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Abstract. The object of the present paper is to study weakly B symmetric manifolds (WBS)n. At first some
geometric properties of (WBS)n(n > 2) have been studied. Finally, we consider (WBS)4 spacetimes. They
turn out to be both perfect and imperfect fluids Robertson-Walker space-times : an equation of state is
provided in the first case, and in the second the nature of the bulk viscosity pressure is pointed out. Also,
we construct an example of a (WBS)4.

1. Introduction

Let (Mn, 1), (n = dimM) be a pseudo Riemannian manifold, i.e., a manifold M with the pseudo Rieman-
nian metric 1, and let ∇ be the pseudo Riemannian connection of (Mn, 1). A pseudo Riemannian manifold is
called locally symmetric [6] if ∇R = 0,where R is the Riemannian curvature tensor of (Mn, 1). This condition
of local symmetry is equivalent to the fact that at every point P ∈M, the local geodesic symmetry F(P) is an
isometry [41] . The class of symmetric manifolds is a very natural generalization of the class of manifolds
of constant curvature.

A non-flat pseudo-Riemannian manifold (Mn, 1)(n > 2) is called weakly symmetric [50] if the curvature
tensor R of type (0,4) satisfies the condition

(∇XR)(Y,Z,U,V) = A(X)R(Y,Z,U,V) + D(Y)R(X,Z,U,V)
+E(Z)R(Y,X,U,V) + G(U)R(Y,Z,X,V) + J(V)R(Y,Z,U,X), (1)

where R(Y,Z,U,V) = 1(R(Y,Z)U,V), R is the curvature tensor of type (1,3) and A,D,E,G and J are 1-forms
respectively which are non-zero simultaneously. Such a manifold is denoted by (WS)n. It was proved in
[16] that the 1-forms must be related as follows

D = E and G = J.
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That is, the weakly symmetric manifold is characterized by the condition

(∇XR)(Y,Z,U,V) = A(X)R(Y,Z,U,V) + D(Y)R(X,Z,U,V)
+D(Z)R(Y,X,U,V) + G(U)R(Y,Z,X,V) + G(V)R(Y,Z,U,X). (2)

The 1-forms A,D and G are called the associated 1-forms. If in (2) the 1-form A is replaced by 2A; D and G
are replaced by A, then the manifold (Mn, 1) reduces to a pseudo symmetric manifold in the sense of Chaki
[10].

Again if A = D = G = 0, the manifold defined by (2) reduces to a symmetric manifold in the sense of
Cartan. The existence of a (WS)n was proved by Prvanović [44] and a concrete example is given by De and
Bandyopadhyay ([16],[17]).

Weakly symmetric manifolds have been studied by several authors ( [4], [20], [21], [34], [35], [36], [42],
[43]) and many others.

In 1993, Tamassy and Binh [51] introduced weakly Ricci symmetric manifolds. It may be mentioned
that a pseudo Ricci symmetric manifold is a particular case of a weakly Ricci symmetric manifold. In 2012,
Mantica and Molinari ([33],[34]) introduced weaklyZ symmetric manifolds which is denoted by (WZS)n.
It is a generalization of the notion of weakly Ricci symmetric manifolds[51]. A (0,2) symmetric tensor is a
generalizedZ tensor if

Z(X,Y) = S(X,Y) + φ1(X,Y), (3)

where φ is an arbitrary scalar function and S denotes the Ricci tensor of type (0, 2). The scalar Z̃ is obtained
by contracting (3) over X, Y as follows:

Z̃ = r + nφ. (4)

In a subsequent paper [45] De et al. introduced a (0,2) symmetric tensor B as follows:

B(X,Y) = aS(X,Y) + br1(X,Y), (5)

where a and b are non-zero arbitrary scalar functions and r is the scalar curvature. The authors [45] have
studied pseudo B symmetric manifolds with applications to relativity. The pseudo B-symmetric manifold
is the generalized notion of pseudo Z-symmetric manifolds. The scalar B̃ is obtained by contracting (5) over
X, Y as follows:

B̃ = (a + nb)r. (6)

Pseudo Z symmetric, weakly Z symmetric and recurrent Z forms on pseudo-Riemannian manifolds
have been studied in ([34], [35] and [36]) respectively.

Inspired by these works we introduce a new type of manifold called weakly B-symmetric manifolds. A
manifold is called weakly B-symmetric and denoted by (WBS)n, if the B tensor of type (0,2) is non-zero and
satisfies the condition

(∇XB)(Y,Z) = A(X)B(Y,Z) + D(Y)B(X,Z) + E(Z)B(X,Y), (7)

where A, D, E are 1-form which not simultaneously zero. Such an n-dimensional manifold will be called
weakly B-symmetric manifold and denoted by (WBS)n.

A non-flat pseudo-Riemannian manifold (Mn, 1)(n > 2) is defined to be a quasi Einstein manifold [9] if
its Ricci tensor S of type (0,2) is not identically zero and satisfies the following condition:

S(X,Y) = α1(X,Y) + βη(X)η(Y),

where α, β are scalars and η is a non-zero 1-form for all vector fields X. The quasi Einstein manifold is
denoted by (QE)n.
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On the other hand, in a pseudo-Riemannian manifold quasi Einstein manifolds arose during the study
of exact solutions of the Einstein’s field equations as well as during considerations of quasi-umbilical hy-
persurfaces of semi-Euclidean spaces.

A. Gray [29] introduced a class of Riemannian manifold determined by covariant derivative of the Ricci
tensor. The class consisting of all Riemannian manifolds whose Ricci tensor S is a Codazzi tensor, i.e,

(∇XS)(Y,Z) = (∇YS)(X,Z). (8)

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, i.e.,

(∇XS)(Y,Z) + (∇YS)(Z,X) + (∇ZS)(X,Y) = 0. (9)

A pseudo-Riemannian manifold is said to satisfy Codazzi type of Ricci tensor if the Ricci tensor is non
zero and satisfies the condition (8).

The present paper is organized as follows:
After introduction, in Section 2, some curvature properties of (WBS)n have been studied. Among others it
is proved that a (WBS)n is a quasi-Einstein manifold. Moreover, in a (WBS)n with divergence free conformal
curvature tensor, the B tensor is of Codazzi type provided the scalars a, b, r are constants. Next we prove that
a (WBS)n admits cyclic parallel B tensor if and only if the sum of the associated 1-forms vanishes. Finally,
in Section 4, we consider (WBS)4 space-times. It is shown that if the conformal curvature is divergence
free, then the space-time is both a perfect and imperfect fluid Robertson-Walker space-time : an equation
of state is provided in the first case, and in the second the nature of the bulk viscosity pressure is pointed
out. Finally, we construct an example of a (WBS)4.

2. Some curvature properties of (WBS)n

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature respectively and L denote the
symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor S , that is ,

1(LX,Y) = S(X,Y), (10)

for any vector field X, Y.

Now we state the following Lemma which will be used later:

Walker’s Lemma [53]: If ai j, bk are numbers satisfying

ai j = a ji, (11)

and

ai jbk + a jkbi + akib j = 0, (12)

for i, j, k = 1, 2, ...,n, then either all ai j = 0 or, all bi are zero.

Let us consider a (WBS)n. Then from (7) we have

(∇XB)(Y,Z) = A(X)B(Y,Z) + D(Y)B(X,Z) + E(Z)B(X,Y). (13)

Interchanging Y, Z in (13) we have

(∇XB)(Z,Y) = A(X)B(Z,Y) + D(Z)B(X,Y) + E(Y)B(X,Z). (14)
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Since B is symmetric, subtracting (14) from (13) we obtain

[D(Y) − E(Y)]B(X,Z) = [D(Z) − E(Z)]B(X,Y). (15)

We define ω(X) = D(X) − E(X) = 1(X, ρ̃), for all vector field X, where ρ̃ is a vector field associated with the
1-form ω. Therefore the above equation reduces to

ω(Y)B(X,Z) = ω(Z)B(X,Y). (16)

Putting Z = ρ̃ in (16), we get

ω(Y)B(X, ρ̃) = ω(ρ̃)B(X,Y). (17)

Again putting X = Y = ei in (16), where {ei} is a pseudo orthonormal basis, we have

B(Z, ρ̃) = ω(Z)B̃, (18)

where B̃ is defined by (6). Thus (17) and (18) yields

ω(ρ̃)B(X,Z) = B̃ω(Z)ω(X). (19)

If ω(ρ̃) , 0 it follows that

B(X,Y) = B̃
ω(X)√
ω(ρ̃)

ω(Y)√
ω(ρ̃)

, (20)

in case of ω(ρ̃) > 0, and

B(X,Y) = B̃
ω(X)√
−ω(ρ̃)

ω(Y)√
−ω(ρ̃)

, (21)

if ω(ρ̃) < 0. From (5) we have thus

S(X,Y) = α1(X,Y) + βη(X)η(Y), (22)

where α = −B̃r
a , β = B̃

a , η(X) =
ω(X)
√
ω(ρ̃)

if ω(ρ̃) > 0 and η(X) =
ω(X)
√
−ω(ρ̃)

if ω(ρ̃) < 0. Therefore we can state the

following:

Proposition 2.1. A (WBS)n manifold is quasi-Einstein provided ω(ρ̃) , 0

Again contracting (16) over X and Z, we get

ω(LY) =
r
a
{a + (n − 1)b}ω(Y). (23)

This can be rewritten as

S(Y, ρ̃) =
r
a
{a + (n − 1)b}1(Y, ρ̃). (24)

Thus r
a {a + (n − 1)b} is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ̃.

Thus we conclude the following:

Proposition 2.2. In a (WBS)n, r
a {a + (n− 1)b} is an eigenvalue of the Ricci tensor S corresponding to the eigenvector

ρ̃ defined by ω(X) = 1(X, ρ̃) for all vector field X.
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Moreover for a (WBS)n we have

(∇XB)(Z,Y) = A(X)B(Z,Y) + D(Z)B(X,Y) + E(Y)B(X,Z), (25)

where

B(X,Y) = aS(X,Y) + br1(X,Y). (26)

We define F(X) = A(X)−D(X) = 1(X, ρ1), for all vector field X, where ρ1 is a vector field associated with the
1-form F. Therefore

(∇ZB)(X,Y) − (∇XB)(Z,Y) = F(Z)B(X,Y) − F(X)B(Z,Y). (27)

Also it is known that

(∇ZB)(X,Y) = (Za)S(X,Y) + a(∇ZS)(X,Y) + Z(br)1(X,Y). (28)

Assume that divC = 0, where C denotes the Weyl conformal curvature tensor and ‘div’ denotes divergence.
Hence we have [54]

(∇XS)(Y,U) − (∇US)(Y,X) =
1

2(n − 1)
[1(Y,U)dr(X) − 1(X,Y)dr(U)]. (29)

Using (28), (29) in (27) we have

F(Z)B(X,Y) − F(X)B(Z,Y)
= (Za)S(X,Y) − (Xa)S(Y,Z) + Z(br)1(X,Y)X(br)1(Y,Z),

−
a

2(n − 1)
[1(Z,Y)dr(X) − 1(X,Y)dr(Z)]. (30)

It follows that

F(Z)B(X,Y) − F(X)B(Z,Y) = 0, (31)

provided a, b and r are constants. Making use of (31) in (27) we have

(∇ZB)(X,Y) = (∇XB)(Z,Y). (32)

Thus we can state the following:

Proposition 2.3. If in a (WBS)n, the conformal curvature tensor is divergence free, then the B tensor is of Codazzi
type provided the scalars a, b, r are constants.

A pseudo-Riemannian manifold is said to satisfy cylic parallel Ricci tensor [29] if its Ricci tensor S of
type (0, 2) is non zero and satisfies the condition

(∇XS)(Y,Z) + (∇YS)(X,Z) + (∇ZS)(X,Y) = 0. (33)

Analogous to the definition in (33) we define cyclic B-tensor as follows: An n-dimensional pseudo-
Riemannian manifold is said to be satisfy cylic parallel B tensor if the following condition holds:

(∇XB)(Y,Z) + (∇YB)(X,Z) + (∇ZB)(X,Y) = 0. (34)

Now from (7) we obtain

(∇XB)(Y,Z) + (∇YB)(X,Z) + (∇ZB)(X,Y)
= H(X)B(Y,Z) + H(Y)B(X,Z) + H(Z)B(X,Y), (35)

where H(X) = A(X) + D(X) + E(X). Using (34) in (35) yields

H(X)B(Y,Z) + H(Y)B(X,Z) + H(Z)B(X,Y) = 0.

Then by Walke’s Lemma we can see that either H(X) = 0 or B(Y,Z) = 0 for all X, Y, Z. But B is non zero
in (WBS)n. Thus H(X) = 0, that is, A(X) + D(X) + E(X) = 0. The converse is obvious. Thus we have the
following:

Proposition 2.4. A (WBS)n admits cyclic parallel B tensor if and only if the sum of the associated 1-forms vanishes.
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3. (WBS)n, n > 3 with divergence free Weyl tensor

In this section we assume that the (WBS)n has divergence free Weyl tensor, that is, divC = 0, where C
denotes the Weyl conformal curvature tensor and ‘div’ denotes divergence. Hence we have [54]

(∇XS)(Y,U) − (∇US)(Y,X) =
1

2(n − 1)
[1(Y,U)dr(X) − 1(X,Y)dr(U)]. (36)

Since (WBS)n is a quasi-Einstein manifold, using (22) in (36) we have

dα(X)1(Y,U) + dβ(X)η(Y)η(U) + β[(∇Xη)(Y)η(U) + η(Y)(∇Xη)(U)]
−dα(U)1(Y,X) − dβ(U)η(Y)η(X) − β[(∇Uη)(Y)η(X) + η(Y)(∇Uη)(X)]

=
1

2(n − 1)
[1(Y,U)dr(X) − 1(X,U)dr(U)]. (37)

We define a unit vector field ρ by 1(X, ρ) = η(X) for all vector field X. Taking a frame field and contracting
over X and Y we get

(1 − n)dα(U) + dβ(ρ)η(U) + β(∇ρη)(U)

+βη(U)(δη) + dβ(U) = −
1
2

dr(U), (38)

where δη =
∑n

i=1(∇eiη)(ei).
Putting X = Y = ρ in (38) implies

dα(ρ)η(U) − dβ(ρ)η(U) − β(∇ρη)(U) + dα(U) − dβ(U)

=
1

2(n − 1)
[dr(ρ)η(U) + dr(U)]. (39)

Substituting (39) in (38) we get

(2 − n)dα(U) + dα(ρ)η(U) + βη(U)(δη)

−
1

2(n − 1)
dr(ρ)η(U) =

(2 − n)
2(n − 1)

dr(U). (40)

Putting U = ρ in (40) we obtain

(1 − n)dα(ρ) − β(dη) = −
1
2

dr(ρ). (41)

Using (41) in (40) we have

(2 − n)dα(U) + (2 − n)dα(ρ2)η(U) +
(n − 2)
2(n − 1)

dr(ρ2)η(U)

=
(2 − n)
2(n − 1)

dr(U). (42)

Let us consider r = α, then from (22) we have

dα(U) = dr(U) and dβ(U) = −(n − 1)dα(U). (43)

Using (43) in (42) we obtain

dα(U) = −dα(ρ)η(U). (44)

Putting Y = ρ in (37) and using (44) we have

(∇Uη)(X) − (∇Xη)(U) = 0. (45)
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Therefore the 1-form η defined in (22) is closed and hence dη(X,Y) = 0. It follows that

1(∇Xρ,Y) = 1(∇Yρ,X), (46)

for all X and Y, which implies that ρ is irrotational. Now putting Y = ρ in (46) we get

1(∇Xρ, ρ) = 1(∇ρρ,X). (47)

Since 1(∇Xρ, ρ) = 0, from (47) it follows that

1(∇ρρ,X) = 0, (48)

for all X. Hence

∇ρρ = 0. (49)

This means the integral curves of the vector field ρ are geodesic.
Therefore we can state the following:

Theorem 3.1. In a (WBS)n with divergence free conformal curvature tensor, the integral curves of the vector field ρ
are geodesic and irrotational, provided r = α.

Using (44) in (39) we obtain

β(∇ρη)(U) = −(n − 1)dα(ρ)η(U) − (n − 1)dα(U)

−
1

2(n − 1)
[dr(ρ)η(U) + dα(U)]. (50)

Again using (44) and r = α in (50) we have

(∇ρη)(U) = 0. (51)

Now we consider the scalar function

f =
1

2(n − 1)
dr(ρ)
β2 . (52)

Using r = α and (43) we have

∇X f = −
2nr

2(n − 1)
dr(ρ)
β2 dr(X) +

1
2β(n − 1)

d2r(ρ,X). (53)

From (44) we also have

dr(U) = −dr(ρ)η(U). (54)

On the other hand

d2r(Y,X) = −d2r(ρ,Y)η(X) − dr(ρ)(∇Yη)(X)
−dr(ρ)η(∇Yρ)η(X), (55)

that is,

d2r(Y,X) = −d2r(ρ,Y)η(X) − dr(ρ)(∇Yη)(X). (56)

Since (∇Xη)(Y) = (∇Yη)(X) and d2r(Y,X) = d2r(X,Y).
Putting X = ρ in (56) we have

d2r(Y, ρ) = −d2r(ρ, ρ)η(Y). (57)
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Thus using (53) in (57) we obtain

∇X f = −
rn

n − 1
dr(ρ)
β2 dr(X) −

1
2β(n − 1)

d2r(ρ, ρ)η(X), (58)

which implies that

∇X f = Kη(X), (59)

where K = 1
2β(n−1) [−d2r(ρ, ρ) − 2rn

β dr(ρ)dr(X)]. Using (59), it is easy to see that ω̃(X) = 1
2(n−1)

dr(ρ)
β2 η(X) = fη(X)

is closed. In fact, dω̃(X,Y) = 0.
Using (44), (45), (54) in (37) we have

−dr(ρ)η(X)1(Y,U) − 2nαdr(ρ)η(X)η(Y)η(U)
+β[(∇Xη)(Y)η(U) + η(Y)(∇Xη)(U)]
+dr(ρ)η(U)1(Y,X) + 2nαdr(ρ)η(X)η(Y)η(U)
−β[(∇Uη)(Y)η(X) + η(Y)(∇Uη)(X)]

=
1

2(n − 1)
[−1(Y,U)dr(ρ)η(X) + 1(X,Y)dr(ρ)η(U)]. (60)

Putting U = ρ in (60) and using (49) we obtain

(∇Xη)(Y) = f1(X,Y) + ω̃(X)η(Y)

−
dr(ρ)
β

[1(X,Y) + η(X)η(Y)]. (61)

From (61) we can write

(∇Xη)(Y) = λ1(X,Y) + γ(X)η(Y), (62)

where λ = f − dr(ρ)
β , γ(X) = ω̃(X) − dr(ρ)

β η(X). Obviously γ(X) is closed. Therefore the vector field ρ defined
by 1(X, ρ) = η(X) is a unit concircular vector field ([40]).

Hence we can state the following:

Theorem 3.2. In a (WBS)n with divergence free conformal curvature tensor and satisfying an additional condition
r = α, the vector field ρ defined by 1(X, ρ) = η(X) is a unit concircular vector field.

4. Physical applications: (WBS)4 spacetimes

A 4-dimensional Lorentzian manifold admitting a global timelike vector field is called time orientable
Lorentzian manifold, physically known as spacetime. A spacetime is the stage of present modeling of the
physical world: a torsion-less, time oriented Lorentzian manifold. For details of spacetime, we cite ([5],[18],
[22]-[25],[27], [28],[39],[46], [55]).

It is to be noted that the basic geometric features of (WBS)n are also being mentioned in the Lorentzian
manifold which is necessarily a pseudo Riemannian manifold. Hence Proposition 2.1, Theorem 3.1 and
Theorem 3.2 are also true for (WBS)4 spacetimes.

In cosmology, the observation that the space is isotropic and homogeneous on an astronomically im-
mense scale chooses the Robertson-Walker (RW) metric. In 1995, Aliás, Romero and Sánchez [1] generalized
the notion of RW metric and called it a generalized Robertson-Walker (GRW) metric. A Lorentzian manifold
M of dimension n ≥ 3 endowed with the Lorentzian metric 1 defined by

ds2 = 1abdxadxb = −(dt)2 + ϕ(t)21∗lm(−→x )dxldxm,
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where t is the time and 1∗lm(−→x )dxldxm is the metric tensor of a Riemannian manifold, is a GRW spacetime.
In other words, a GRW spacetime is the warped product −I × ϕ2M∗, where I is an open interval of the real
line, ϕ is a smooth warping function or scale factor such that ϕ > 0 and M∗ is an (n − 1)− dimensional
Riemannian manifold. In particular, if M∗ is a 3− dimensional Riemannian space of constant curvature, then
the warped product −I × ϕ2M∗ is said to be a RW spacetime. A four dimensional conformally flat almost
pseudo Ricci symmetric spacetime (Rbc,a = (αa + βa)Rbc + αbRac + αcRba) is a Robertson-Walker spacetime
[19]. Throughout the paper, we denote the comma “, ” as the covariant differentiation. A Robertson-Walker
spacetime complies the cosmological principle, that is, the spacetime is spatially isotropic and spatially
homogeneous, although the GRW spacetime is not necessarily spatially homogeneous [7]. In [5] Brozos-
Vázquez, Garcia-Rio and Vázquez-Lorenzo bridged the gap between RW spacetime and GRW spacetime
by providing the following: “A GRW spacetime is con f ormally f lat i f and only i f it is a RW
spacetime.” For more details of GRW spacetimes, we call [2],[33],[38] and their references.

Lorentzian manifolds with a Ricci tensor of the form

Ri j = α1i j + βηiη j. (63)

where α, β are scalars and ηi is a unit time like vector, are often named perfect fluid space-times. It is
well known that any Robertson-Walker space-time is a perfect fluid space-time [41] and for n = 4, a GRW
space-time is a perfect fluid if and only if it is a Robertson-Walker space-time.

Form (63) of the Ricci tensor is implied by Einstein’s equation if the energy-matter content of space-time
is a perfect fluid with velocity vector field ρ. The scalars α and β are linearly related to the pressure p and
the energy density µ measured in the locally comoving inertial frame. They are not independent because
of the Bianchi identity ∇mRim = 1

2∇iR, which translates into

∇
m(Bu jum) =

1
2
∇ j[(n − 2)α − β]. (64)

Geometers identify special form (63) of the Ricci tensor as the defining property of quasi-Einstein manifolds
(with any metric signature). Pseudo-Riemannian quasi-Einstein spaces arose in the study of exact solutions
of Einstein’s equations. Robertson-Walker space-times are quasi-Einstein ([47] and references therein).

Considering the above facts from Proposition 2.1, we can state the following:

Theorem 4.1. A (WBS)4 spacetime is the perfect fluid spacetime.

Recently, Bang Yen-Chen proved the following deep result (see [7] and [8]): A Lorentzian manifold of
dimension n ≥ 4 is a GRW space-time if and only if it admits a time-like vector, X jX j < 0, such that

∇kX j = ρ1kj. (65)

Vector fields satisfying equation (65) are called concircular: nice properties of such time-like vector
fields were pointed out in [32]. Concircular vector fields have an important role in general relativity, e.g.
trajectories of time-like concircular fields in the de Sitter model determine the world lines of receding or
colliding galaxies satisfying the Weyl hypothesis ( see [49]).

Mantica et al. ([33] and [37]) considered Lorentzian manifolds (of dimension n > 3) with Ricci tensor
of the form Ri j = α1i j + βηiη j, where α and β are scalar fields and ηi is a unit time like vector. They proved
that if the condition divC = 0 is satisfied, then the manifold is a generalized Robertson-Walker space-time
whose sub-manifold is a Riemannian Einstein space. In Theorem 3.2, we prove that if a (WBS)n satisfies
divC = 0 with r = α, then ρ defined by 1(X, ρ) = η(X) is a proper concircular vector field. Also we prove
that a (WBS)n is a quasi-Einstein manifold.

Hence we state the following:

Theorem 4.2. A (WBS)4 spacetime with divergence free conformal curvature tensor with the condition r = α is a
perfect fluid generalized Robertson-Walker spacetime.
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In Theorem 3.1 we prove that a (WBS)4 satisfying the condition divC = 0, the integral curves of the
vector field ρ are geodesic and irrotational, provided r = α. The Roy Choudhury equation [11] for the fluid
in (WBS)4 spacetime can be written as

∇iη j = ωi j + τi j + f [1i j + ηiη j], (66)

where ωi j is the vorticity tensor and τi j is the shear tensor respectively. Since the vector field ηi is a unit
concircular vector (see Theorem 4.2), we get

∇iη j = f [1i j + ηiη j]. (67)

Comparing (66) and (67) we get

ωi j + τi j = 0. (68)

Since ρ is irrotational, hence the vorticity of the fluid vanishes. Therefore ωi j = 0 and consequently (68)
implies that τi j = 0. Thus we can state the following:

Theorem 4.3. If a (WBS)4 spacetime satisfies divC = 0 with the additional condition r = α, then the spacetime has
vanishing vorticity and vanishing shear.

Also in [37] the authors proved that under the same condition mentioned above the vector ηi is a
concircular vector and it is rescalable to a unit time like ∇kX j = ρ1 jk. Hence ∇kX j + ∇ jXk = 2ρ1 jk which
implies that the vector field ρ is a conformal Killing vector field. It has been proved by Sharma [48] that
if a spacetime with divergence free conformal curvature tensor admits conformal Killing vector field, then
the spacetime is either conformally flat or of Petrov type N. In view of the above result we can state the
following:

Theorem 4.4. A (WBS)4 spacetime satisfying divergence free conformal curvature tensor and satisfying an additional
condition r = α is either conformally flat or of Petrov type N.

The condition r = α allows us to define an equation of state for the perfect fluid . If we consider Einstein’s
field equations without cosmological constant i.e.

Ri j −
R
2
1i j = κTi j, (69)

being κ = 8πG
c4 the Einstein gravitational constant, an energy momentum tensor Ti j (see [13] and [41])

describing the matter content of the space-time is defined. Then , if the condition (63) is specified, being
u = η a time-like unit vector field, and recalling that β = nα − r, Einstein’s equations give

κTi j = (nα − r)uiu j + (α −
r
2

)1i j.

This matches with the expression of a perfect fluid energy momentum tensor (see [13], [41], [52]) Ti j =
(µ + p)uiu j + p1i j, where κµ = (n − 1)α − r

2 is the energy density and κp = α − r
2 is the isotropic pressure

and u j the fluid flow velocity. Usually in a perfect fluid p and µ are related by an equation of state of the
form p = p(µ,Θ) being Θ the absolute temperature. In the situation in which the state reduces to the form
p = p(µ) the fluid is named isentropic . In our case the condition r = α gives κµ =

r(2n−3)
2 , κp = r

2 so that
p =

µ
2n−3 . In order to ensure µ > 0 we should have r > 0 so that the pressure is positive. In n = 4 dimensions

the condition divC = 0 implies that the space is conformally flat and the space-time reduces to an ordinary
Robertson-Walker space-time. The equation of state is p =

µ
5 . We have the following:

Theorem 4.5. A (WBS)4 space-time with divergence free conformal curvature tensor represents an isentropic perfect
fluid Robertson-Walker space-time with p =

µ
5 .
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We recall that a four dimensional RW spacetime may be characterized by the metric

ds2 = −dt2 + a2(t)[dχ2 + σ2(χ){dθ2 + sin2 θdϕ2
}], (70)

being σ(χ) =
sin(
√

kχ)
√

k
where k = R∗

6 is the normalized spatial curvature; a(t) is named the scale factor of the
Universe. Following [3] it is possible to get the behaviour of the scale factor in terms of hypergeometric
functions. As a first consider the Friedmann equations, namely

ä
a

= −κ
3p + µ

6
,

R∗

2a2 + 3(
ȧ
a

)2 = κµ, (71)

being R∗ the spatial curvature, and a dot means a derivation with respect to the time in the co-moving
frame. If a state equation p = (γ − 1)µ is supposed, then it is inferred

aä +
3γ − 2

2
(ȧ)2 + k

3γ − 2
2

= 0. (72)

In our case it is γ = 7
5 . A first integral of (72) is provided by

(ȧ)2 = (
a0

a
)3γ−2

− k, (73)

with a0 > 0. Now we introduce the auxiliary variable w = k( a0
a )3γ−2 so that (73) becomes

ẇ =
2

(2A − 1)a0
kAw1−A

√
(1 − w), (74)

where A = 1
2 ( 3γ

3γ−2 ). Equation (74) may be integrated to

t − t0 =
2A − 1

A
a0k−AwAF(

1
2

; A; A + 1; w), (75)

where F is the hypergeometric function which converges for |w| < 1 and it is not defined if A = 1 − n,
n = 1, 2, 3, .... . But in our case A = 21

22 so that (75) is a well defined solution. It gives the cosmic time as a
function of w = k( a0

a )3γ−2 so that the behaviour of the scale factor is defined only implicitly.

At this point it should be noted that the perfect fluid energy momentum tensor is not the only one
compatible with the form (63) of the Ricci tensor . A more general one is given by Ti j = (µ+ p + Π)uiu j + (p +
Π)1i j ( see for example [30]), and represents an imperfect fluid ( without heat transfer and shear viscosity)
, being Π a dissipative term called bulk viscous pressure. In such a case we have κµ = (n − 1)α − r

2 and
κ(p + Π) = α − r

2 . Again in our case the condition r = α gives κµ =
r(2n−3)

2 and κ(p + Π) = r
2 so that

p + Π =
µ

(2n−3) . Theorem 4.5 could refined as follows:

Theorem 4.6. A (WBS)4 space-time with harmonic conformal curvature tensor represents an imperfect fluid
Robertson- Walker space-time with p + Π =

µ
5 , being Π the bulk viscous pressure.

The geometric form (63) of quasi-Einstein space cannot distinguish between perfect fluids and imperfect
fluids with bulk viscous pressure ( but without heat transfer and shear viscosity), so that Π is not determined
by geometry. Thus it can be only determined by thermodynamics . This is usually done by writing the
divergence of the entropy 4-current (see [30]) and then imposing that this quantity is not negative according
to the second law of thermodynamics. In this way constitutive ( or transport ) equations are imposed for
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the dissipative quantities. In simplest approach , called the Eckart theory, for the bulk viscosity pressure,
it is Π = −ζ∇iui being ζ the bulk viscosity. For a generalized Robertson-Walker space-time (see [31]) it is
∇iui = 3H, being H the Hubble’s parameter in standard cosmology: we have thus Π = −3ζH. The algebraic
nature of the Eckart constitutive equations leads to severe problems because they violate relativistic causal-
ity. In a more refined approach, called the Israel-Stewart theory, the constitutive equations satisfy causality:
for the bulk viscosity pressure it is (in the Maxwell-Cattaneo truncated form ([30]) τ0Π̇ + Π = −ζ∇iui, being
τ0 is a relaxational time restoring causality and Π̇ = uk

∇kΠ. For a generalized Robertson-Walker space-time
it is thus τ0Π̇ + Π = −3ζH. In particularly simple cases (τ0, ζ constants, Π depending only on time) this last
equation ensures that the bulk viscosity pressure evolves towards a limit value.

More recently a new model for the bulk viscosity was proposed by Disconzi et al. in [15] (see also
[12]and [14]). It is nearly as simple as Eckart viscosity but does not have the causality problems of that
model. Moreover it is much simpler than the Israel-Stewart theory and it is possible to conjecture that
the model is causal for all physical systems of interest, like the Israel-Stewart one, as stated in [15]. More
explicitly in this model it is Π = −ζ∇ jC j, where C j is the dynamic velocity, defined by C j = Fu j and F is
called the index of the fluid and depends on the nature of the fluid. In particular Disconzi’s model uses
F =

p+µ
n , where n is the rest mass density, satisfying ∇ j(nu j) = 0 (conservation along the flow lines). We have

thus Π = −ζ(Ḟ + 3HF) and ṅ = −3Hn so that Π = − ζn [µ̇ + ṗ + 6H(µ + p)] . Now from Theorem 4.6 we have
ṗ + Π̇ =

µ̇
5 ; the time evolution equation for the energy density µ̇+ 3H(µ+ p + Π) = 0 [30] gives µ̇ = − 18

5 Hµ so
that with a bit of algebra we get ζ

n Π̇−Π(1 + 6 ζH
n ) =

ζHµ
25n . Unlike the Eckart and the Israel-Stewart models, in

this case the time evolution of the bulk viscosity pressure depends on the equation of state of the imperfect
fluid given in Theorem 4.6. Finally it should be noted that in this model the entropy production results to
be non-negative for a wide range of possible cases [15].

5. Example of a (WBS)4

In this section we construct an example of a weakly B-symmetric pseudo Riemannian manifold.
We consider a pseudo Riemannian manifold (M4, 1) endowed with the Lorentzian metric 1 given by

ds2 = 1i jdxidx j = −(dx1)2 + ex1
[(dx2)2 + (dx3)2 + (dx4)2], (76)

where i, j = 1, 2, 3, 4.
The only non-vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor
are

Γ1
22 = Γ1

33 = Γ1
44 =

1
2

ex1
, Γ2

12 = Γ3
13 = Γ4

14 =
1
2
,

R1221 = R1331 = R1441 = −
1
4

ex1
,R2332 = R2442 = R3443 = −

1
4

e2x1
,

S11 = −
1
2
, S22 = S33 = S44 = −

1
4

ex1
.

It can be easily shown that the scalar curvature r of the resulting manifold (M4, 1) is − 1
4 which is non-

vanishing and constant.
We shall now show that this M4 is a (WBS)4 spacetime i.e., it satisfies the defining relation (7).
Let us take the non-zero arbitrary scalar functions a and b as follows:

a = 4e2x1
, b = 4ex1

.

Then only the non vanishing component for B tensor and its covarient derivatives are given by

B11 = −2e2x1
+ ex1

, B22 = B33 = B44 = −e3x1
− e2x1
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B11,1 = −4e2x1
+ ex1

, B22,1 = B33,1 = B44,1 = −2e3x1
− e2x1

.

We choose the 1-forms as follows:

Ai(x) =



2ex1
+1

ex1 +1
, for i=1

1
3x2 , for i=2

ex1
, for i=3,4

Di(x) =



1
−2ex1 +1

, for i=1

1
3x2 , for i=2

x1, for i=3,4

Ei(x) =


−

1
ex1 +1

, for i=1

1
5x2 , for i=2

x1x2, for i=3,4

at any point x ∈M. In our (M4, 1), (7) reduces with these 1-forms to the following equations:

B11,1 = A1B11 + D1B11 + E1B11 (77)

B22,1 = A1B22 + D2B12 + E2B12 (78)

B33,1 = A1B33 + D3B13 + E3B13 (79)

and

B44,1 = A1B44 + D4B14 + E4B14 (80)

It can be easily verified that the equations (77), (78), (79) and (80) are true.
So, the manifold under consideration is a weakly B-symmetric pseudo Riemannian spacetime, that is,
(WBS)4.

6. Conclusion

Quasi Einstein manifolds arose during the study of exact solutions of the Einstein field equations. It
is proved that a (WBS)4 spacetime is a quasi-Einstein spactime. So a (WBS)4 spacetime can be taken as a
model of the perfect fluid spacetime in general relativity. Also it is shown that a (WBS)4 spacetime with
divergence free conformal curvature tensor under certain condition is a perfect fluid generalized Robertson-
Walker spacetime and the nature of the spacetime is of vanishing vorticity and vanishing shear. Moreover
a (WBS)4 spacetime satisfying divergence free conformal curvature tensor under certain condition is either
conformally flat or of Petrov type N. Again we prove that a (WBS)4 space-time with divergence free con-
formal curvature tensor represents a isentropic perfect fluid Robertson-Walker spacetime and represents
an imperfect fluid Robertson-Walker spacetime.
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