
Filomat 35:3 (2021), 911–917
https://doi.org/10.2298/FIL2103911H

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let X be a Hausdorff topological space, Q(X,R) be the space of all quasicontinuous functions on
X with values inR and τUC be the topology of uniform convergence on compacta. If X is hemicompact, then
(Q(X,R), τUC) is metrizable and thus many cardinal invariants, including weight, density and cellularity
coincide on (Q(X,R), τUC). We find further conditions on X under which these cardinal invariants coincide
on (Q(X,R), τUC) as well as characterizations of some cardinal invariants of (Q(X,R), τUC). It is known that
the weight of continuous functions (C(R,R), τUC) is ℵ0. We will show that the weight of (Q(R,R), τUC) is 2c.

1. Introduction

Quasicontinuous functions were introduced by Kempisty in 1932 in [18]. However as far as we know
the first mention of the condition of quasicontinuity can be found in the paper of R. Baire [1] in the study
of continuity points of separately continuous functions from R2 into R. Quasicontinuous functions were
studied in many papers, see for example [3], [8, 13, 14], [19], [24] and others. They are important in many
areas of mathematics. Quasicontinuous functions are selections of minimal usco and minimal cusco maps
[7, 9–12]. They found applications in the study of topological groups [4, 21, 23], in the study of dynamical
systems [5], in the study of extensions of densely defined continuous functions [17], etc. The quasicontinuity
is also used in the study of CHART groups [22].

In our paper we will study cardinal invariants of the space of quasicontinuous functions equipped
with the topology of uniform convergence on compacta. Notice that the properties of the first countability,
metrizability and complete metrizability of this space were studied in [15] and Arzela-Ascoli type theorems
for the space of quasicontinuous functions were proved in [13, 14].

Let X be a Hausdorff topological space, Q(X,R) be the space of all quasicontinuous functions on X with
values inR and τUC be the topology of uniform convergence on compacta. We will study cardinal invariants
of (Q(X,R), τUC). Q(X,R) is not a subgroup of RX, which makes the work with the space Q(X,R) more
difficult. However Q(X,R) shares some properties with topological groups, for example the coincidence of
a character and π-character, or weight and π-weight, etc. If X is hemicompact, then by [15] (Q(X,R), τUC)
is metrizable, thus all cardinal invariants c, d,nw, s, e,L, πw,w coincide on (Q(X,R), τUC). We find further
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conditions on X under which these cardinal invariants coincide on (Q(X,R), τUC) as well as characterizations
of some cardinal invariants of (Q(X,R), τUC). We also show that the cardinality of Q(R,R) is 2c and that the
weight of (Q(R,R), τUC) is 2c.

2. Preliminaries

Let X and Y be topological spaces. A function f : X → Y is quasicontinuous [24] at x ∈ X if for every
open set V ⊂ Y, f (x) ∈ V and every open set U ⊂ X, x ∈ U there is a nonempty open set W ⊂ U such that
f (W) ⊂ V. If f is quasicontinuous at every point of X, we say that f is quasicontinuous.

We say that a subset of X is quasi-open (or semi-open) [24] if it is contained in the closure of its interior.
Then a function f : X→ Y is quasicontinuous if and only if f−1(V) is quasi-open for every open set V ⊂ Y.

We denote byN the set of positive integers and by R the space of real numbers with the usual metric.
The symbol A will stand for the closure of the set A in a topological space.

Let X be a Hausdorff topological space. Denote by F(X,R) the set of all functions from X toR, by Q(X,R)
the set of all quasicontinuous functions in F(X,R) and by C(X,R) the space of all continuous functions in
F(X,R).

By K(X) we mean the family of all nonempty compact subsets of X.
Denote by τUC the topology of uniform convergence on compact sets on F(X,R). This topology is

induced by the uniformity UUC which has a base consisting of sets of the form

W(K, ε) = {( f , 1) : ∀ x ∈ K | f (x) − 1(x)| < ε},

where K ∈ K(X) and ε > 0. The general τUC-basic neighborhood of f ∈ F(X,R) will be denoted by W( f ,K, ε),
where

W( f ,K, ε) = {1 : ∀ x ∈ K | f (x) − 1(x)| < ε}.

Denote by τp the topology of pointwise convergence on F(X,R). This topology is induced by the
uniformity Up which has a base consisting of sets of the form

W(A, ε) = {( f , 1) : ∀ x ∈ A | f (x) − 1(x)| < ε},

where A is a finite set and ε > 0. The general τp-basic neighborhood of f ∈ F(X,R) will be denoted by
W( f ,A, ε), where

W( f ,A, ε) = {1 : ∀ x ∈ A | f (x) − 1(x)| < ε}.

Of course F(X,R) = RX and the topology τp of the pointwise convergence on F(X,R) is just the product
topology on RX.

3. Cardinal Invariants of (Q(X,R), τUC)

First we will remind definitions of cardinal invariants of a topological space Z [6]. We define the weight
of Z:

w(Z) = ℵ0 + min{|B| : B is a base in Z},

the density of Z:
d(Z) = ℵ0 + min{|D| : D is a dense set in Z},

the cellularity of Z:

c(Z) = ℵ0 + sup{|U| : U is a pairwise disjoint family of nonempty open sets in Z},

the network weight of Z:
nw(Z) = ℵ0 + min{|N| : N is a network in Z}.
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They are in general related by the inequalities

c(Z) ≤ d(Z) ≤ nw(Z) ≤ w(Z).

When Z is metrizable
c(Z) = d(Z) = nw(Z) = w(Z).

The character of a point z in Z is defined as:

χ(Z, z) = ℵ0 + min{|O| : O is a base at z},

and the character of Z is defined as:

χ(Z) = sup{χ(Z, z) : z ∈ Z}.

To define the π-character of Z, we first need a notion of a local π-base. If z ∈ Z, a collection V of
nonempty open subsets of Z is called a local π-base at z provided that for each open neighborhood U of z,
there exists a V ∈ V which is contained in U.

The π-character of a point z in Z is defined as:

πχ(Z, z) = min{|V| :V is a local π-base at z},

and the π-character of Z is defined as:

πχ(Z) = ℵ0 + sup{πχ(Z, z) : z ∈ Z}.

The k-cofinality of a topological space Z is defined to be

kco f (Z) = min{|β| : β is a cofinal family in K(Z)}.

A topological space Z is hemicompact if kco f (Z) = ℵ0; i.e. there is a countable family {Kn : n ∈ N} in
K(Z) such that for every K ∈ K(Z) there is n ∈Nwith K ⊂ Kn.

In what follows let X be a Hausdorff nontrivial topological space, i.e., X is at least countable. We
will consider the cardinal invariants of the space (Q(X,R), τUC). Because of simplicity we will omit the
specification of the topology τUC.

First we prove that the character and the π-character of Q(X,R) coincide.

Theorem 3.1. Let X be a topological space. Then χ(Q(X,R)) = πχ(Q(X,R)) = kco f (X).

Proof. First we prove that kco f (X) ≤ πχ(Q(X,R)). Let f be the zero function on X. Then f is a quasicontinuous
function. Let {W( ft,At, εt) : At ∈ K(X), εt > 0, t ∈ T} be a local π-base of f in Q(X,R) with |T| ≤ πχ(Q(X,R).

We claim that {At : t ∈ T} is a cofinal family in K(X). Let A ∈ K(X). There must exist t ∈ T with

W( ft,At, εt) ⊂W( f ,A, 1).

We show that A ⊂ At. Suppose there is a ∈ A \ At. Let U be an open set such that a ∈ U and U ∩ At = ∅.
Let 1 : X→ R be defined as follows:

1(z) =

{
1, z ∈ U;
ft(z), otherwise.

Then 1 is a quasicontinuous function and 1(s) = ft(s) for every s < U; thus also for every s ∈ At. Then
1 ∈W( ft,At, εt), but 1 <W( f ,A, 1), a contradiction. Thus

kco f (X) ≤ πχ(Q(X,R)) ≤ χ(Q(X,R).

To prove that χ(Q(X,R) ≤ kco f (X), let f ∈ Q(X,R) and let β be a cofinal subfamily of K(X) with
|β| = kco f (X). It is easy to verify that the family {W( f ,K, 1/n) : K ∈ β,n ∈N} is a local base at f .
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Corollary 3.2. ([15]) Let X be a topological space. The following are equivalent:
1. X is hemicompact,
2. Q(X,R) is first countable.

For a Tychonoff space Z we define the uniform weight of Z [6]:

u(Z) = ℵ0 + min{m : there is a uniformity on Z of weight ≤ m}.

It is known (see [6]) that w(Z) = c(Z) ·u(Z), w(Z) = e(Z) ·u(Z), where e(Z) is extent of Z defined as follows:

e(Z) = ℵ0 + sup{|E| : E is a closed discrete set in Z}.

Theorem 3.3. Let X be a topological space. Then u(Q(X,R)) = kco f (X).

Proof. Let β be a cofinal family in K(X) such that kco f (X) = |β|. It is easy to verify that the family {W(K, 1/n) :
K ∈ β,n ∈ N} is a base of the uniformity UUC. Thus u(Q(X,R)) ≤ kco f (X). For every Tychonoff space Z we
have χ(Z) ≤ u(Z). Since by Theorem 3.1 kco f (X) = χ(Q(X,R)), we have u(Q(X,R)) = kco f (X).

Corollary 3.4. ([15]) Let X be a topological space. The following are equivalent.
1. X is hemicompact,
2. Q(X,R) is metrizable,
3. Q(X,R) is first countable.

The following result will show that also the weight and the π-weight of Q(X,R) coincide.
To define the π-weight of a topological space Z, we first need a notion of a π-base. A collection V of

nonempty open subsets of Z is called a π-base [20] provided that for each open set U in Z, there exists a
V ∈ V which is contained in U.

Define the π-weight of Z by:

πw(Z) = ℵ0 + min{|B| : B is a π − base in Z}.

Corollary 3.5. For every space X, πw(Q(X,R)) = w(Q(X,R)). In fact,
πw(Q(X,R)) = kco f (X) · d(Q(X,R) and w(Q(X,R)) = kco f (X) · c(Q(X,R)) = kco f (X) · e(Q(X,R)).

Proof. It is known (see [6]) that for a Tychonoff space Z, w(Z) = c(Z) · u(Z) and w(Z) = e(Z) · u(Z). Thus by
Theorem 3.3 w(Q(X,R)) = kco f (X) · c(Q(X,R)) and w(Q(X,R)) = kco f (X) · e(Q(X,R)). Since πw(Q(X,R) ≥
πχ(Q(X,R)) = χ(Q(X,R) = kco f (X) and πw(Q(X,R)) ≥ d(Q(X,R) we have

πw(Q(X,R)) ≥ kco f (X) · d(Q(X,R)) ≥ w(Q(X,R).

Theorem 3.6. For a locally compact space X, w(Q(X,R)) = nw(Q(X,R)).

Proof. To prove that w(Q(X,R)) = nw(Q(X,R)) by Corollary 3.5 it suffices to show that kco f (X) ≤ nw(Q(X,R)).
Because X is locally compact, it has a baseBof relatively compact sets such that |B| = w(X). Then the family of
all finite unions of members of {B : B ∈ B} is cofinal in K(X) and has cardinality w(X). So kco f (X) ≤ w(X). It is
known that w(X) = nw(C(X,R)) [20]. Since nw(C(X,R)) ≤ nw(Q(X,R)), we have kco f (X) ≤ nw(Q(X,R)).

Using the same idea as in the proof of Theorem 3.6 we can show that for a locally compact space X we
also have the equality w(C(X,R)) = nw(C(X,R)), which seems not to be known in the literature.

In the following lemma we will use the notion of the discrete cellularity introduced in [2]. To define the
discrete cellularity of a topological space Z we need a notion of a discrete family of subsets of Z. We say
that a family U of subsets of a topological space Z is discrete if each point z ∈ Z has a neighborhood that
meets at most one set of the familyU.

The discrete cellularity of Z is defined as:

dc(Z) = ℵ0 + sup{|U| : U is a discrete family of nonempty open sets in Z}.
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Remark 3.7. For every topological space Z, dc(Z) ≤ c(Z) and dc(Z) ≤ e(Z) [2].

Lemma 3.8. Let X be a topological space which contains an infinite compact set. Then dc(Q(X,R)) ≥ c.

Proof. Let K be an infinite compact set in X. There is a pairwise disjoint sequence {Un : n ∈N} of open sets
such that Un ∩ K , ∅ for every n ∈ N. Let 2N denote the set of all functions from N to {0, 1}. For every
ϕ ∈ 2N denote byNϕ the set of all n ∈Nwhere ϕ(n) = 1 and let fϕ : X→ R be a function defined as follows:

fϕ(x) =

{
1, if x ∈

⋃
n∈Nϕ

Un;
0, otherwise.

Then fϕ is a quasicontinuous function.
For every ϕ ∈ 2N define Bϕ = W( fϕ,K, 1/4). Let 1 ∈ Q(X,R). Then W(1,K, 1/4) intersect at most one set

of {Bϕ : ϕ ∈ 2N}. So {Bϕ : ϕ ∈ 2N} is a discrete family of open subset of (Q(X,R), τUC).

For a topological space Z we define the Lindelöf degree of Z:

L(Z) = ℵ0 + min{κ : every open cover of Z has a subcover of cardinality at most κ}

and the spread of Z:
s(Z) = ℵ0 + sup{|E| : E is a discrete set in Z}.

If X is hemicompact, i.e. kco f (X) = ℵ0, then by Corollary 3.4 Q(X,R) is metrizable, thus all cardinal
invariants c, d,nw, s, e,L, πw,w coincide on Q(X,R). The following theorem gives other conditions on X
under which the cardinal invariants coincide on Q(X,R).

Theorem 3.9. Let X be a topological space which contains an infinite compact set and let kco f (X) ≤ c. Then we have

c(Q(X,R)) = d(Q(X,R)) = e(Q(X,R)) = L(Q(X,R)) =

s(Q(X,R)) = nw(Q(X,R)) = πw(Q(X,R)) = w(Q(X,R)) ≥ c.

Proof. By Corollary 3.5, kco f (X).e(Q(X,R)) = w(Q(X,R)) = kco f (X).c(Q(X,R)). By Lemma 3.8 we have
e(Q(X,R)) = w(Q(X,R)) = c(Q(X,R)). Since other cardinal invariants are between c,w and e, we are
done.

Corollary 3.10. Let X be a discrete topological space. Then c(Q(X,R)) = ℵ0 and w(Q(X,R)) = kco f (X) = |X|.

Proof. If X is a discrete topological space, then the topology τUC coincides with the topology τp on Q(X,R) =
C(X,R) = RX and τp on RX is the product topology. Thus by [6] c(Q(X,R)) = ℵ0. Since w(Q(X,R)) =
kco f (X) · c(Q(X,R)) = |X|.

Proposition 3.11. Let X be a discrete topological space such that |X| = c. Then d(Q(X,R)) = ℵ0.

Proof. If X is a discrete topological space, then the topology τUC coincides with the topology τp on Q(X,R) =
C(X,R) = RX. Thus by [6] d(Q(X,R)) = ℵ0.

Theorem 3.12. Let X be a Tychonoff topological space. The following are equivalent:

1. w(Q(X,R)) = ℵ0,
2. X is countable and every compact set in X is finite.

Proof. (1)⇒ (2) If w(Q(X,R)) = ℵ0, then dc(Q(X,R)) = ℵ0, thus by Lemma 3.8 every compact set in X must
be finite. Then the topology τUC coincides with the topology τp on Q(X,R). Thus also w(C(X,R)) = ℵ0 in
the topology τp. By Corollary 4.5.4 in [20] X must be countable.

(2) ⇒ (1) If every compact set in X is finite, the topology τUC = τp on Q(X,R). Since Q(X,R) ⊂ RX,
w(Q(X,R)) ≤ w(RX). X is countable, thus w(RX) = ℵ0.
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Lemma 3.13. Let X be a first countable space. If dc(Q(X,R)) = ℵ0, then X is discrete.

Proof. If dc(Q(X,R)) = ℵ0, then by Lemma 3.8 every compact set in X must be finite. Suppose there is a
non-isolated point x ∈ X. Then we can find a sequence {xn : n ∈ N} of different points which converges to
x. The set K = {x} ∪ {xn : n ∈N} is an infinite compact set in X, a contradiction.

Theorem 3.14. Let X be a first countable space. The following are equivalent:

1. dc(Q(X,R)) = ℵ0,
2. c(Q(X,R)) = ℵ0,
3. X is discrete.

Proof. (1)⇒ (3) By Lemma 3.13. (3)⇒ (2) by Corollary 3.10. (2)⇒ (1) by Remark 3.7.

Theorem 3.15. Let X be a topological space.The following are equivalent:

1. dc(Q(X,R)) = ℵ0,
2. c(Q(X,R)) = ℵ0,
3. Every compact set in X is finite.

Proof. (1) ⇒ (3) is clear from Lemma 3.8. (3) ⇒ (2) If every compact set in X is finite, then the topology
τUC coincides with the topology τp on Q(X,R). By [16] Q(X,R) is dense in RX equipped with the product
topology. Thus c(Q(X,R)) = c(RX) = ℵ0. (2)⇒ (1) By Remark 3.7.

Theorem 3.16. Let X be a first countable topological space. The following are equivalent:

1. w(Q(X,R)) = ℵ0,
2. nw(Q(X,R)) = ℵ0,
3. L(Q(X,R)) = ℵ0,
4. X is countable and discrete.

Proof. (4)⇒ (1) By Corollary 3.10 w(Q(X,R)) = ℵ0, so we are done. The implications (1)⇒ (2) and (2)⇒ (3)
are trivial. We prove (3)⇒ (4). If L(Q(X,R)) = ℵ0, then also dc(Q(X,R)) = ℵ0, thus by Lemma 3.13, X must
be discrete. Then Q(X,R) = C(X,R) and the topology τUC coincides with the topology τp on Q(X,R). By
3.(b), page 68 in [20] X must be countable.

4. Comparison of Cardinal Invariants of Q(R,R) and C(R,R)

Example 4.1. LetR be equipped with the usual Euclidean metric d. Denote by C the Cantor set. The Cantor
set is a closed and nowhere dense set inRwith |C| = c. Let 2C denote the set of all functions from C to {0, 1}.
For every φ ∈ 2C by Cφ we denote the set of all x ∈ C where φ(x) = 1. For every φ ∈ 2C let fφ : R→ R be a
function defined as follows:

fφ(x) =


sin(1/d(x,C)), if x < C;
1, if x ∈ Cφ;
0, if x ∈ C \ Cφ,

where d(x,C) = inf{d(x, c) : c ∈ C}. Then fφ is a quasicontinuous function for every φ ∈ 2C. From this follows
that |Q(R,R)| ≥ 2c. Thus |Q(R,R)| = 2c.

For every φ ∈ 2C define Bφ = W( fφ,C, 1/4). Then {Bφ : φ ∈ 2C
} is a pairwise disjoint family of open sets

in (Q(R,R), τUC). Thus c(Q(R,R)) = 2c.

Remark 4.2. Notice also that the set { fφ : φ ∈ 2C
} from the previous Example is a closed discrete set. Let

1 ∈ Q(R,R) \ { fφ : φ ∈ 2C
}. Suppose that fψ ∈ W(1,C, 1/4) for some ψ ∈ 2C. Since there may be at most

one ψ ∈ 2C such that fψ ∈ W(1,C, 1/4), the set W(1,C, 1/4) \ { fψ} is an open neighborhood of 1 such that
{ fφ : φ ∈ 2C

} ∩ (W(1,C, 1/4) \ { fψ}) = ∅.
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Now we can compare the cardinal invariants of (Q(R,R), τUC) and (C(R,R), τUC). Since R is hemicom-
pact, both (Q(R,R), τUC) and (C(R,R), τUC) are metrizable. Thus all cardinal invariants c, d,nw, s, e,L, πw,w
coincide on these spaces. By Proposition 1.2 (3) in [2] also dc(Q(R,R)) = c(Q(R,R)) and dc(C(R,R)) =
c(C(R,R)).

By the previous example we have

dc(Q(R,R)) = c(Q(R,R)) = d(Q(R,R)) = e(Q(R,R)) = L(Q(R,R)) =

s(Q(R,R)) = nw(Q(R,R)) = πw(Q(R,R)) = w(Q(R,R)) = 2c,

and |Q(R,R)| = 2c.
By [20] and [2] we have

dc(C(R,R)) = c(C(R,R)) = d(C(R,R)) = e(C(R,R)) = L(C(R,R)) =

s(C(R,R)) = nw(C(R,R)) = πw(C(R,R)) = w(C(R,R)) = ℵ0,

and |C(R,R)| = c.

Acknowledgements

The authors would like to thank the referee for his comments.

References

[1] R. Baire, Sur les functions des variables reelles, Ann. Mat. Pura Appl. 3 (1899) 1–122.
[2] T. Banakh, A. Ravsky, Verbal covering properties of topological spaces, Topology Appl. 201 (2016) 181–205.
[3] J.M. Borwein, Minimal cuscos and subgradients of Lipschitz functions, In: Fixed point theory and applications (Marseille, 1989),

Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow 1991, 57–81.
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[8] Ľ. Holá, D. Holý, Pointwise convergence of quasicontinuous mappings and Baire spaces, Rocky Mount. Math. J. 41 (2011)

1883–1894.
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