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Existence Results for a Nonlinear Fractional Differential Inclusion

Habib Djourdem?

“Laboratory of Fundamental and Applied Mathematics of Oran (LMFAQ), University of Oranl, Ahmed Benbella. Algeria

Abstract. In this paper, we establish some existence results for higher-order nonlinear fractional differential
inclusions with multi-strip conditions, when the right-hand side is convex-compact as well as nonconvex-
compact values. First, we use the nonlinear alternative of Leray-Schauder type for multivalued maps. We
investigate the next result by using the well-known Covitz and Nadler’s fixed point theorem for multivalued
contractions. The results are illustrated by two examples.

1. Introduction

Boundary value problems for fractional differential equations have been addressed by several re-
searchers during the last few decades due to its extensive developments and numerous applications
connected with several phenomena in many engineering and scientific disciplines. In particular, mathemat-
ical models of some systems and processes in aerodynamics, electrodynamics of complex medium, fluid
flow, visco-elasticity, control theory of dynamical systems, dynamical processes in self-similar and porous
structures, electrochemistry of corrosion, optics and signal processing or polymer rheology, and so forth
have been described by differential or integral equations of fractional order because this kind of derivative
provides a possibility to represent the memory in the related process; for instance, see ([3, 4, 6, 7, 11, 25—
27,31, 34, 35]) and references therein. On the other hand boundary value problems with local and nonlocal
boundary conditions constitute a very interesting and important class of problems. They include two,
three, and multi-point and multi-strip boundary value problems. The existence and multiplicity of positive
solutions for such problems have received a lot of attention. To identify a few, we refer the reader to
[2,9,12-14, 16, 20, 28, 41]. It is worth mentioning that there are other some interesting works concerning
the existence results of certain boundary value problems for ordinary and fractional differential equations
and also integral equations, we quote for instance [1, 5, 22, 24, 29, 30, 42].

Differential inclusions (multivalued differential equations), regarded as the generalization of single-
valued differential equations, are models of realistic problems arising from economics, optimal control,
stochastic analysis. So much attention has been paid by many autors to study this kind of problems, see
([8, 15, 32, 39, 40]).

In this paper, we are interested in the existence of solutions for the following nonlinear fractional
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differential inclusion

DS u(t)eF(tu(),u (H) =0, te]
ud©0)=0,i=2,..,n-1, , (1)
w (0) = N2 bt (), u(1) = L1 a fn’i’l u(s)ds,

where CDS . is the Caputo fractional derivatives of order & with n —1 < @ < n, n > 3 is an integer,
O=no<m <M. <Nmo2<1,a20, b;>0,>Gi=1,..m=-2),0< Zﬁzzbz <land0 < Z;Z;zﬂi(ﬂi _7]1'—1) <1,
where m > 2 is an integer, ] = [0,1], F : | X RX R — P (R) is a multi-valued map and # (R) is the family
of all nonempty subsets of R,

This paper is organized as follows. In Section 2, we present some definitions and lemmas that are used
to prove our main results. In Section 3, we present existence results for the problem (1) when the right-hand
side is nonconvex, where at first we apply the nonlinear alternative of Leray-Schauder type for Kakutani
maps. The second result is based on the fixed point theorem contraction multivalued maps due to Covitz
and Nadler and we give two examples to illustrate our results in the last Section.

2. Preliminaries

In this section, we present some preliminary concepts of fractional calculus and multivalued analysis.
For more details see e.g. [21, 37].

Definition 2.1. The Riemann-Liouville fractional integral of order o > O for a function f : (0, +o0) — R is defined
as

t
I8 () = ﬁ fo (t—9)"" F(s)ds,

provided the right-hand side is pointwise defined on (0, +o0), where I (-) is the Gamma function, which is defined by
T(a)= [t letdt.

Definition 2.2. For a function f : [0, +00) — R, the Caputo derivative of fractional order o > 0 is defined as

1 t
‘D)= =——— =)' f) (s)ds, n= 1,
£ T f(; (t—1s) f(s)ds, n=][a]+

(n—a)
where [a] denotes the integer part of the real number a, provided the right-hand side is pointwise defined on (0, +00).

Lemma 2.3. Leta > B> 0andu € LP(0,1) c L' (0,1), 0 < p < +oo. Then the next formulas hold.
(i) (DP1) (t) = I*Pu (#),
(i) (DI7) (£) = u (b),
where D* and DF represent Riemann-Liouville’s or Caputo’s fractional derivative of order o and B respectively.
Lemma 2.4. Let a > 0 and u € ACN [0, 1]. Then the fractional differential equation
“DSu(t)=0,
has a unique solution

u(t) =co+ ot + szz + ...+ CN_1tN71,

forsomec; € R,i=0,1,2,..,N —1, where N is the smallest integer greater than or equal to c.
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Remark 2.5. The following property (Dirichlet’s formula) of the fractional calculus is well known ([38] p.57)
LIty =TI""y(), tel0,1], yeL(0,1), v+u=>1,

which has the form

' -1 ? -1 _F(v)l"(y) ' v+u—1
L(t—s) (fo (s—1) y(T)dT)ds_HV—WL(t_S) 7y (s) ds.

Here C([0,1],R) denotes the Banach space of all continuous functions from [0,1] into R with the norm
l[ull = sup{lu(t)|: forallte[0,1]}, L'([0,1], R) the Banach space of measurable functions u : [0,1] — R

which are Lebesgue integrable, normed by [|ull;: = fol |u ()| dt. Let (X, d) be a metric space induced from the
normed space (X, ||.|[). We denote

Po(X)={AeP(X): A0},

P, (X) ={A € Py(X) : Aisbounded},

Py (X) ={A e Py(X): Aisclosed},

Py (X) ={A € Py(X): Aiscompact},

Py,co (X) = {A € Po(X) : A is compact and convex},

Py, (X) ={A € Py(X) : Ais closed and bounded},

where P (X) the family of all subsets of X.

Definition 2.6. A multivalued map G : X — P (X).

(1) is convex (closed) valued for all u € X if G (u) is convex (closed) for all u € X;

(2) is bounded on bounded sets if G (B) = U,epG (u) is bounded in X forall B € Py, (X)i.esup, z {sup {lv], v € G (u)}} <
0,

(3) is called upper semi-continuous (u.s.c) on X if for each ug € X, the set G () is a nonempty closed subset of X and
if for each open set N of X containing G (uo) there exists an open neighborhood Ny of ug such that G (Ng) € N;

(4) is said to be completely continuous if G (B) is relatively compact for every B € Py, (X);

(5) has a fixed point if there is u € X such that u € G (u). The fixed point set of the multivalued operator G will be
denote by Fix (G).

Remark 2.7. ([19], Proposition 1.2) It is well known that, if the multivalued map G is completely continuous with
nonempty compact values, then G is u.s.c if and only if G has closed graph i.e., u, — u, v, — v, v, € G (u,,) imply
v € G(u).

Definition 2.8. A multivalued map G : [0,1] — Py (R) is said to be measurable if for every y € R the function
t—d(y,G () =inf{ly-2]|: ze G},

is measurable.
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Definition 2.9. ([19, 21]) A multivalued map F : ] X R X R — P (R) is called L'-Caratheodory if
(i) t — F (t,u1,up) is measurable for all uy,u; € R,

(ii) t V> F (¢, u1, up) is upper semi-continuous for almost all t € [0, 1], and

(iii) for each p > 0, there exists ¢, € LY (J,R*) such that

”F (t/ Ml,M2)|| = sup {|U|, vE F(t/ ul/MZ)} < ¢p (t)

forall |uq|, [up| < avand for a.e. t € .
The multivalued map F is said to be Caratheodory if it satisfies (i) and (ii).

Definition 2.10. Let Y be a nonempty closed subset of a Banach space E and G : Y — Py (E) be a multivalued
operator with nonempty closed values.

(i) G is said to be lower semi-continuous (1.s.c) if the set {x € X : G (x) N U # 0} is open for any open set U in E.

(ii) G has a fixed point if there is x € Y such that x € G (x).

For each 1 € C ([0, 1]), we define the set of selections of F by
Sku={ve AC([0,1],R): v e F(t,u(t),u’(t)), foralmostallt € [0,1]}

Let (X, d) be a metric space induced from the normed space (X, ||.||). Considerdy : £ (X)XP (X) — RU{oo}
given by

dH (A/ B) = maX {D (A/ B)r D(B/A)}/

where D (A, B) = sup{d (a,B); a € A}, where d (x, B) = inf,cpd (x,y). Then (P (X), dy) is a metric space
and (P (X), dy) is a generalized metric space see e.g. [17].

Let E be a Banach space, Y be a nonempty closed subset of E and G : Y — P, (E) a multivalued operator.
G is said to be lower semicontinuous (l.s.c) if the set {x € Y : G (x) N U # 0} is open for any open set U in E.
G has a fixed point if there is x € Y such that x € G (x). For more details on the multi-valued maps, see the
books of Aubin and Cellina [10], Deimling [19], Gorniewicz [21] and Hu and Papageorgiou [36].

Lemma 2.11. [33]. Let X be a Banach space. A mapping F : [0,11XX —> Py, (X) L'-Caratheodory multifunction
and © a linear continuous mapping from L' ([0,1],X). Then the operator (® o Sg) (u) = © (Sg,) is a closed graph
operator in C ([0,1], X) x C ([0, 1], X).

Lemma 2.12. (Nonlinear alternative for Kakutani maps) ([23]) Let E be a Banach space, C be a closed convex subset
of E, U be an open subset of C and 0 € U. Suppose that F : U —> Py, (C) is an upper semicontinuous compact map.
Then either .

(i) F has a fixed point in U, or

(ii) there isu € JU and A € (0,1) with u € AF (u).

Definition 2.13. ([18]) A multifunction F : X — C(X) is called a contraction whenever there exists y € (0,1)
such that dy (N (1) ,N (v)) < yd (u,v) forall u,v € X.

Lemma 2.14. (Covitz-Nadler)([18]) Let (X, d) be a complete metric space. If N : X — P (X) is a contraction, then
Fix (N) # 0.

3. Existence results

Let X = {u: u,u’ € C[0,1], R} endowed with the norm defined by ||u|| = SUP;¢; [ ()] + SUP,¢; [’ ()] such
that [[u|| < co. Then (X, ||.|]) is a Banach space.
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Lemma 3.1. For y € C(J,R) and u € C" (J,R), the following boundary value problem

D u(t)y+y()=0, te(01),
u®0)=0,i=2,..,n-1, )
u (0) = Zﬁ]z b’ (i), u(1) = Y75 24 frl u(s)ds

has the unique solution

u(t)—T i (t sy ()ds+8[——f(1—s)“1y(s)ds

)
m— m=2
I‘LZ »f';(f (s—T)all/(T)dT)ds 1)2 f(n,—s)“zy(s l 3)

i=1

t " a=2
=Y WCER AT

where

m—2 m—2

1
= - ;o oA=2-) ai(nf - =1-) b
1- Y120 (i - nia) Z ) Z

Proof. In view of Definition 2.1 and Lemma 2.4, The general solution of the fractional differental equation
in (2) can be written as

_ 1 ' a-1 n—1
u(t)—mfo(t—s) y@)ds+co+at+ ...+ et

where cy, ¢y, ..., cp-1 € R are arbitrary constants.
Next, using the initial conditions: u®0)=0,i=2,..,n—1, we get

Cr =C3 =..=Cp-1 :O,
that is,
u(t) = - @ )f(t—s y(s)ds+co+c1t (4)

Differentiating both sides of (4) and using the condition u’ (0) = Y.1;* b’ (1);), we obtain

m—2

1= yF(a 1)2 f(m—S)“y(s)ds

Integrating both sides of (4) from n;_; ton; for0 < n;_; < n; < 1,i =1,...,,m -2, and using Remark 2.5, we get
2

uli 1 i S 172 =iy
f ut)dt = (f -1y (1) d’[) ds +co (i — ni1) + 0 ————.
MNi-1 F( ) i1 \WJO0 2

Then, by the condition u (1) = Zgz a; fn n_'l u (s) ds and substituting of c;, we get

m=2
oty [ 0oty s B (6o s

1=

—; . i a2
2yF(a—1);‘blf0 (i =s)" "y (s)ds|.

Subtituting the values of ¢y, c; in (4), we get (3). The proof is complete. [
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For convenience, we use the following notations:

m—2

m—2
— 1 1 a+1 _ a+1 1 a1
Ll‘r(a+1)+‘9 T(a+1) r(a+2);”’ ’711 2yr(a)z U m)mez

i=1

and

Theorem 3.2. Suppose that F : [ XIRXR — Py, (R) is Ll—Camtheodory multifunction and there exist a bounded
continuous nondecreasing map ¥ : [0, +c0) — (0, +o0) and a continuous function p : ] — (0, +o0) such that
IF (t, u,u)|| = sup{lv| : veFtuu)y <pt)¥(ull), forall t € ] and u € X. Then the inclusion problem (1) has
at least one solution

Proof. Define the operator
h € X, there exists y € Sg,, such that
ﬁf; t—s)ﬂ'*1 ()ds+8[—$ [ra-s9y(ds
h(t) = r(a) (b G-y dr)ds
W bfo'(m—S)“zy(S)dS]
yr(a 1)): *bi f()'(T]z—S)a 2y(s)ds, te]

We will show that the operator T has a fixed point. The proof will be given in five steps.
Step 1. T (u) is convex for all u € X.

T (u) =

Let hy,hy € T (u). Choose y1, Y2 € Sy,. For each t € |, we have

a-1
hi () = @ )f ds+8[ T )f (1-9)""yi(s)ds

m-2
+r f(f (s — “1y,(7)d7)ds ZyF( 1)2 f(ﬂz—s)az S)ds}

+yf(a—1);b1£ (mi—s) "yi(s)ds, i=1,2.

Let w € [0,1]. Then, for each t € |, we have
t
[why + (1 - w) ha] (t) = ﬁ f (t—9)*" [wyr (s) + (1 — w) y2 (s)] ds

+ 39—

f(l—s)“l[wm(s)m— )y (5)] ds

1 m=2 i .
+m‘1 lfn (f (s—1) [wy1(7)+(1—w)y2(1)]d7)ds

2T (- 1)2 f (1 =) [win (S)+(1—w)yz(s)]ds}

m—2
i yT (ai -1) Z f (i =) 72 [wyr (5) + (1 = w) y2 (5)] ds.
i=1
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Since F has convex values, Sg, is convex, so why + (1 —w) hy € T (u).
Step 2. T maps bounded sets of X into bounded sets in X.

Suppose that ¥ > 0and B, = {u € X: |lul| <r}. Letu € B, and h € T (u). Choose v € Sg, such that  (¢)
defined above for almost all t € J. Thus

1 ! a—1 1 ! a—-1
|h(t)lsmj0‘(t—s) |y(s)|ds+8[mf (1-5) |y(s)(ds

m=2 m-=2
WZWJH: (f (s—T)”1|y(T(dT)ds+ 1)2 f(nl—s)“2|y(s)|ds}

P

m—2 )
VFa 1)2 f(”l_s)a Jy @)l
< Ly ||p||, w llul)),

and

m—2

o< rs [ eyl T L -l
< Lo||p]l., W (1),

forallt €],
Therefore,

Pl = sup,e; [p (1)

7l = maxc i ()] + max J” (O] < (L + L) [pl], W (el 5)
Step 3. T maps bounded sets into equicontinuous subsets of X.

Letu € B, and 1, t, € J. Then we have

ty f
I (t2) = 1 (t)] < %f (tz—s)a_l |y(S)‘d5+%f (t1 _S)a—l |]/(S)|ds
t t ) iy a—.
y(rz(a 11)2 f (ni —s) 2|y(s)|ds
(ta—9)"" —(th —9)" (=9
f — r(a)l ol w s + f 2= o w (i ds

)/(Ifz(a “LZ f (i =) [lpll, ¥ (ual) ds.

Then |k (t;) — h (t1)] — 0, when t, — t;. Moreover, we have

’ ’ h (tZ _S)a_z - (tl _S)a_z (tZ
W (t2) = I ()] < T |y (s)] ds + ) ﬁ|y(5))ds
" —s) = (=) " (t
< i 2 Sr(a_ll) s ||p”°ol[/(||u||)ds+ ) 2( 5 ||p||w (lul]) ds.

Again, we have |W’ (t;) — I (t1)] — 0, as t, — t;, which yields ||k (t;) =k (t)]] — 0, as t, — t;. Thus
T is equicontinuous. As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can
conclude that T : X — X is completely continuous.
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Step 4. T has a closed graph.

Let u, — uo, hy, € T (u,) for all n and h, — hy. We prove that hy € T (19). For each n, choose y, € Sg,,
such that, forallt € |

—_ 1 ' a-1 1 1 a—1
hn(t)—mjo‘(t—s) yn(s)ds+8[—mf(1—s) Yn (s)ds

-2

m—2 e "
+% f (f (s — )" 1 Yn (T) d'r) ds — Z b; (771 _ S)a—z Yn (5) dsl

i=1 = 0
+;2b»fm( —8)" 2y, () ds
)/r (0( — 1) L i . Ni Yn .

Consider the continuous linear operator ® : L! (J,R) — X defined by

—

t 1
@(y)(t)zﬁf(t—s)“_ly(s)ds+8[—%f (1—-s)*"y(s)ds

1 a-1 w2
F(a) f(f (s—1) y(T)dT)ds T _1)2 f(nz—s) y(S)dS}
; . i L a-2
+yF(a—1);-blf0 (i = )" "y (s)ds.

It’s clear that ||k, (£) — ho (#)I| = 0, as n — co. By using Lemma 2.11, ® o Sr is closed graph operator. Since
U, — uand h, € © (Sgun) for all n € IN, there exist yy € Sg,, such that

a-1 1 ! a—1
(t =5)"" yo(s)ds+ 9 [—mfo (1-9)""yo(s)ds

0
m—2

1 7 e A 2 " .
m i=1 K fn‘m (»E =" 5@ dT) ds = 2T (a-1) ; bij; (i —=9)" " yo(s) ds}
t = " a=2
+m;bif(; (i —8)" " yo(s)ds.

Thus T has a closed graph.
Step 5. A priori bounds on solutions.

ho (t) = @

If there exists A € (0,1) such that u € AT (u), then there exists y € L! (], R) with y € Sg, such that

u(t) = r()f ds+\9[—mf(l ¥y (s)ds
LZaif (f (s— ‘“y(f)dT)ds 1)2 f(m—S)“zy(s)dsl
Ni-1
m—2 i
+ @D (;_ 0y Zbifol (i —9)" 2y (s)ds,
i=1

for almost t € J. Usmg the computations which yield the inequality in (5), for each ¢ € | and choosing L > 0

such that m > 1forallu € X, we get |lu|| < L.
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Now, we let
U={ueX: |u|<L+1}.
From the choice of U, there is no u € dU such that u € AT (u). The operator T : u— Py is upper

semi-continuous and completely continuous. In view of Lemma 2.12, the operator T has a fixed point u € U
which a solution of the problem (1). This completes the proof. [

Theorem 3.3. suppose that F : | X RX R — P, (R) is an integrable bounded multifunction such that the map
t +— F(t,u,v) is measurable and H; (F (t, u1,uz), F (t,v1,v2)) < m () (juq — v1| + [u2 — v2|) for almost all t € | and
uq,uz, 01,02 € Rwithm € C(J,R*) and (L1 + L) lImllo, < 1. Then the boundary value problem (1) has a solution.

Proof. Note that, for 1 (.) € X the set valued map F(.,u(.),u’(.)) is closed and measurable, then it has a
measurable selection and so the set Sg, is nonempty. Let us transform problem (1) into a fixed point
problem. Consider the multivalued map T : X — P (IR) defined by

T(u)={he X: thereexistsv € Sg, such thath(t) =u(t), t € J},

where u (t) defined in (3).

We will aply the Lemma 2.14, to show that T has a fixed point which is a solution of the problem (1).
For that, we divide the proof into two steps.

Step 1: In this step, we show that T has nonempty closed values. Let (i,,), be a sequence in T (1) with
(14n),>1 converges to u in X, such that

_ 1 ' a-1 1 ! a=1
u, (t) = mjo‘ (t=9)"" yu(s)ds +9[—mfo‘ (1=9)""y,(s)ds

Lm—Z' 1i et ~ A m-=2 ' i e
+r(a)2a,f (f(s 7) yn(T)dr)ds —Zyl"(oz—l);blj; (n; —s) yn(s)ds}

=1 Y
et mz_zb f Y =y (5) ds
yT(a-1) par l 0 L o '

for each t € J. Since F has compact values, (y,),,; has a subsequence which converges to some y € L' (], R).
It is easy to check that y € Sp, and u,, (t) — u () for all t € |. Hence u € T (1) and T (u) is closed.

Step 2: We will show that T is contractive multifunction with constant C = (L + L) [[m|,, < 1.

Let uy,u, € X and by € T (u1). Choose y;1 € Sy, such that

1
—ﬁ fo (1- s)”’f1 y1(s)ds
m-2

1 i S ael A m-2 i )
+m ﬂle (j(; (s—1) n (T)dT)ds_m;biL (T],‘—S) 1 (s)ds:i

i=1
¢ m—2 ni e
+ mZb, ; (17,'—5) Y1 (S)dS,
i=1

for each t € J. Since dy (F (t,u1,u}), F(t, 12, u3)) < m (t) (Jur — ua] +
z€eF (t, up (t),u (t)) such that

1 [ _
hl(f)szo(f—ﬁ‘)a1]/1(5)17354‘\9

up — u;’) for almost all ¢ € |, there exists

|y (8) = 2| < m (8) (lun (8) = w2 (B)] + [uts (8) = w5 (1)),

foreacht e J.



H. Djourdem / Filomat 35:3 (2021), 927-939 936
Define the multifunction V : | — P (R) by

V(t)={zeR: [yi () =2 < m (@) (jur () = ua (O] + |uj (8) — 115

), foralmost t € ]} .

Since the multifunction t — V ({) N F (t, u (), u) (t)) is measurable, there exists a measurable selection for
V denoted by y» such that, for all t € |

y2 (8) € F(t,un (), 0ty (1))
and
L) -5 (1))

For each t € |, we consider hy € T (u) defined by

ly2 (&) = y2 B)] < m () (Jua (8) — 2 (O] +

t 1
hz(t)z% f (t—s)"" yz(s)ds+9x|—ﬁ f (1=5) """y, (s)ds

m—2 Ni m=2

r()Zalfm (f<s - mh)ds T T L f(’?z—s)‘”yz(s)ds}
t i a—

+ m l_Zlbl‘va (T]l —S) 2y2 (S)dS.

Therefore,

t 1
I (t)—hz(t)lsz (t-9"" |1 (s)—yz(s)lds+8[ﬁfo 1 =5 y1 () = y2(5)| ds

m—

FL Z fm (j(: (5= |y1 (1) = 12 (0)| dr) ds
Ni-1

i=1

4 Nl i a-2
+m ; bz](; (ni — s) |y1 (s) =2 (s)| ds}

m-2 :
et - 9 - 20 ds
< Ly limllo lluy = uall-
Thus,
lIh1 = hall < (L + Lo) lImlls llun — w2l = Cllug — ual|-
By an analogous relation, obtained by interchanging the roles of u; and u,, we get
dy (T (1), T (u2)) < Cllug — w2l

Consequently, T is a contraction. By Lemma 2.14, we claim that T has a fixed point which is a solution of
the problem (1). O

4. examples

In this section, we give two examples to show the applicability of the our results.
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Example 4.1. Consider the following fractional differential inclusion:

cDB“J!(??) eF(t,u),u (t), tel0,1],

w’ (0) =0,
' (0) = 0.11 (0.4) + 0.02u’ (0.6) + 0.051’ (0.8), (6)
(1) = 0.01 [ u(s)ds +0.02 [ u(s)ds +04 [ u(s)ds

where F : [0,1] X R X R — P (R) a multi-valued map given by

3
F(t,u,0) = (3+t2)( l (v)) Jul +20+2|, u,veR.
1+|u| + [ul
Then, for f € F, we have
2 3
|f|§max((3+t )( ul (v)) +2t5+2)<5 u,veR.
2 1+|u| |

Thus

IF (t,u,0)l| = sup{|f], f € F(t,u,0)} <5=p®HW(ul)

withp (t) =1, ¥ (lull) = 5. Through a simple calculation we can get L1 = 1.32096 L, = 1.0225. Moreover, using the
condition

L
>1
(L1 + Lo) ||p||., ¥ (llull)

we find that L > 11.7173. By Theorem 3.2, we conclude that problem (6) has at least one solution.

Example 4.2. Consider the problem (6) and nd F : [0,1] X R x R — P (IR) a multi-valued map given by

B (1 + £)* |ul 1
F(t,u,v)—[ —100(1+|u|)+ sm(uv) u,v € R.
Thus,
sup | feP(tuv)}<(1+t)2+—
Pl AMO1="00 T 25

and

1+t
dH (F (t/ U, MZ)/F(t/ 01, Z]2)) < ( 100) 25)2 |ul l .

If we use ) = (11582 + %Sfor all t € [0,1]. Thus, dy (F (t, u1,us), F (t,v1,10)) < m(t) Zle [u; — vy
Since ||ml|,, = 0.08, we find ||m]||, (L1 + L) =~ 0.937384 < 1.
By Theorem 3.3, the problem (6) has at least one solution.
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