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Abstract. For ε > 0 and a bounded linear operator T acting on some Hilbert space, the ε-pseudospectrum
of T is σε(T) = {z ∈ C : ‖(zI − T)−1

‖ > ε−1
}. This note provides a characterization of those operators T

satisfying σε(T) = σ(T) + B(0, ε) for all ε > 0. Here B(0, ε) = {z ∈ C : |z| < ε}. In particular, such operators on
finite dimensional spaces must be normal.

1. Introduction

As usual, we letN,C denote respectively the set of positive integers and the set of complex numbers. H
will always denote a complex separable infinitely dimensional Hilbert space. Denote by B(H) the Banach
algebra of all bounded linear operators onH .

This paper is a continuation of a previous paper of the authors [8], where pseudospectral radii of Hilbert
space operators are studied. The spectrum of an operator T ∈ B(H) is

σ(T) = {z ∈ C : zI − T is not invertible in B(H)}.

Given ε > 0, the ε-pseudospectrum of T is defined as

σε(T) = {z ∈ C : ‖(zI − T)−1
‖ > ε−1

}.

Conventionally, it is assumed that ‖(zI − T)−1
‖ = ∞ if z ∈ σ(T). The reader is referred to [10] for other

equivalent definitions of the ε-pseudospectrum.
The behaviors of pseudospectra of operators are quite different from that of their spectra. It is obvious

that the ε-pseudospectrum of T is always open. However, pseudospectra can be used to give effective
estimations of spectra. In fact, one can check that⋂

ε>0

σε(T) = σ(T).

Moreover, it is known that the map (ε,T) 7→ σε(T) is continuous (see [4, Prop. 2.7]).

2010 Mathematics Subject Classification. Primary 47A10; Secondary 47B20
Keywords. Pseudospectrum, spectrum, normal approximate eigenvalues, von Neumann operators
Received: 17 March 2020; Accepted: 09 June 2020
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The aim of this note is to discuss the relation between spectra and pseudospectra. For T ∈ B(H) and
ε > 0, it is known that σ(T) + B(0, ε) ⊂ σε(T), and the converse inclusion in general does not hold. Here
B(0, ε) denotes the set {z ∈ C : |z| < ε}. For example, if an operator A ∈ B(H) is nilpotent of order 2, then
σε(A) = B(0,

√
ε2 + ‖A‖ε) (see [4, Proposition 2.4]), and

σ(A) + B(0, ε) = B(0, ε) ( σε(A).

Thus a natural question arises.

Question 1.1. When does an operator T satisfy

σε(T) = σ(T) + B(0, ε) for all ε > 0 ? (1)

For any ε > 0, note that

σ(T) + B(0, ε) = {z ∈ C : dist(z, σ(T)) < ε} = {z ∈ C : 1/dist(z, σ(T)) > ε−1
}.

Thus an operator T satisfies (1) if and only if ‖(zI − T)−1
‖ = 1/dist(z, σ(T)) for z ∈ C \ σ(T).

We remark that a von Neumann operator T always satisfies (1). Recall that T is called a von Neumann
operator if ‖ f (T)‖ = sup{| f (z)| : z ∈ σ(T)} for rational functions f with poles off σ(T). Note that if T is a von
Neumann operator, then ‖T‖ = r(T), where r(T) denotes the spectral radius of T. The class of von Neumann
operators includes some special classes of operators, such as normal operators and subnormal operators.
Thus if T is von Neumann, then, for any z ∈ C \ σ(T), we have

‖(zI − T)−1
‖ = sup{|(z − λ)−1

| : λ ∈ σ(T)} = 1/dist(z, σ(T)).

It follows that σε(T) = σ(T) + B(0, ε) for all ε > 0. So it is natural to ask whether the converse holds. Here
we give a counterexample.

Example 1.2. Let S be the unilateral shift on l2(N) defined by

(α1, α2, α3, · · · ) 7−→ (0, α1, α2, α3, · · · ).

Since S is subnormal (and hence a von Neumann operator, see [3, Proposition 9.2]), we have

σε(S) = σ(S) + B(0, ε) = B(0, 1 + ε).

Let R ∈ B(C2) be the operator on C2 determined by the following matrix(
0 2
0 0

)
.

Then, by [4, Proposition 2.4], σε(R) = B(0,
√

ε2 + 2ε). So σε(R) ⊂ σε(S).
Set T = S ⊕ R. Then σ(T) = σ(S) ∪ σ(R) = B(0, 1)− and

σε(T) = σε(S) ∪ σε(R) = σε(S) = σ(S) + B(0, ε) = σ(T) + B(0, ε).

However, noting that ‖T‖ = 2 > 1 = r(T), T is not a von Neumann operator.

In this note, we give a characterization of those operators T satisfying (1). To state our main result, we
need an extra definition. Two operators A and B are called approximately unitarily equivalent, denoted as
A 'a B, if there exist a sequence of unitary operators Un such that limn U∗nAUn = B (see [2, Definition 39.9]).
If A 'a B, then it is easy to check that σ(A) = σ(B) and σε(A) = σε(B) for all ε > 0.

The main result of this paper is the following theorem, which gives an answer to Question 1.1.

Theorem 1.3. For T ∈ B(H), the following are equivalent:
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(i) σε(T) = σ(T) + B(0, ε) for all ε > 0.
(ii) T is approximately unitarily equivalent to an operator of form N ⊕ A, where N is normal with σ(N) = ∂σ(T)

and
‖(zI − A)−1

‖ ≤ ‖(zI −N)−1
‖, ∀z ∈ C \ σ(T).

Remark 1.4. Let T ∈ B(H) and suppose σε(T) = σ(T) + B(0, ε) for all ε > 0. By definition, the norm of the
resolvent function (zI − T)−1 of T coincides with that of a normal operator. By Theorem 1.3 (ii), this means that T
“has” (up to approximate unitary equivalence) a normal part N with σ(N) = ∂σ(T). Thus each point in ∂σ(T) is a
normal approximate eigenvalue of T. Recall that a complex number λ is called a normal approximate eigenvalue [5]
of A ∈ B(H) if there exists a sequence {xn}n≥1 of unit vectors such that

‖(A − λ)xn‖ + ‖(A − λ)∗xn‖ → 0.

Remark 1.5. We remark that the result of Theorem 1.3 is sharp. That is, approximate unitary equivalence can not
be replaced by unitary equivalence, since the operator T in Example 1.2 is abnormal, that is, T admits no nonzero
reducing subspace M such that T|M is normal.

Example 1.2 shows that the equality (1) in general does not imply the normality of T. However, if T acts
on some finite dimensional Hilbert space, then we shall prove in Section 2 the following result.

Theorem 1.6. Let A be a bounded linear operator acting on a finite dimensional Hilbert space K . Then σε(A) =
σ(A) + B(0, ε) for all ε > 0 if and only if A is normal.

The proof of main result will be provided in Section 2. In the rest of this section, we fix some notations
and terminology.

Let T ∈ B(H). We denote by ker T and ran T the kernel of T and the range of T respectively. If ran T
is closed and either ker T or ker T∗ is of finite dimension, then T is called a semi-Fredholm operator. The
following set

σlre(T) = {λ ∈ C : T − λ is not semi-Fredholm}

is called the Wolf spectrum of T.
Let T ∈ B(H). If ∆ is a nonempty clopen subset of σ(T), then there exists an analytic Cauchy domain Ω

such that ∆ ⊂ Ω and [σ(T) \ ∆] ∩Ω = ∅. We let E(∆; T) denote the Riesz idempotent of T corresponding to ∆,
that is,

E(∆; T) =
1

2πi

∫
Γ

(λ − T)−1dλ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex variable theory. By the
Riesz Decomposition Theorem ([9, Theorem 2.10]), H(∆; T) := ran(E(∆; T)) is an invariant subspace of T
and σ(T|H(∆;T)) = ∆. If λ is an isolated point of σ(T), then {λ} is a clopen subset of σ(T); if, in addition,
dimH({λ}; T) < ∞, then λ is called a normal eigenvalue of T. We denote by σ0(T) the set of all normal
eigenvalues of T. The reader is referred to [1, page 210] or [7, Chapter 1] for more details.

2. Proof of Theorem 1.3

We first introduce some useful lemmas.

Lemma 2.1 ([1], page 366). Let T ∈ B(H). Then ∂σ(T) ⊆ [σ0(T) ∪ σlre(T)].

Recall that an operator T is said to be normaloid if ‖T‖ = r(T) (see [6, page 117]).

Lemma 2.2 ([11], Theorem 3.1). Let T ∈ B(H) be normaloid. If N is a normal operator on some Hilbert space with
σ(N) ⊆ {z ∈ σlre(T) : |z| = ‖T‖}, then T 'a T ⊕N.
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Lemma 2.3 ([11], Corollary 3.2). Let T ∈ B(H) and Γ be a compact subset of C. If T 'a T ⊕ λI for any λ ∈ Γ and
N is a normal operator on some Hilbert space with σ(N) = Γ, where I is the identity operator onH , then T 'a T ⊕N.

Lemma 2.4 ([11], Corollary 3.5). Let T ∈ B(H). If λ ∈ σ0(T) and there exists z0 ∈ C \ σ(T) such that

|(z0 − λ)−1
| = ‖(z0 − T)−1

‖,

then ker(λ − T) reduces T.

Proof. [Proof of Theorem 1.6] We need only prove the necessity. Assume that σ(A) = {λi : i = 1, 2, · · · , k} and
choose a positive number δ > ‖A‖. Thus δ < σ(A). Put T = δI ⊕ A, where I is the identity operator on H
with dimH = ∞. Thus σ0(T) = {λi : i = 1, 2, · · · , k}.

On the other hand, it is easy to see σε(T) = σ(T) + B(0, ε) for all ε > 0. Then

‖(z − T)−1
‖ = 1/dist(z, σ(T)), ∀z ∈ C \ σ(T).

So, for each λi, there exists zi such that |(zi − λi)−1
| = ‖(zi − T)−1

‖. By Lemma 2.4, ker(A − λi) = ker(T − λi)
reduces T. Set M = ∨k

i=1 ker(A − λi). Then M ⊂ K and reduces A. So

A =


λ1I1

. . .
λkIk

A0


ker(A − λ1)

...
ker(A − λk)
K 	M

,

where the entries not shown are zero. Since σ(A0) ⊂ σ(A) = {λi : i = 1, 2, · · · , k}, it follows that M = K . So A
is normal.

The following result is a mild improvement of Theorem 4.4 in [11].

Proposition 2.5. Let T ∈ B(H) and suppose ‖(zI − T)−1
‖ = 1/dist(z, σ(T)) for all z ∈ C \ σ(T). If N is a normal

operator with σ(N) = σlre(T) ∩ ∂σ(T), then T 'a T ⊕N.

Proof. According to Lemma 2.3, we only need to prove that T 'a T ⊕ λI for any λ ∈ σlre(T) ∩ ∂σ(T).
Let λ0 ∈ σlre(T)∩∂σ(T). We can find {zn}

∞

n=1 ⊆ C \σ(T) such that zn → λ0. For n ≥N, there exist λn ∈ σ(T)
such that dist(zn, σ(T)) = |zn − λn|. So λn ∈ ∂σ(T) and λn → λ0.

By the hypothesis, we have

‖(zn − T)−1
‖ = 1/dist(zn, σ(T)) = 1/|zn − λn|.

By the spectral mapping theorem, (zn − λn)−1
∈ σ((zn − T)−1) for n ≥ 1.

Case 1. There exist n1 < n2 < n3 < · · · such that λnk ∈ σlre(T).
If so, then (znk − λnk )

−1
∈ σlre((znk − T)−1). By Lemma 2.2, we obtain

(znk − T)−1
'a (znk − T)−1

⊕ (znk − λnk )
−1I, ∀k ≥ 1,

yielding T 'a T ⊕ λnk I for all k ≥ 1. Since λnk → λ0, one can see T 'a T ⊕ λ0I.
Case 2. There exists m > 0 such that λn < σlre(T) for n ≥ m.
Sinceλn ∈ ∂σ(T), it follows from Lemma 2.1 thatλn ∈ σ0(T) for n ≥ m. Noting that ‖(zn−T)−1

‖ = 1/|zn−λn|,
it follows from Lemma 2.4 that ker(T − λn) reduces T for n ≥ m. Noting that λn → λ0 ∈ σlre(T), it can be
assumed that {λn : n ≥ m} are pairwise distinct. So T can be written as

T = A ⊕ diag{λm, λm+1, λm+2, · · · }.

Since λn → λ0, one can see
λ0 ∈ σlre(diag{λm, λm+1, λm+2, · · · }).
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Then, by a corollary of the Weyl-von Neumann-Berg Theorem (see [2, Proposition 39.10]), we have

diag{λm, λm+1, λm+2, · · · } 'a diag{λm, λm+1, λm+2, · · · } ⊕ λ0I.

So

T = A ⊕ diag{λm, λm+1, λm+2, · · · }

'a A ⊕
(
diag{λm, λm+1, λm+2, · · · } ⊕ λ0I

)
'a

(
A ⊕ diag{λm, λm+1, λm+2, · · · }

)
⊕ λ0I

= T ⊕ λ0I.

Hence the proof is complete.

Remark 2.6. We remark that the proof of the preceding theorem is inspired by that of Theorem 4.3 in [11].

Now we are going to prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] “⇐=”. Since T 'a N ⊕ A, it follows that (z − T)−1
'a (z − N)−1

⊕ (z − A)−1 for
z ∈ C \ σ(T). Then

‖(zI − T)−1
‖ = max{‖(zI −N)−1

‖, ‖(zI − A)−1
‖} = ‖(zI −N)−1

‖

= 1/dist(z, σ(N)) = 1/dist(z, ∂σ(T)) = 1/dist(z, σ(T)),

proving the sufficiency.
“=⇒”. Set Γ0 = ∂σ(T) ∩ σ0(T) and Γ1 = ∂σ(T) ∩ σlre(T). By Lemma 2.1, we have ∂σ(T) = Γ0 ∪ Γ1. Since

σ0(T) is at most denumerable, without loss of generality, it can be assumed that Γ0 = {λ1, λ2, λ3, · · · }.
For each n ≥ 1, since λn ∈ σ0(T) is an isolated point of σ(T), we can find zn ∈ C \ σ(T) such that

|zn − λn| < dist(zn, σ(T) \ {λn}). Then

‖(zn − T)−1
‖ = 1/dist(zn, σ(T)) = 1/|λn − zn|.

Since λn ∈ σ0(T), it follows from Lemma 2.4 that ker(T − λn) reduces T. Note that {λn : n ≥ 1} are pairwise
distinct. Thus T can be written as

T = A ⊕ diag{λ1, λ2, λ3, · · · }. (2)

Choose a normal operator N1 onH with σ(N1) = Γ1. Then, by Proposition 2.5, we have T 'a T ⊕N1. It
follows that

T 'a T ⊕N1 = A ⊕ diag{λ1, λ2, λ3, · · · } ⊕N1.

Set N = diag{λ1, λ2, λ3, · · · } ⊕N1. Then N is normal, T 'a A ⊕N and

σ(N) = σ(N1) ∪ {λn : n ≥ 1} = ∂σ(T).

Thus, for each z ∈ C \ σ(T), we have

‖(zI − A)−1
‖ ≤ ‖(zI − T)−1

‖ = 1/dist(z, σ(T)) = 1/dist(z, ∂σ(T)) = 1/dist(z, σ(N)) = ‖(zI −N)−1
‖.

The proof is complete.
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