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Inequalities for Sector Matrices with Negative Power

Yaxin Gao?

“Department of Mathematics, Soochow University, Suzhou 215006, P. R. China

Abstract. In this paper, we present some inequalities for sector matrices with negative power. Among

other results, we prove that if A, B € M,,(C) with W(A), W(B) C S,, then for any positive unital linear map
@, it holds

R((1 - 0)D(A) + vD(B)) < cos? () RD((1 — v)A” + vB"),

where v € [0,1] and 7 € [-1,0]. This improves Tan and Xie’s Theorem 2.4 in [22] if setting ®(X) = X for
every X € M,(C) and replacing A by A™1, Bby B}, respectively, and r = —1, which is also a special result of
Bedrani, Kittaneh and Sababheh’s Theorem 4.1 in [4].

1. Introduction

Let M,,(C) denote the set of n X n complex matrices. For A € M, (C), the conjugate transpose of A is
denoted by A*, and the matrices RA = %(A +A*)and JA = %(A — A”) are called the real part and imaginary
part of A, respectively ([6, p. 6] and [10, p. 7 ]). Recall that a norm || - || on M,,(C) is unitarily invariant if
IUAV|| = ||All for any A € M,,(C) and all unitarily matrices U, V € M,(C). A matrix A is called accretive
if RA is positive definite. For two Hermitian matrices A, B € M,,(C), we use A > B to mean that A — B is
positive semidifinite. A linear map ® : IM,, — M, is called positive if it maps positive definite matrices to
positive definite matrices and is said to be unital if it maps identity matrices to identity matrices.

The numerical range of A € IM,(C) is defined by

W(A) = {xAx: x e C",x'x = 1}.
For a € [0, 7), S, denotes the sector region in the complex plane as follows:
Sy =1{zeC:Rz>0,|9z < (Rz)tana}.

A matrix A € M, (C) is called a sector matrix when satisfying W(A) C S,. If W(A) C Sy, then A is positive
definite, and if W(A), W(B) € S, for some a € [0, Z), then W(A + B) C S,. From the definition of S, above we
know that if W(A) C S,, then A is nonsingular and R(A) is positive definite. Moreover, W(A) C S, implies
W(X*AX) € S, for any nonzero n X m matrix X, thus WA CS,. Recently, Tan and Chen [21] also proved

that for any positive linear map ®, W(A) C S, implies that W(P(A)) C S,. Recent developments on sector
matrices can be found in [9, 11, 13-17, 21].
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For two positive definite matrices A, B € IM,,(C), the weighted geometric mean of A and B is defined as
Af)B = A1(A"2BA 1)1 A1,

where 0 < A < 1. For more information about the weighted geometric mean, we refer the reader to [12].
For two accretive matrices A, B € M,,(C), Drury [8] defined the geometric mean of A and B as follows

00 -1
AﬁB:(% fo (tA+t71B)7! %) . (1)

This new geometric mean defined by (1) possesses some similar properties compared to the geometric
mean of positive matrices. For instance, A#B = BfA, (A#B)™! = A"'B~!. Moreover, if A, B € M, (C) with
W(A), W(B) C S,, then W(A#B) C S,.

Later, Raissouli, Moslehian and Furuichi [20] defined the following weighted geometric mean of two
accretive matrices A, B € M,,(0),

Af\B = Smﬂ“ f 1A + By ?, )
0

where A € [0,1]. If A = %, then the formula (2) coincides with the formula (1).
Very recently, Bedrani, Kittaneh and Sababheh [4] defined a more general operator mean for two accretive
matrices A, B € M,,(C),

1
Ao B = f (1 - A + B T dos(t), (3)
0

where f : (0, 00) — (0, ) is an operator monotone function with f(1) = 1 and vy is the probability measure
characterizing o .

Moreover, they also characterize the operator monotone function for an accretive matrix: let A € IM,,(C)
be accretive and f : (0, o) — (0, o) be an operator monotone function with f(1) = 1, then

1
f(A) = fo (T + (1 - DA™ dos(h), @

1
where vy is the probability measure satisfying f(x) = f (s+(1—=s dog(s).

0
Ando [1] proved that if A, B € IM,,(C) are positive definite, then for any positive linear map ®,
(Ao (B) < D(A)o ;D(B), ()

where A € [0,1]. Ando’s formula (5) is known as a matrix Holder inequality.
The famous Choi’s inequality [5, p. 41] says: if @ is a positive unital linear map and A > 0, then

DAY < DA,  re[-1,0]. (6)

DAY > DAY,  relo,1]. 7)

Utilizing the weighted geometric mean defined by Raissouli, Moslehian and Furuichi for two accretive
matrices, Tan and Xie [22] gave an AM-GM-HM inequality for sectorial matrices as follows.

Theorem 1.1. Let A, B € IM,,(C) be such that W(A), W(B) C S, and v € [0,1]. Then
cos? aR((1 —v)A™! + vB™ 1! < R(AH#,B) < sec*(a)R((1 — v)A + vB).

Very recently, Bedrani, Kittaneh and Sababheh [4] utilized the newly defined operator mean to obtain a
more general one compared to Tan and Xie.
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Theorem 1.2. Let A, B € M,,(C) be such that W(A), W(B) € S, and v € [0,1]. If f: (0, 00) — (0, 00) is an operator
monotone function with f(1) = 1 and f'(1) = v for some v € [0, 1], then

cos’aR((1 —v)At +vB )l < R(AosB) < sec’ ()R ((1 — v)A + vB).

Under Bedrani, Kittaneh and Sababheh'’s definitions, they generalize many inequalities from positive
definite matrices to sector matrices for operator monotone functions. Thus it is interesting to find out
whether one can replace operator monotone functions by operator convex functions or more generally,
convex functions. In this paper, we will utilize operator convex function namely, f(t) = ¢/, r € [-1,0],
instead of operator monotone functions to present some inequalities for sector matrices, which complements
Bedrani, Kittaneh and Sababheh’s results. In particular, we strengthen Theorem 1.1 in a new perspective.

2. Lemmas

We begin this section with some lemmas which will be necessary to prove our main results.
Very recently, Choi, Tam and Zhang gave the following two results in [7], which will be utilized massively
in our argument.

Lemma 2.1. (see [7]) Let A € M,,(C) with W(A) C S, and r € [-1,0]. Then
RA" < R'A < cos? () RA”.
A reverse of Lemma 2.1 is as follows.
Lemma 2.2. (see [7]) Let A € M,,(C) with W(A) C S, and r € [0,1]. Then
cos” (@) RA" < R'A < RA’

Very recently, Bedrani, Kittaneh and Sababheh [4] obtained the following inequality for general operator
mean of sector matrices.

Lemma 2.3. Let A, B € M,,(C) be such that W(A), W(B) C Saand let A € [0,1]. Then
RAfRB < R(Ac(B) < sec’(a)(RAdfRB),

where f is defined as in (3).

Lemma 2.4. (see [24, p.63], [9]) Let A € M,, be such that W(A) C S,. Then
Aj(RA) < si(A) < sec*(@)Aj(RA).

Lemma 2.5. (see[6, p.741, [25]) Let A € M,,(C) be such that W(A) C S,. Then for any unitarily invariant norm |||,
cos(@)lIAll< IRAlI< (AL

3. Main results

The first theorem presents a weighted arithmetic mean type inequality for sectorial matrices involving
negative power, which also can be viewed as a convex function, leading to improvements of Theorem 1.1
and Theorem 1.2.

Theorem 3.1. Let A, B € M,,(C) be such that W(A), W(B) € S,. Then for any positive unital linear map ®, it holds
R((1 - v)D(A) + vD(B))" < cos? (a) RD((1 — v)A” + vB"),
in whichv € [0,1] and r € [-1,0].
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Proof. We have the following chain of inequalities

R((1 - v)D(A) + vP(B))

IN

(R((1 - v)®(A) + v®(B)))" (by Lemma 2.1)
(®((1 —v)RA + 0vRB))

(1 -v)RA +vRB)") (by Lemma 6)
D((1-v)R"A+vR'B) (by operator convexity)
cos” (a)®((1 - v)RA" +vRB’) (by Lemma 2.1)
cos” () RD((1 — v)A" + vB"),

IANIAN AN I

completing the proof. [
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By setting ®(X) = X for every X € M,(C) and replacing A by A™!, B by B!, respectively, and r = -1 in
Theorem3.1, we obtain the following corollary, which improves Theorem 1.1. As pointed out by a referee,
Corollary 3.2 could also be derived by Theorem 1.2 if setting o = V,, where V, denotes the weighted

arithmetic mean.

Corollary 3.2. Let A, B € M,,(C) be such that W(A), W(B) € S, and v € [0, 1], then
cos*(@)R((1 —v)A™ + B! < R((1 - v)A + vB).

The following two corollaries considerably refine Theorem 2.1 and Theorem 2.2 in [19].

Corollary 3.3. Let A, B € M,,(C) be such that W(A), W(B) € S,. Then fork=1,--- ,n

k

k
[[sita+B*< Seck(“ Hs]I +A 1)1_[5](1 +B7Y),

]:] ]:1 =

k

: k
H si(In + (A + B)™!) < sec®(a) H si(l, + Seci(a)A‘l) H (I + sec (a) ,

j=1 j=1 j=1

Proof. In Cocollary3.2, setting v = 1 and replacing A by A™! and B by B!, we have

sec

R(A+B)! < 2(“) WA+ BY.

The rest of the proof follows from Theorem 2.1 in [19], thus we omit the details. [

Corollary 3.4. Let A, B € M,,(C) be such that W(A), W(B) C S,. Then

sec(a)
41’!

|det(A + B)7}| < |det(I, + A™Y)| | det(I,, + B™Y),

2 2
sec-(a) A sec (a)B

_1) .

|det(I, + (A + B)™M)| < sec’(a)| det(I, + -1)' |det(ln +

Theorem 3.5. Let A,B € M,,(C) be such that W(A), W(B) € S, and r € [-1,0]. If f : (0,00) —

operator monotone function with f(1) = 1, then for any positive unital linear map P, it holds

R(D'(A)a P’ (B)) < cos” ()D(RA'aRB).

(0, 00) is an
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Proof. First of all, by Lemma 2.1 we have
(RA)" < cos® (a)RA".
By the operator monotone decreasing of the inverse we have
(RA)™ > sec” (a)(RA")L.
Hence we get
(1-H(RA)T + HRB)™" > sec?(a)(1 — )(RA") ™! + sec” (a)t(RB") .
By the operator monotone decreasing of the inverse again, we obtain
(1= 1(RA)" +HRB) )" < cos™(@)((1 - )(RA) " + HRB)™) ™"

Next we compute

R(D"(A)asD'(B))

1
R ( fo (1 = HD(A) + td"(B)) " dog(t)

1
f R((1 - HD(A) + td(B)) " dog(t)
0

IA

1
f (1 - HRO7(A) + tRO(B))  dos(t) (by Lemma 2.1)
0

IA

1
f (1 = HRD(A) ™ + HRD(B)) ") dvf(t) (by Lemma 2.2)
0

IA

1
fo (1= @R (A) + tdR(B))™! dog(t) (by (7))

1
fo (@((1 - HRT(A) + tRT(B)) " dog(t)

1
fo O(((1~ HR(A) + RTB) ) dor(t) (by (6)

IA

IA

1
coszy(a)q)( f (1= HRAN T +HRB) ) dus(h) | (by (8))
0

cos” (a)D(RA"¢ RB"),

which completes the proof. [
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Theorem 3.6. Let A,B € M,,(C) be such that W(A), W(B) € S, and r € [-1,0]. If f : (0,00) — (0,00) is an

operator monotone function with f(1) = 1, then for any positive unital linear map ®, it holds

si(((1 = 0)®(A) + vD(B))") < sec® ' (a)s(P((1 — v)A” + vB")),

s/(D"(A)o ;D' (B)) < sec> ¥ (a)s;(D(A"0¢B")).
in whichv € [0,1]and j=1,2,--- ,n.
Proof. We prove inequality (9) first. Compute

5;((1 = v)®(A) + vD(B))") sec’(@)s;(R((1 - v)D(A) + v®(B))")
sec” 7 (a)s;(RD((1 — v)A” + vB"))
sec” ¥ (a)s;(D((1 — v)A” + vB")),

IN N IA

©)

(10)
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where the first inequality follows by Lemma 2.4, the second one is due to Theorem 3.1 and the last one is
by Lemma 2.4 again. Now we prove inequality (10) as promised.

sj(CDr(A)ofq)’(B)) < secz(a)s]-(‘R(CD’(A)af(I)'(B)))

< sec* ¥ (a)s J(@(RA"0,RB"))
< sec® ¥ (a)s(@R(A'0(B"))
< sec” ¥ (a)si(P(A’o £B"),

where the first inequality is by Lemma 2.4, the second one is by Theorem 3.5, the third one is due to Lemma
2.3 and the last one is by Lemma 2.4 again. This completes the proof. [J

Theorem 3.7. Let A,B € M,,(C) be such that W(A), W(B) € S, and r € [-1,0]. If f : (0,00) — (0,0) is an
operator monotone function with f(1) = 1, then for any positive unital linear map @, it holds

I((1 = 9)@(A) + v@(B)Y'|| < sec' ¥ (@)||P((1 ~ v)A” + vB)], (11)

|7 (A)o s @ (B)|| < sec' ™ (o) |(A"¢B")l, (12)
in whichv € [0,1].

Proof. We estimate
I((1 = 0)D(A) + vPB))|| < sec(@)|R((1 - v)P(A) + vD(B))||
< sec ™ ()| RD((1 — v)A” + vB")||
< sec™(a)||P((1 — v)A” + vB)|,
where the first inequality follows by Lemma 2.5, the second one follows from Theorem 3.1 and the last one
is by Lemma 2.5 again. Next we prove inequality (12).

D (A)or @' B < sec(a)|R(P"(A)a D" (B))|
< sec (a)|O(RA'aRB)|
< secl_z’(a)IICD‘R(ArofBr)ll
< sec ™ (@)ID(Ao B,

where the first inequality is by Lemma 2.5, the second one is by Theorem 3.5, the third one is due to Lemma
2.3 and the last one is by Lemma 2.5 again. This completes the proof. [

Theorem 3.8. Let A € M,,(C) be such that W(A), W(B) € S, and r € [-1,0]. Then for any positive unital linear
map O, it holds

RD'(A) < cos? (a) RD(A").
In particular, we have
RDO(A) < sec?(@)RDA™).

Proof. We have
R'(A) (RO(A))"  (by Lemma 2.1)

(PR(A)

D(R'(A)) (by (6)

cos” (@)@(R(A")) (by Lemma 2.1)

cos? () RD(A"),

IAN A

completing the proof. [
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Theorem 3.9. Let A,B € M,,(C) be such that W(A), W(B) € S, and r € [-1,0]. If f : (0,00) — (0,00) is an
operator monotone function with f(1) = 1, then for any positive unital linear map P, it holds
R(D(A)asP(B))" < cos™ () RD(AasB)'.
Proof. We have
R(D(A)o s P(B))" (R(®(A)osP(B)))" (by Lemma 2.1)
(RD(A)oRD(B))” (by Lemma 2.3)
(PR(A)a PR (B))"
(®(R(A)osR(B)))" (by (5))
D(R(A)osR(B))"  (by (6)
cosz’(a)CD‘Rr(AafB) (by Lemma 2.3)
cos4r(oz)‘}’\fIJ(AafB)r, (by Lemma 2.1)

IA A

IANIN NN

which completes the proof. [

Theorem 3.10. Let A,B € M,,(C) be such that W(A), W(B) € S, and r € [-1,0]. Then for any positive unital
linear map @, it holds
R (#) < cos? (@) R (D(A"MD(B)).

Proof. We estimate
A+By
2

%CD( D (‘R (A ;— B ))7 (by Lemma 2.1)

RA + RB\
o(*5)
O(R"AHR'B) (by Theorem 2.1 in [2])
D(R"ADP(R'B) (by (5))
cos” () @(RAD(RB") (by Lemma 2.1)
cos? () R(DA")HR (DB
cos? (@) R(P(AD(B')), (by Lemma 2.3)

IAIAN A

IA

completing the proof. [

Theorem 3.11. Let A, B € M,,(C) be such that W(A), W(B) € S,. If f, g : (0, 00) — (0, 00) are operator monotone
functions with f(1) = g(1) = 1, then for any positive unital linear map ®, it holds

Rg(P(A)o D(B)) > cos*(a)PR (Ao ¢B)

Proof. First we note that for every nonnegative concave function g and every 0 < z < 1, one can get
g(zx) > zg(x). Next we estimate

Rg(P(A)osD(B)) g(R(D(A)orD(B))) (by (6.8) in [4])
g(RD(A)oRD(B)) (by Lemma 2.3)
g(@R(A)o DR (B))

g(@(R(A)asR(B))) (by (5))
g(cos*(a)®(R(AosB))) (by Lemma 2.3)
cos*(a)g(®(R (Ao sB)))

cos?()@(g(R(Ao¢B))) (by Choi inequality [1])
cos*(@)®R(g(AasB)). (by(6.10) in [4]

A\

vV IV IV IV IV
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This completes the proof. [J

Theorem 3.12. Let A; € M,,(C) be such that W(A;) C S, for j=1,--- ,nandletay, - - - ,a, be positive real numbers
such that 27:1 aj=1landr € [-1,0]. If f : (0, 00) — (0, o) is an operator monotone function with f(1) =1, then

H(Zn: a4y
j=1

7

n
< secl_zr(a)H Z ajA;
=1

[ s sl e
j=1 j=1

Proof. From [3] we know that for every nonnegative convex g on [0, o), one can derive

o) ] = | 3 st )
j=1 j=1

Now let g(t) = ', by Lemma 2.1, Lemma 2.5 and the previous inequality, we obtain

||(Zn‘ aA)| < secta) %(i aiAj)| oy Lemma 25)
= =
< sec(w) ("Rzn:ajAj)" (by Lemma 2.1)
=1
= sec(a) (Zn:aj%Aj)’
=1
< sec(a) iaj%fAj|| (by (13))
=1
< sec () Zn:aﬂ%A; (by Lemma 2.1)
=1
= sec () ‘RiajA;
=1
< sec ™ () ia]-A; . (by Lemma 2.5)

j=1

As indicated in [23], for every nonnegative concave h on [0, o), we have

|| Z a4 < ”h(i 0 (14)
j=1 j=1

Since f : (0,00) — (0, o) is operator monotone, which means f is operator concave thus concave, then f
satisfies the previous inequality. Next by Lemma 2.5, (6.8) and (6.10) in [4] and the previous inequality, we
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obtain
||§a]-f(Aj)“ < sec(a)|'%§ajf(Aj)'| (by Lemma 2.5)
= sec(a)HjZZa;ﬁf(A;)H
< sec(a) ilajf(‘?\Aj)‘ (by (6.10) in [4])
p
< sec’(a) f(jZi, aRA)|| by (14)
= sec’(a) f(%gajAj)|
< sec(a) ‘Rf(]i;ajAj)| (by (6.8) in [4]))
< sec(a) f(iajAj)“. (by Lemma 2.5)
=
O

Theorem 3.13. Let A, B € M,,(C) be such that W(A), W(B) C S, and r € [-1,0]. Then
R(AI(AHB)) > cos®(a)R(AH(A!B)).

Proof. By Lemma 2.3 and the mixed geometric-harmonic mean inequality we have
R(A!(AHB)) RA!'R(AEB) (by Lemma 2.3)

RAI(RAFRB) (by Lemma 2.3)

RAB(RAIRB) (by (12) in [18])

cos(a)RAHR(A!B) (by Lemma 2.3)

cos’(a)R(AH(A!B)), (by Lemma 2.3)

vV IV IV IV IV

completing the proof. [
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