
Filomat 35:3 (2021), 723–730
https://doi.org/10.2298/FIL2103723M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Two-Step Ulm-Type Method for Solving Nonlinear Operator Equations

Wei Maa, Liuqing Huaa

aSchool of Mathematics and Statistics, Nanyang Normal University, Nanyang, Henan 473061, People’s Republic of China

Abstract. In this paper, we present a two-step Ulm-type method to solve systems of nonlinear equations
without computing Jacobian matrices and solving Jacobian equations. we prove that the two-step Ulm-
type method converges locally to the solution with R-convergence rate 3. Numerical implementations
demonstrate the effectiveness of the new method.

1. Introduction

Let X and Y be Banach spaces, D ∈ X be an open subset and F : D ∈ X → Y be a nonlinear operator
with the continuous Fréchet derivative denoted by F′. Kantorovich’s classical work is ever an important
principle of determining the existence for the solution of the equation[5].

F(x) = 0 (1)

Without any doubt Newton’s method is the most used iterative process to get the approximating a solution
x∗ of a nonlinear equation. It is given by the algorithm: xn+1 = xn − F′(xn)−1F(xn),n ≥ 0 for x0 given. It
converges quadratically under some mild conditions [7, 8, 10]. For recent progress on Newton method, one
may refer to [9, 11, 12].

Other methods, such as higher order methods also include in their expression the inverse of the operator
F′. To avoid this problem, Newton-type methods: xn+1 = xn − HnF(xn), where Hn is an approximation of
F′(xn)−1 are considered. One of these methods was proposed by Moser in [2]. Given x0 ∈ D and B0 ∈ L(Y,X),
the following sequences are defined

xn+1 = xn − BnF(xn),
Bn+1 = 2Bn − BnF′(xn)Bn, n = 0, 1, 2,

(2)

The first equation is similar to Newton’s method, but replacing the operator F′(xn)−1 by a linear operator
Bn. The second equation is Newton’s method applied to equation 1n = 0 where 1n : L(Y,X) → L(X,Y) is
defined by 1n(B) = B−1

− F′(xn). So {Bn} gives us an approximation of F′(xn)−1. it can be shown that the rate
of convergence for the above scheme is (1 +

√
5)/2, provided the root of (1) is simple [2].

2010 Mathematics Subject Classification. 65H10, 65J15, 47H30
Keywords. Nonlinear equation, Two-step, Ulm-type method, R-convergence rate 3
Received: 17 January 2020; Revised: 23 October 2020; Accepted: 14 May 2021
Communicated by Marko Petković
The research of this author was partially supported by the Special Project Grant of Nanyang Normal University(ZX2014078)
Email addresses: mawei7555659@126.com (Wei Ma), hualiuqing@126.com (Liuqing Hua)

W. Ma, L. Hua / Filomat 35:3 (2021), 723–730 724

In [1] Ulm proposed the following iterative method to solve nonlinear equations. Given x0 ∈ D and
B0 ∈ L(Y,X), Ulm defines

xn+1 = xn − BnF(xn),
Bn+1 = 2Bn − BnF′(xn+1)Bn, n = 0, 1, 2,

(3)

Notice that, here F′(xn+1) appears instead of F′(xn) in (2), This is crucial for obtaining fast convergence. Under
the classical assumption that the derivative F′ is Lipschitz continuous around the solution, Ulm showed
that the method generates successive approximations that converge to a solution of (1), asymptotically as
fast as Newton’s method.

In [17] Ezquerro and Hernández considered Chebyshev’s method and proposed the following iterative
method to solve nonlinear equations. Given x0 ∈ D and B0 ∈ L(Y,X), Ulm defines

yn = xn − BnF(xn),
xn+1 = yn − BnF(yn),
Bn+1 = Bn + Bn(2I − F′(xn+1)Bn)(I − F′(xn+1)Bn), n = 0, 1, 2,

(4)

it does not use any inverse operator in its application and Ezquerro and Hernández showed that the method
generates successive approximations that converge to a solution of (1), has cubical convergence. For recent
progress on Newton method, one may refer to [3, 4, 6, 13–16, 18, 19].

In [12], Darvishi and Barati gave the two-step Newton-type method, Given x0 ∈ D, the following
sequences are defined

yn = xn − F′(xn)−1F(xn),

xn+1 = xn − F′(xn)−1F(yn), n = 0, 1, 2,
(5)

The purpose of the present paper is, motivated by the two-step Newton-type method to propose the two-
step Ulm-type method for solving the nonlinear operator equation F(x) = 0. Given x0 ∈ D and B0 ∈ L(Y,X),
the two-step Ulm-type method is defined by

yn = xn − BnF(xn),
xn+1 = yn − BnF(yn),
An = 2Bn − BnF′(xn+1)Bn,

Bn+1 = 2An − AnF′(xn+1)An, n = 0, 1, 2,

(6)

This method exhibits several attractive features. First, it is inverse free: we do not need to solve a linear
equation at each iteration. Second, in addition to solve the nonlinear equation (1), the method produces
successive approximations {Bn} to the value of F′(x∗)−1 , being x∗ a solution of (1). This property is very
helpful especially when one investigates the sensitivity of the solution to small perturbations. Further
more, under certain assumptions, the radius of the convergence ball for the two-step Ulm-type method is
estimated, and the R-convergence rate 3 of the two-step Ulm-type method is proved. Numerical experiment
is given in the last section illustrating the convergence performance of the two-step Ulm-type method.

2. Convergence analysis

Let B(x, r) stands for the open ball in X with center x and radius r > 0. Let x∗ ∈ D be a solution of the
nonlinear equation (1) such that F′(x∗) is invertible and that F′ satisfies Lipschitz condition on B(x∗, r) with
the Lipschitz constant L:

‖F′(x) − F′(y)‖ ≤ L‖x − y‖ for x,y ∈ B(x∗, r). (7)

W. Ma, L. Hua / Filomat 35:3 (2021), 723–730 725

Let

0 < rL < min
{
1, r,

1
L‖F′(x∗)−1‖

}
; η =

‖F′(x∗)−1
‖

1 − L‖F′(x∗)−1‖rL
; (8)

0 < α ≤ min{

√
3
√

3 − 4

12
√

3ηL
,

2
√

2
15ηL

}; 0 < β ≤ min{rL, α}; 0 < ξ ≤
4
√

3ηLβ√
3
√

3 − 4
. (9)

The following lemma is crucial for the proof of the main theorem.

Lemma 2.1. If xn ∈ B(x, rL), Then F′(xn) is invertible and ‖F′(xn)−1
‖ ≤ η.

Proof. By (7), (8) and the assumption that

‖F′(x∗)−1
‖‖F′(xn) − F′(x∗)‖ ≤ L‖F′(x∗)−1

‖rL < 1.

Consequently, using Banach’s lemma, we can derive that F′(xn) is invertible and moreover

‖F′(xn)−1
‖ ≤

‖F′(x∗)−1
‖

1 − L‖F′(x∗)−1‖rL
= η.

Note that in the two-step Ulm-type method, sequence {Bn} is generated by the algorithm except for B0.
Below, we prove that if B0 approximates ‖F′(x0)−1

‖, then the sequence {xn} generated by the two-step
Ulm-type method converges locally to x∗ with R-convergence rate 3. For this end, let B0 satisfy that

‖I − B0F′(x0)−1
‖ ≤ ξ, (10)

where ξ is defined in (9).

Theorem 2.2. Suppose that the Jacobian operator F′(x∗) is invertible and that F′ satisfies the Lipschitz condition
(7) on B(x∗, rL). Then there exist positive numbers β and ξ such that for any x0 ∈ B(x∗, β) and B0 satisfying (10),
the sequence {xn} generated by the two-step Ulm-type method with initial point x0 converges to x∗. Moreover, the
following estimates hold for each n = 0, 1,

‖xn − x∗‖ ≤ α
(β
α

)3n

(11)

and

‖I − BnF′(xn)−1
‖ ≤

1
3

(β
α

)3n

, (12)

where α is defined in (9).

Proof. We proceed by mathematical induction. Clearly, (11) is trivial for n = 0 by the assumption. By (9)
and (10), we obtain

‖I − B0F′(x0)−1
‖ ≤ ξ ≤

4
√

3ηLβ√
3
√

3 − 4
=
β

3α
.

That is, (12) holds for n = 0. Now we assume that (11) and (12) hold for n = m. Then one has

‖xm − x∗‖ ≤ α
(β
α

)3m

(13)

W. Ma, L. Hua / Filomat 35:3 (2021), 723–730 726

and

‖I − BmF′(xm)‖ ≤
1
3

(β
α

)3m

. (14)

By (9), we get

‖xm − x∗‖ ≤ α
(β
α

)3m

< β < rL,

It follows from (9), (14) and Lemma 2.1 that

‖F′(xm)−1
‖ ≤ η

and β ≤ α, we have

‖Bm‖ ≤ ‖BmF′(xm)‖‖F′(xm)−1
‖ ≤ (1 + ‖I − BmF′(xm)‖)‖F′(xm)−1

‖

≤ η
[
1 +

1
3

(β
α

)3m]
≤

√

2η. (15)

By (6), we have

ym − x∗ = xm − x∗ − Bm(F(xm) − F(x∗))

= xm − x∗ −
∫ 1

0
BmF′(xθm)(xm − x∗)dθ

=

∫ 1

0
[I − BmF′(xm) + Bm(F′(xm) − F′(xθm))](xm − x∗)dθ

where xθm = x∗ + θ(xm − x∗) for 0 ≤ θ ≤ 1. Since ‖xm − x∗‖ ≤ rL and ‖xθm − x∗‖ = θ‖xm − x∗‖ ≤ ‖xm − x∗‖ ≤ rL, it
follows from (9), (13), (14), (15), α ≤ 2

√
2

15ηL and the Lipschitz condition that

‖ym − x∗‖ ≤
∫ 1

0
(‖I − BmF′(xm)‖ + L(1 − θ)‖Bm‖‖xm − x∗‖)‖xm − x∗‖dθ

= ‖I − BmF′(xm)‖‖xm − x∗‖ +
L
2
‖Bm‖‖xm − x∗‖2

≤
1
3

(β
α

)3m

α
(β
α

)3m

+

√
2

2
Lη

(
α
(β
α

)3m)2

=
(1
3

+

√
2

2
Lηα

)
α
(β
α

)2×3m

≤ α
(β
α

)2×3m

(16)

Together with (9) and (13), we get

‖xm − ym‖ ≤ ‖xm − x∗‖ + ‖ym − x∗‖ ≤ α
(β
α

)3m

+ α
(β
α

)2×3m

≤ 2α
(β
α

)3m

. (17)

it follows from (9), (14), (15) and the Lipschitz condition that

‖I − BmF′(ym)‖ ≤ ‖I − BmF′(xm)‖ + ‖Bm‖‖F′(xm) − F′(ym)‖

≤
1
3

(β
α

)3m

+ 2
√

2Lηα
(β
α

)3m

≤

(1
3

+ 2
√

2Lηα
)(β
α

)3m

(18)

W. Ma, L. Hua / Filomat 35:3 (2021), 723–730 727

Similar to (16), by (8), (9), (15), (16), (18), α ≤ 2
√

2
15ηL and the Lipschitz condition, we get

‖xm+1 − x∗‖ = ‖I − BmF′(ym)‖‖ym − x∗‖ +
L
2
‖Bm‖‖ym − x∗‖2

≤

(1
3

+ 2
√

2Lηα
)(β
α

)3m

α
(β
α

)2×3m

+

√
2

2
Lη

(
α
(β
α

)2×3m)2

=
(1
3

+
5
√

2
2

Lηα
)
α
(β
α

)3m+1

≤ α
(β
α

)3m+1

(19)

By (9), we get

‖xm+1 − x∗‖ ≤ α
(β
α

)3m+1

< β < rL,

Consequently, (11) holds for n = m + 1 and by (9), (16) and (19), we get

‖xm+1 − ym‖ ≤ ‖xm+1 − x∗‖ + ‖ym − x∗‖ ≤ α
(β
α

)3m+1

+ α
(β
α

)2×3m

≤ 2α
(β
α

)2×3m

. (20)

Moreover, by (6), we obtain

I − Bm+1F′(xm+1) = I − (2Am − AmF′(xm+1Am)F′(xm+1 = (I − Am+1F′(xm+1))2, (21)

and

I − Am+1F′(xm+1) = I − (2Bm − BmF′(xm+1Bm)F′(xm+1 = (I − BmF′(xm+1))2, (22)

Consequently

I − Bm+1F′(xm+1) = (I − BmF′(xm+1))4. (23)

It is easy to know that

‖I − BmF′(xm+1)‖ ≤ ‖I − BmF′(ym)‖ + ‖Bm‖‖F′(xm+1) − F′(ym)‖

it follows from (9), (15), (18), (20) and the Lipschitz condition that

‖I − BmF′(xm+1)‖2 ≤ 2‖I − BmF′(ym)‖2 + 2‖Bm‖
2
‖F′(xm+1) − F′(ym)‖2

≤ 2
(1
3

+ 2
√

2Lηα
)2(β
α

)2×3m

+ 4η2L2
× 4α2

(β
α

)4×3m

≤ 2
(2
9

+ 16L2η2α2
)(β
α

)2×3m

+ 4η2L2
× 4α2

(β
α

)2×3m

≤

(4
9

+ 48L2η2α2
)(β
α

)2×3m

≤

√
3

3

(β
α

)2×3m

Together with (23), we get

‖I − Bm+1F′(xm+1)‖ ≤ ‖I − BmF′(xm+1)‖4 ≤
1
3

(β
α

)4×3m

≤
1
3

(β
α

)3m+1

.

This conforms that (12) holds for n = m + 1 and the proof is complete.

W. Ma, L. Hua / Filomat 35:3 (2021), 723–730 728

3. Numerical experiments

In this section, we report the numerical performance of the two-step Ulm-type method for solving the
nonlinear operator equation (1). We compare the two-step Ulm-type method with the Ulm’s method [1],
the two-step Newton-type method[12] and the Ezquerro and Hernández’s method [17]. For convenience,
we denote the Ulm’s method in [1] as UM , the two-step Newton-type method in [12] as TNM, the Ezquerro
and Hernández’s method in [17] as EHM, and the two-step Ulm-type method as TUM. All the tests were
carried out in MATLAB 7.10 running on a PC Intel Pentium IV of 3.0 GHz CPU.

we consider the two-point boundary value problem{ x′′ + x2 = 0,
x(0) = x(1) = 0. (24)

We divide the interval [0, 1] into m + 1 subintervals and we get h = 1/m + 1. Let d0, d1, . . . , dm+1 be the points
of subdivision with 0 < d0 < d1 < · · · < dm+1 = 1. An approximation for the second derivative may be
chosen as{

x′′i = xi−1−2xi+xi+1
h2 ,

x0 = x1 = 0.
xi = x(di) for i = 1, 2, . . . ,m. (25)

Let the operator φ : Rm
→ Rm be defined by

φ(x) =
(
x2

1, x
2
2, . . . , x

2
m

)T
for x =

(
x1, x2, . . . , xm

)T
∈ Rm.

To get an approximation to the solution of (24), we need to solve the following nonlinear equation:

F(x) := Mx + h2φ(x) = 0, x ∈ Rm,

where

M =


−2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2


m×m

Obviously, x∗ = 0 is a solution of (25) and

F′(x) = M + 2h2diag(x1, x2, . . . , xm).

Hence F′(x∗) = M. Furthermore, it is easy to verify that

‖F′(x) − F′(y)‖ ≤ 2h2
‖x − y‖ for x,y ∈ Rm.

where ‖ · ‖ denotes the F-norm. For different choices of m, thanks to the results from Section 2, there exists
a radius rL such that for each x0 ∈ B(x∗, rL), the sequence {xn} generated by the two-step Ulm-type method
converges to x∗ = 0 with convergence order 3. Set B0 = ‖F′(x0)−1

‖. the convergence performance of the
algorithm are illustrated in the following tables. Here we consider the following three problem sizes: (a)
m = 10 and x0 = γ(1, 1, . . . , 1)T in Table 1, (b) m = 100 and x0 = γ(1, 1, . . . , 1)T in Table 2 and (c) m = 1000
and x0 = γ(1, 1, . . . , 1)T in Table 3, where γ = 0.2 or 0.02. In Table 4, we compare the averaged CPU time of
Algorithms UM, EHM, TNM and TUM for ten tests with different (m, γ).

W. Ma, L. Hua / Filomat 35:3 (2021), 723–730 729

Table 1: value of ‖xn − x∗‖F for case (a).

γ it. Algorithm UM Algorithm EHM Algorithm TNM Algorithm TUM
0.2 0 6.3246e − 1 6.3246e − 1 6.3246e − 1 6.3246e − 1

1 1.2625e − 2 5.4276e − 4 5.4276e − 4 5.4276e − 4
2 2.9655e − 5 6.1381e − 12 5.5641e − 12 3.3657e − 13
3 2.6731e − 10 2.2970e − 35 9.3920e − 34
4 3.0008e − 20

0.02 0 6.3246e − 1 6.3246e − 1 6.3246e − 1 6.3246e − 1
1 1.2160e − 4 4.9840e − 7 4.9840e − 7 4.9840e − 7
2 2.5862e − 9 4.5866e − 21 6.3132e − 22 3.3066e − 22
3 1.9654e − 18

Table 2: value of ‖xn − x∗‖F for case (b).

γ it. Algorithm UM Algorithm EHM Algorithm TNM Algorithm TUM
0.2 0 2.0000e + 0 2.0000e + 0 2.0000e + 0 2.0000e + 0

1 3.8245e − 2 1.6327e − 3 1.6327e − 3 1.6327e − 3
2 8.8705e − 5 1.7773e − 11 2.8562e − 11 9.8802e − 13
3 7.8135e − 10 5.7641e − 35 6.5325e − 34
4 8.3847e − 20

0.02 0 2.0000e − 1 2.0000e − 1 2.0000e − 1 2.0000e − 1
1 3.6846e − 4 1.5001e − 6 1.5001e − 6 1.5001e − 6
2 7.7420e − 9 1.3307e − 20 1.8767e − 20 9.6876e − 22
3 5.7553e − 18

Table 3: value of ‖xn − x∗‖F for case (c).

γ it. Algorithm UM Algorithm EHM Algorithm TNM Algorithm TUM
0.2 0 6.3246e + 0 6.3246e + 0 6.3246e + 0 6.3246e + 0

1 1.2040e − 1 5.1396e − 3 5.1396e − 3 5.1396e − 3
2 2.7921e − 4 5.5923e − 11 4.1096e − 11 3.1093e − 12
3 2.4588e − 9 1.0346e − 34 9.6784e − 34 1.8165e − 37
4 2.1700e − 19

0.02 0 6.3246e − 1 6.3246e − 1 6.3246e − 1 6.3246e − 1
1 1.1600e − 3 4.7221e − 6 4.7221e − 6 4.7221e − 6
2 2.4370e − 8 4.1869e − 20 7.5248e − 21 3.0484e − 21
3 1.8178e − 17

Table 4: Averaged CPU time in seconds of Algorithms UM, EHM, TNM and TUM for the ten tests

(m, γ) (100, 0.2) (100, 0.02) (1000, 0.2) (1000, 0.02) (2000, 0.2) (2000, 0.02)
Algorithms UM 1.23e − 2 6.21e − 3 1.83 1.09 10.05 6.12

Algorithms EHM 8.56e − 3 5.30e − 3 1.65 0.91 9.83 5.73
Algorithms TNM 9.23e − 3 5.29e − 3 1.59 0.90 9.50 5.99
Algorithms TUM 6.43e − 3 4.96e − 3 1.51 0.83 9.12 5.23

From Tables 1–3, we observe that the Ulm’s method converges quadratically and the Ezquerro and
Hernández’s method the two-step Newton-type method and the two-step Ulm-type method converge
cubically in the root sense and the two-step Ulm-type method converges faster than the Ulm’s method the
two-step Newton-type method and the Ezquerro and Hernández’s method. Table 4 shows that the CPU
time by Algorithm TUM is cheaper than Algorithm UM, EHM and TNM.

4. Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions
on our early version.

W. Ma, L. Hua / Filomat 35:3 (2021), 723–730 730

References

[1] S. Ulm, On iterative methods with successive approximation of the inverse operator, Izv. Akad. Nauk Est. SSR, 16 (1967), 403–411.
[2] J. Moser, Stable, random motions in dynamical systems with special emphasis on celestial mechanics, in: Herman Weil Lectures,

in: Annals of Mathematics Studies, vol. 77, Princeton Univ. Press, Princeton, NJ, 1973.
[3] O. H. Hald, On a Newton-Moser type method, Numer. Math. 23 (1975), 411–426.
[4] H. Petzeltova, Remark on Newton-Moser type method, Commentat. Math. Univ. Carol. 21 (1980), 719–725.
[5] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
[6] A. Galperin, Z. Waksman, Ulm’s method under regular smoothness, Numer. Funct. Anal. Optim. 19 (1998), 285–307.
[7] B. Morini, Convergence behaviour of inexact Newton methods, Math. Comp. 68 (1999), 1605–1613.
[8] J. A. Ezquerro, M. A. Hernández, Generalized differentiability conditions for Newton’s method, IMA J. Numer. Anal. 22 (2002),

187–205.
[9] M. Frontini, E. Sormani, Some variants of Newton’s method with third-order convergence, Appl. Math. Comput. 140 (2003)

419–426.
[10] Ch. Chun, Iterative methods improving Newton’s method by the decomposition method, Comput. Math. Appl. 50 (2005)

1559–1568.
[11] H.H.H. Homeier, On Newton-type methods with cubic convergence, J. Comput. Appl. Math. 176 (2005) 425–432.
[12] M.T. Darvishi, A. Barati, A third-order Newton-type method to solve systems of nonlinear equations, Appl. Math. Comput. 187

(2007) 630–635.
[13] J. A. Ezquerro, M. A. Hernández, The Ulm method under mild differentiability conditions, Numer. Math. 109 (2008), 193–207.
[14] J. M. Gutirrez, M. A. Hernández, N. Romero, A note on a modification of Moser’s method, J. Complexity. 24 (2008), 185–197.
[15] I.K. Argyros, On Ulm’s method for Fruchet differentiable operators, J. Appl. Math. Comput. 31 (2009) 97–111.
[16] I.K. Argyros, On Ulm’s method using divided differences of order one, Numer. Algorithms. 52 (2009) 295–320.
[17] J. A. Ezquerro, M. A. Hernández, An Ulm-type method with R-order of convergence three, Nonlinear Analysis: Real World

Applications 13 (2012) 14–26.
[18] W. P. Shen, T. T. Wei, L. H. Peng, An Ulm-like method for solving nonlinear operator equations, J. Nonlinear Convex Anal. 16

(2015), 1439–1447.
[19] W. P. Shen, T. T. Wei, S. Guu, convergence of the Ulm-like method under the Hölder condition, J. Nonlinear Convex Anal. 17

(2016), 701–710.

