splitting iteration for computing PageRank, J. Comput. Appl. Math. 278, 19-28

(2015).
[12] B.Y. Pu, T.Z. Huang, C. Wen, A preconditioned and extrapolation-accelerated GMRES method for PageRank, Appl. Math. Lett.

37 (2014) 95-100.
[13] Y.Z. Song, On the convergence of the MAOR method, J. Comput. Appl. Math. 79 (1997) 299-317.
[14] A. Hadjimos, Accelerated overrelaxation method, Math.Comp. 32 (1978) 149-157.
[15] A.N. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings, Princet on University

Press, Princeton, NJ, 2006.
[16] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The Johns Hopkins University Press, Baltimore, London, 1996.
[17] Z.Z. Bai, J.C. Sun, D.R. Wang, A unified framework for the construction of various matrix multisplitting iterative methods for

large sparse system of linear equations, Comput. Math. Appl. 32 (1996) 51-76.
[18] G. Wu, Y.M. Wei, An Arnoldi-extrapolation algorithm for computing PageRank, J. Comput. Appl. Math. 234 (2010) 3196-3212.

Z. L. Tian et al. / Filomat 35:2 (2021), 679–706 706

[19] S.D. Kamvar, T.H. Haveliwala, G.H. Golub, Extrapolation methods for accelerating PageRank computations, Technique Report
SCCM 03-02, Stanford

[20] R.S. Varga, Matrix Iterative Analysis, Springer-Verlag, Berlin Heidelberg, 2000
[21] X.Y. Tan, A new extrapolation method for PageRank computations, J. Comput. Appl. Math. 313 (2017) 383-392.
[22] C.Q. Gu,W.W. Wang, An Arnoldi-Inout algorithm for computing PageRank problems, J. Comput. Appl. Math. 309 (2017) 219-229.
[23] Z.X. Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems, Linear Algebra Appl.

259 (1997) 1-23.
[24] D.F. Gleich, A.P. Gray, C. Greif, T. Lau, An inner-outer iteration method for computing PageRank, SIAM J. Sci. Comput. 32 (2010)

349-371.
[25] R. Morgan, M. Zeng, A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity, Linear

Algebra Appl. 415 (2006) 96-113.
[26] G. Wu, Y.M. Wei, A power-Arnoldi algorithm for computing PageRank, Numer. Linear Algebra Appl. 14 (2007) 521-546.
[27] J.W. Demmel, Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, 1997.
[28] Z.Z. Bai, On convergence of the inner Couter iteration method for computing PageRank, Numer. Algebra Control Optim. 2 (2012)

855-862.
[29] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, NewYork, 1979.
[30] G. Grimmett, D. Stirzaker, Probability and Random Processes, third ed., Oxford University Press, Oxford, UK, 2001.
[31] G.H. Golub, C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT Numerical Mathematics 46 (2006) 759-771.
[32] Q. Yu, Z. Miao, G. Wu, Y. Wei, Lumping algorithms for computing Google’s PageRank and its derivative, with attention to

unreferenced nodes, Inform. Retrieval, 15 (2012) 503-526.
[33] G. Wu, W. Xu, Y. Zhang, Y. Wei, A preconditioned conjugate gradient algorithm for GeneRank with application to microarray

data mining, Data Min. Knowl. Disc. 26 (2013) 27-56.
[34] M.Y. Tian, Y. Zhang, Y.D. Wang, Z.L. Tian, A generalmulti-splitting iteration method for computing PageRank, Comp. Appl.

Math. (2019) 38:60. https://doi.org/10.1007/s40314-019-0830-8.
[35] G. Wu, Y. Wei, Arnoldi versus GMRES for computing PageRank: A theoretical contribution to Googles PageRank problem, ACM

Transactions on Information Systems, 28 (2010), Article 11.
[36] Y. Lin, X. Shi, Y. Wei, On computing PageRank via lumping the Google matrix, J. Comput. Appl. Math. 224 (2009) 702-708.
[37] Z.L. Shen, T.Z. Huang, B. Carpentieri, X.M. Gu, C. Wen, An efficient elimination strategy for solving PageRank problems, Appl.

Math. Comput. 298(2017) 111-122.
[38] C.Q. Gu, X.L. Jiang, Y. Nie, Z.B. Chen, A preprocessed multi-step splitting iteration for computing PageRank, Appl. Math.

Comput. 338(2018) 87-100.
[39] G. Wu, Y. Zhang, Y. Wei, Krylov subspace algorithms for computing GeneRank for the analysis of microarray data mining, J.

Comput. Biol. 17 (2010), 631-646.
[40] C.Q. Gu, X.L. Jiang, C.C. Shao, Z.B. Chen, A GMRES-Power algorithm for computing PageRank problems, J. Comput. Appl.

Math. 343 (2018) 113-123.
[41] Z.L. Tian, X.Y. Liu, Y.D. Wang, P.H. Wen, The Modified Matrix Splitting Iteration Method for Computing PageRank Problem,

Filomat. 33 (2019) 725-740.
[42] http://www.cise.ufl.edu/research/sparse/matrices/Gleich/index.html.
[43] http://www.stanford.edu/sdkamvar/research.html.

