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Abstract. In this paper, we derive some new symmetric properties of k-Fibonacci numbers by making use
of symmetrizing operator. We also give some new generating functions for the products of some special
numbers such as k-Fibonacci numbers, k-Pell numbers, Jacobsthal numbers, Fibonacci polynomials and
Chebyshev polynomials.

1. Introduction

Srivastava et al. [14] introduced and studied a new family of the generalized Hermite polynomials, and
considered the polynomials {Hm

n (λ)} and {Hm
r,n(λ)} to find an explicit formula in terms of the Srivastava–

Daoust multivariable hypergeometric functions. He et al. [15] presented a further investigation for the
classical Frobenius–Euler polynomials. They also obtained some summation formulas for the products of
an arbitrary number of the classical Frobenius-Euler polynomials by using the generating function methods
and summation transform techniques. In [21], Kumam et al. introduced a new family of polynomials,
which are called the truncated-exponential based Frobenius-Euler polynomials, based upon an exponential
generating function. By making use of this exponential generating function, they obtained their several
new properties and explicit summation formulas.

Srivastava et al. [17] defined the first and second homogeneous q-difference operators and they showed
that the generalized Cauchy polynomials can be represented by the first homogeneous q-difference operator
and derived their generating function.

Srivastava et al. [16] introduced a family of the twice-iterated ∆h-Appell sequences of polynomials
based upon the discrete Appell convolution of the ∆h-Appell sequence of polynomials. They also obtained
the corresponding properties for the sequences of the twice-iterated polynomials. In [19], Srivastava et
al. introduced new families of the q-Fibonacci and q-Lucas polynomials, and gave several properties and
generating functions of each of these families q-polynomials.

Let Fn, Tn and Un be the n-th Fibonacci number, Chebyshev polynomials of the first and second kinds,
respectively. In [8], Boussayoud et al. [7] derived new generating functions of square of Fibonacci numbers
with products of Chebyshev polynomials of first and second kinds.
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In [2], Boussayoud et al. considered the following generating series:

+∞∑
n=0

Fk,nFk,n+1zn,
+∞∑
n=0

Fk,nFk,n+2zn,
+∞∑
n=0

Pk,nPk,n+1zn,
+∞∑
n=0

Pk,nPk,n+2zn,

+∞∑
n=0

Fk,n+1Fn(x)zn,
+∞∑
n=0

Fk,n+2Fn(x)zn,
+∞∑
n=0

Pk,n+1Fn(x)zn,
+∞∑
n=0

Pk,n+2Fn(x)zn,

+∞∑
n=0

Fk,n+1Un(x)zn,
+∞∑
n=0

Fk,n+2Un(x)zn.

A systematic study of orthogonal polynomials, which consists of polynomials such that any two
different polynomials in the sequence are orthogonal to each other under some inner product, plays an
important role in mathematics. In the literature, the most widely used orthogonal polynomials are the
classical orthogonal polynomials, for example, Fibonacci polynomials, Chebyshev polynomials of first and
second kinds.

Further in [9], the generating functions of the incomplete Fibonacci and Lucas numbers are determined.
In [12], Djordjević gave the incomplete generalized Fibonacci and Lucas numbers. In [13], Djordjević
and Srivastava defined incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers. In [10], the
authors gave the incomplete Fibonacci and Lucas numbers. For more information about the applications
of generating functions, see [20].

On the other hand, many kinds of generalizations of Fibonacci numbers have been presented in the
literature. In particular, one of the well-known generalizations of these numbers is the k-Fibonacci numbers
given as{

Fk,0 = 1,Fk,1 = k
Fk,n+1 = kFk,n + Fk,n−1, (n ≥ 1; k ∈ R) .

The characteristic equation for k-Fibonacci numbers is x2
−kx−1 = 0 with roots x1 = k+

√

k2+4
2 , and x2 = k−

√

k2+4
2 ,

and k-Fibonacci numbers satisfy the following identity:

Fk,n =
1

√

k2 + 4


k +

√

k2 + 4
2

n+1

−

k −
√

k2 + 4
2

n+1 .
For any positive real number k, the k-Pell sequence (Pk,n)n∈N is defined by{

Pk,0 = 0,Pk,1 = 1
Pk,n+1 = 2Pk,n + kPk,n−1, n ≥ 1 .

The Binet formulas [27] for k-Pell sequence and k-Pell-Lucas sequence are given by

Pk,n =
rn

1 − rn
2

r1 − r2
,

where r1 = 1 +
√

1 + k and r2 = 1 −
√

1 + k are the roots of characteristic equation of the sequence (Pk,n)n∈N.
LetP be the linear space of polynomials in one variable with complex coefficients. LetP′ be the algebraic

linear dual of P. We write 〈u, p〉 := u(p) (u ∈ P′, p ∈ P). A linear functional u ∈ P′ is said to be regular
[31, 34, 35] if it is quasi-definite, i.e., det〈u, xi+ j

〉i, j=1,...,n , 0 for n ≥ 0. This is equivalent to the existence of a
unique sequence of monic polynomials {pn}n≥0 of degree n such that 〈u, pnpm〉 = rnδn,m, n, m ≥ 0, with rn , 0
(n ≥ 0). Then the sequence {pn}n≥0 is said to be the sequence of monic orthogonal polynomials with respect
to u.
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Proposition 1.1. (Favard’s Theorem [31]). Let {Pn}n≥0 be a monic polynomial sequence. Then {Pn}n≥0 is orthogonal
if and only if there exist two sequences of complex number {βn}n≥0 and {γn}n≥0, such that γn , 0, n ≥ 1 and satisfies
the three-term recurrence relation{

P0(x) = 1, P1(x) = x − β0,
Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x), n ≥ 0.

The orthogonal polynomial sequence {Pn}n≥0 such as Hermite, Laguerre, Bessel or Jacobi polynomials is
called classical, if {P[1]

n }n≥0 is also orthogonal, [31, 36, 37]. A second characterization of these polynomials is
that they satisfy the solution of the second-order differential equation (Bochner [30])

φ(x)P′′n+1(x) − ψ(x)P′n+1(x) = µnPn+1(x), n ≥ 0,

where φ,ψ are polynomials, φ is a monic polynomial, degφ = t ≤ 2, degψ = 1 and µn = (n + 1)
(

1
2φ
′′(0)n −

ψ′(0)
)
, 0, n ≥ 0.

Next, we recall some properties of the classical orthogonal Chebyshev polynomials that we will need
in the sequel. The Chebyshev polynomials Tn(x) and Un(x) of the first and second kinds are respectively
defined by the following formulas:

Tn(cosθ) = cos(nθ),

Un(cosθ) =
sin[(n + 1)θ]

sinθ
,

where θ ∈ [0, π].
Let (α)n be a Pochhammer symbol in the ascending factorial of α defined by

(α)n =

n−1∏
k=0

(α + k) .

Definition 1.2. [33]The generalized hypergeometric functions pFq(.) are defined by

pFq[α1, ..., αp;β1, ..., βq;x] =

+∞∑
n=0

(α1)n...(αp)n

(β1)n...(βq)n

xn

n!
(1.1)

= pFq[α1, ..., αp; β1, ..., βq; x].

where α1, ..., αp, β1, ..., βq, x ∈ C , β1, ..., βq are neither zero nor negative integers.

In the special case when p = 2 and q = 1 in (1.1), it yields

2F1(a, b; c; x) =

+∞∑
n=0

(a)n(b)n

(c)n

xn

n!
,

which is well-known as Gauss hypergeometric function.
In this part, we give Fibonacci differential equation and the hypergeometric form of the Fibonacci

polynomials, Chebyshev polynomials of the first and second kinds.

Theorem 1.3. [11] The Fibonacci polynomials Fn(x) satisfy the diffrential equation(
x2 + 4

)
y
′′

+ 3xy
′

− (n2
− 1)y = 0.

Theorem 1.4. [11] The Fibonacci polynomials Fn(x) can be written by the hypergeometric function as follows:

Fn(x) = 2F1

(
1 − n

2
,

1 + n
2

;
3
2

; 1 +
x2

4

)
.



S. Boughaba et al. / Filomat 35:3 (2021), 1001–1013 1004

Proposition 1.5. [32]The hypergeometric form of the Chebyshev polynomials of the first kind, can be written as
follows:

Tn(x) = 2F1

(
−n,n;

1
2

;
1 − x

2

)
.

Proposition 1.6. [32]The hypergeometric form of the Chebyshev polynomials of the second kind, can be written as
follows:

Un(x) = (n + 1) 2F1

(
−n,n + 2;

3
2

;
1 − x

2

)
.

In this paper, we make use of symmetrizing operator, denoted by δh+1
a1a2

, to formulate, extend and prove
new results including the generating functions for generalized of the product of k-Fibonacci and k-Pell
numbers and Chebyshev polynomials of the first and second kinds and Fibonacci polynomials.

In Section 2, we introduce a symmetric function and give some properties of this symmetric function.
We also give some more useful definitions which are used in the subsequent sections. In Section 3, we prove
our main result which relates the symmetric function defined in the previous section with the symmetrizing
operator. This main theorem unifies several previously known results about the generating functions. It is
then used to find the product of k-Fibonacci numbers identities and the generating functions for the product
of k-Fibonacci numbers and k-Pell numbers, in Section 4.

2. Definitions, Notations and Preliminaries

In this section, we introduce a symmetric function and give some properties of this symmetric function.
We also give some more useful definitions from the literature which are used in the subsequent sections.

We shall handle functions on different sets of indeterminates (called alphabets, though we shall mostly
use commutative indeterminates for the moment). A symmetric function of an alphabet A is a function of
the letters which is invariant under permutation of the letters of A. Taking an extra indeterminate z, one
has two fundamental series [2]:

λz(A) = Πa∈A(1 + az), σz(A) =
1

Πa∈A(1 − az)
,

the expansion of which gives the elementary symmetric functions Λn(A) and the complete functions Sn(A)
as follows:

λz(A) =

+∞∑
n=0

Λn(A)zn, σz(A) =

+∞∑
n=0

Sn(A)zn.

Let us now start at the following definition.

Definition 2.1. [1]Let A and B be any two alphabets, then we give Sn(A − B) by the following form:

Πb∈B(1 − bz)
Πa∈A(1 − az)

=

+∞∑
n=0

Sn(A − B)zn = σz(A − B), (2.1)

with the condition Sn(A − B) = 0 for n < 0.

Remark 2.2. Taking A = 0 in (2.1) gives

Πb∈B(1 − bz) =

+∞∑
n=0

Sn(−B)zn = λz(−B). (2.2)
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Further, in the case A = 0 or B = 0, we have

+∞∑
n=0

Sn(A − B)zn = σz(A) × λz(−B). (2.3)

Thus,

Sn(A − B) =

n∑
k=0

Sn−k(A)Sk(−B) (see [1]). (2.4)

Definition 2.3. Let 1 be any function on Rn, then we consider the divided difference operator as the following form

∂xixi+1 (1) =
1(x1, · · · , xi, xi+1, · · · xn) − 1(x1, · · · xi−1, xi+1,xi, xi+2 · · · xn)

xi − xi+1
, (see [22]).

Definition 2.4. [8] Given an alphabet A = {a1, a2} , the symmetrizing operator δh+1
a1a2

is defined by

δh+1
a1a2

f (a1) =
ah+1

1 f (a1) − ah+1
2 f (a2)

a1 − a2
, for all h ∈N.

3. Main Results

In this section, we prove the main theorem of the paper which combines all the previously known results
in a unified way such that they can be treated as special cases.

Theorem 3.1. Let A and E be two alphabets, respectively, {a1, a2} and {e1, e2}, then we have for

+∞∑
n=0

Sn+h (A) Sn (E) zn =
Sh(A) − a1a2(e1 + e2)Sh−1(A)z + (a1a2)2 e1e2Sh−2(A)z2(

+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

) (h (> 1) ∈N) . (3.1)

Proof. By applying the operator δh+1
a1a2

to the series f (a1z) =
+∞∑
n=0

Sn (E) an
1zn, we have

δh+1
a1a2

f (a1z) =

ah+1
1

+∞∑
n=0

Sn (E) an
1zn
− ah+1

2

+∞∑
n=0

Sn (E) an
2zn

(a1 − a2)

=

+∞∑
n=0

an+h+1
1 − an+h+1

2

a1 − a2

 Sn (E) zn

=

+∞∑
n=0

Sn+h (A) Sn (E) zn.

On the other hand, we see that
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δh+1
a1a2

 1
+∞∑
n=0

Sn (−E) an
1zn

 =

ah+1
1

+∞∑
n=0

Sn(−E)an
1 zn
−

ah+1
2

+∞∑
n=0

Sn(−E)an
2 zn

a1 − a2

=

ah+1
1

+∞∑
n=0

Sn (−E) an
2zn
− ah+1

2

+∞∑
n=0

Sn (−E) an
1zn

(a1 − a2)
(

+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

)

=

+∞∑
n=0

Sn (−E) an
1an

2
(ah−n+1

1 −ah−n+1
2 )

a1−a2
zn(

+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

)

=

+∞∑
n=0

Sn (−E) an
1an

2Sh−n (A) zn(
+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

)

=

h∑
n=0

Sn (−E) an
1an

2Sh−n (A) zn +
+∞∑

n=h+1
Sn (−E) an

1an
2Sh−n (A) zn(

+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

)

=

h∑
n=0

Sn (−E) an
1an

2Sh−n (A) zn(
+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

)
=

Sh(A) − a1a2(e1 + e2)Sh−1(A)z + (a1a2)2 e1e2Sh−2(A)z2(
+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

) .

Therefore

+∞∑
n=0

Sn+h (A) Sn (E) zn =
Sh(A) − a1a2(e1 + e2)Sh−1(A)z + (a1a2)2 e1e2Sh−2(A)z2(

+∞∑
n=0

Sn (−E) an
1zn

) (
+∞∑
n=0

Sn (−E) an
2zn

) .

Thus, this completes the proof.

4. Generating functions of some well-known numbers and polynomials

In this part, we now derive the new generating functions of the products of some well-known numbers
and polynomials.

For the case A = {a1,−a2} and E = {e1,−e2}with replacing a2 by (−a2), e2 by (−e2) in (3.1), we have
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+∞∑
n=0

Sn+h(a1 + [−a2])Sn(e1 + [−e2])zn

=
Sh(a1 + [−a2]) + a1a2(e1 − e2)Sh−1(a1 + [−a2])z − a2

1a2
2e1e2Sh−2(a1 + [−a2])z2

(1 − a1e1z) (1 + a2e1z) (1 + a1e2z) (1 − a2e2z)
. (4.1)

The Eq. (4.1) consists of five related parts. Firstly, we consider the following conditions{
a1 − a2 = k
a1a2 = 1 and

{
e1 − e2 = k
e1e2 = 1 ,

in (4.1). Thus it becomes

+∞∑
n=0

Sn+h(a1 + [−a2])Sn(e1 + [−e2])zn =
Sh(a1 + [−a2]) + kSh−1(a1 + [−a2])z − Sh−2(a1 + [−a2])z2

1 − k2z − 2(k2 + 1)z2 − k2z3 + z4

=

+∞∑
n=0

Fk,n+hFk,nzn, (4.2)

representing a new generating function for generalized of the product of k-Fibonacci numbers, with
Fk,n+hFk,n = Sn+h(a1 + [−a2])Sn(e1 + [−e2]), [29].

• By putting h = 1 and h = 2 in the relationship (4.2), we get the following results.

Corollary 4.1. [2] For n, k ∈N, the generating function of the product of k-Fibonacci numbers is given by

+∞∑
n=0

Fk,n+1Fk,nzn =
k + kz

1 − k2z − 2(k2 + 1)z2 − k2z3 + z4 . (4.3)

Corollary 4.2. [2] For n, k ∈N, the generating function of the product of k-Fibonacci numbers is given by

+∞∑
n=0

Fk,n+2Fk,nzn =
k2 + 1 + k2z − z2

1 − k2z − 2(k2 + 1)z2 − k2z3 + z4 . (4.4)

• Based on the relationships (4.3) and (4.4) and with k = 1, we obtain the following table [3, 7]:

Table 1. Generating functions of the products of Fibonacci numbers

The products The generating functions
+∞∑
n=0

F2
nzn 1−z2

1−z−4z2−z3+z4

+∞∑
n=0

Fn+1Fnzn 1+z
1−z−4z2−z3+z4

+∞∑
n=0

Fn+2Fnzn 2+z−z2

1−z−4z2−z3+z4

Secondly, we consider the following conditions{
a1 − a2 = 2
a1a2 = k and

{
e1 − e2 = 2
e1e2 = k ,

in (4.1). It yields
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+∞∑
n=0

Sn+h−1(a1 + [−a2])Sn−1(e1 + [−e2])zn =
Sh(a1 + [−a2])z + 2kSh−1(a1 + [−a2])z2

− k3Sh−2(a1 + [−a2])z3

1 − 4z − (2k2 + 8k)z2 − 4k2z3 + k4z4

=

+∞∑
n=0

Pk,n+hPk,nzn, (4.5)

representing a new generating function for generalized of the product of k-Pell numbers with Pk,n+hPk,n =
Sn+h−1(a1 + [−a2])Sn−1(e1 + [−e2]).

• By putting h = 1 and h = 2 in the relationship (4.5)we get the following results.

Corollary 4.3. [2] For n, k ∈N, the generating function of the product of k-Pell numbers is given by

+∞∑
n=0

Pk,n+1Pk,nzn =
2z + 2kz2

1 − 4z − (2k2 + 8k)z2 − 4k2z3 + k4z4 . (4.6)

Corollary 4.4. [2] For n, k ∈N, the generating function of the product of k-Pell numbers is given by

+∞∑
n=0

Pk,n+2Pk,nzn =
(4 + k)z + 4kz2

− k3z3

1 − 4z − (2k2 + 8k)z2 − 4k2z3 + k4z4 . (4.7)

• Based on the relationships (4.6) and (4.7) and with k = 1, we obtain the following table [3, 5]:

Table 2.Generating functions of the products of Pell numbers

The products The generating functions
+∞∑
n=0

P2
nzn z−z3

1−4z−10z2−4z3+z4

+∞∑
n=0

Pn+1Pnzn 2z+2z2

1−4z−10z2−4z3+z4

+∞∑
n=0

Pn+2Pnzn 5z+4z2
−z3

1−4z−10z2−4z3+z4

Thirdly, we consider the following conditions{
a1 − a2 = 1
a1a2 = 2 and

{
e1 − e2 = 1
e1e2 = 2 ,

in (4.1). We have

+∞∑
n=0

Sn+h−1(a1 + [−a2])Sn−1(e1 + [−e2])zn =
Sh(a1 + [−a2])z + 2Sh−1(a1 + [−a2])z2

− 8Sh−2(a1 + [−a2])z3

1 − z − 12z2 − 4z3 + 16z4

=

+∞∑
n=0

Jn+h Jnzn, (4.8)

representing a new generating function for generalized of the product of Jacobsthal numbers Jn with
Jn+h Jn = Sn+h−1(a1 + [−a2])Sn−1(e1 + [−e2])).
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• By putting h = 1 and h = 2 in the relationship (4.8), we get the following new results.

Lemma 4.5. For n, k ∈N, the new generating function of the product of Jacobsthal numbers is given by

+∞∑
n=0

Jn+1 Jnzn =
z + 2z2

1 − z − 12z2 − 4z3 + 16z4 .

Lemma 4.6. For n, k ∈N, the new generating function of the product of Jacobsthal numbers is given by

+∞∑
n=0

Jn+2 Jnzn =
3z + 2z2

− 8z3

1 − z − 12z2 − 4z3 + 16z4 .

Fourthly, we consider the following conditions{
a1 − a2 = k
a1a2 = 1 and

{
e1 − e2 = x
e1e2 = 1 ,

in (4.1). It gives

+∞∑
n=0

Sn+h(a1 + [−a2])Sn(e1 + [−e2])zn =
Sh(a1 + [−a2]) + xSh−1(a1 + [−a2])z − Sh−2(a1 + [−a2])z3

1 − kxz − (k2 + x2 + 2)z2 − kxz3 + z4

+∞∑
n=0

Fk,n+h 2F1(
1 − n

2
,

1 + n
2

;
3
2

; 1 +
x2

4
)zn, (4.9)

representing a new generating function for generalized of the product of k-Fibonacci numbers with Fibonacci
polynomials.

• By putting h = 1 and h = 2 in the relationship (4.9), we get the following results.

Corollary 4.7. [2] For n, k ∈ N, the generating function of the product of k-Fibonacci numbers with Fibonacci
polynomials is given by

+∞∑
n=0

Fk,n+1 2F1(
1 − n

2
,

1 + n
2

;
3
2

; 1 +
x2

4
)zn =

k + xz
1 − kxz − (k2 + x2 + 2) z2 − kxz3 + z4 . (4.10)

Corollary 4.8. [2] For n, k ∈ N, the generating function of the product of k-Fibonacci numbers with Fibonacci
polynomials is given by

+∞∑
n=0

Fk,n+2 2F1(
1 − n

2
,

1 + n
2

;
3
2

; 1 +
x2

4
)zn =

k2 + 1 + kxz − z2

1 − kxz − (k2 + x2 + 2) z2 − kxz3 + z4 . (4.11)

• Based on the relationship (4.10) and (4.11) and with k = 1, we obtain the following table :

Table 3. Generating functions of the products of Fibonacci numbers with Fibonacci polynomials

The products The generating functions
+∞∑
n=0

Fn 2F1( 1−n
2 ,

1+n
2 ; 3

2 ; 1 + x2

4 )zn 1−z2

1−xz−(x2+3)z2−xz3+z4

+∞∑
n=0

Fn+1 2F1( 1−n
2 ,

1+n
2 ; 3

2 ; 1 + x2

4 )zn 1+xz
1−xz−(x2+3)z2−xz3+z4

+∞∑
n=0

Fn+2 2F1( 1−n
2 ,

1+n
2 ; 3

2 ; 1 + x2

4 )zn 2+xz−z2

1−xz−(x2+3)z2−xz3+z4



S. Boughaba et al. / Filomat 35:3 (2021), 1001–1013 1010

Lastly, we consider the following conditions{
a1 − a2 = 2
a1a2 = k and

{
e1 − e2 = x
e1e2 = 1 ,

in (4.1). We see that

+∞∑
n=0

Sn+h−1(a1 + [−a2])Sn−1(e1 + [−e2])zn =
Sh(a1 + [−a2])z + kxSh−1(a1 + [−a2])z2

− k2Sh−2(a1 + [−a2])z3

1 − 2xz − (kx2 + 2k + 4)z2 − 2kxz3 + k2z4

=

+∞∑
n=0

Pk,n+h 2F1(
2 − n

2
,

n
2

;
3
2

; 1 +
x2

4
)zn, (4.12)

representing a new generating function for generalized of the product of k-Pell numbers with Fibonacci
polynomials, and also we have

Pk,n+h 2F1(
2 − n

2
,

n
2

;
3
2

; 1 +
x2

4
) = Sn+h−1(a1 + [−a2])Sn−1(e1 + [−e2]).

• By putting h = 1 and h = 2 in the relationship (4.12), we get the following results.

Corollary 4.9. For n, k ∈N, the new generating function of the product of k-Pell numbers with Fibonacci polynomials
is given by

+∞∑
n=0

Pk,n+1 2F1(
2 − n

2
,

n
2

;
3
2

; 1 +
x2

4
)zn =

2z + kxz2

1 − 2xz − (kx2 + 2k + 4)z2 − 2kxz3 + k2z4 . (4.13)

Corollary 4.10. [2] For n, k ∈N, the generating function of the product of k-Pell numbers with Fibonacci polynomials
is given by

+∞∑
n=0

Pk,n+2 2F1(
2 − n

2
,

n
2

;
3
2

; 1 +
x2

4
)zn =

(4 + k)z + 2kxz2
− k2z3

1 − 2xz − (kx2 + 2k + 4)z2 − 2kxz3 + k2z4 . (4.14)

• Based on the relationship (4.13) and (4.14) and with k = 1, we obtain the following table [2]:

Table 4.Generating functions of the products of Pell numbers with Fibonacci polynomials

The Products The Generating Functions
+∞∑
n=0

Pn 2F1( 2−n
2 ,

n
2 ; 3

2 ; 1 + x2

4 )zn z−z3

1−2xz−(x2+6)z2−2xz3+z4

+∞∑
n=0

Pn+1 2F1( 2−n
2 ,

n
2 ; 3

2 ; 1 + x2

4 )zn 2z+xz2

1−2xz−(x2+6)z2−2xz3+z4

+∞∑
n=0

Pn+2 2F1( 2−n
2 ,

n
2 ; 3

2 ; 1 + x2

4 )zn 5z+2xz2
−z3

1−2xz−(x2+6)z2−2xz3+z4

• For the case A = {a1,−a2} and E = {2e1,−2e2} with replacing a2 by (−a2), e1 by 2e1 and e2 by (−2e2) in
(4.1), we have

+∞∑
n=0

Sn+h(a1 + [−a2])Sn(2e1 + [−2e2])zn

=
Sh(a1 + [−a2]) + 2a1a2(e1 − e2)Sh−1(a1 + [−a2])z − 4a2

1a2
2e1e2Sh−2(a1 + [−a2])z2

(1 − 2a1e1z) (1 + 2a1e2z) (1 + 2a2e1z) (1 − 2a2e2z)
. (4.15)
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This case consists of two related parts. Firstly, the substitutions{
a1 − a2 = k
a1a2 = 1 and

{
e1 − e2 = x
4e1e2 = −1 ,

in (4.15) gives

+∞∑
n=0

Sn+h(a1 + [−a2])Sn(2e1 + [−2e2])zn =
Sh(a1 + [−a2]) + 2xSh−1(a1 + [−a2])z + Sh−2(a1 + [−a2])z2

1 − 2kxz − (4x2 − k2 − 2)z2 + 2kxz3 + z4

=

+∞∑
n=0

Fk,n+h (n + 1)2 F1(−n,n + 2;
3
2

;
1 − x

2
)zn, (4.16)

representing a new generating function for generalized of the product of k-Fibonacci numbers with Cheby-
shev polynomials of second kind.

• By putting h = 1 and h = 2 in the relationship (4.16), we get the following results.

Corollary 4.11. [2] For n, k ∈ N, the generating function of the product of k-Fibonacci numbers with Chebyshev
polynomials of second kind is given by

+∞∑
n=0

Fk,n+1 (n + 1) 2F1(−n,n + 2;
3
2

;
1 − x

2
)zn =

k + 2xz
1 − 2kxz − (4x2 − k2 − 2)z2 + 2kxz3 + z4 .

Corollary 4.12. [2] For n, k ∈ N, the generating function of the product of k-Fibonacci numbers with Chebyshev
polynomials of second kind is given by

+∞∑
n=0

Fk,n+2 (n + 1) 2F1(−n,n + 2;
3
2

;
1 − x

2
)zn =

k2 + 1 + 2kxz + z2

1 − 2kxz − (4x2 − k2 − 2)z2 + 2kxz3 + z4 .

Before finalizing this paper, we give the following Theorem without proof because its proof can be made
similar to that the previous Theorem in this paper.

Theorem 4.13. For n ∈ N, the new generating function for generalized of the product of k-Fibonacci numbers and
Chebyshev polynomials of first kind is given by

+∞∑
n=0

Fk,n+h (a1 + [−a2]) 2F1(−n,n;
1
2

;
1 − x

2
)zn =

Sh(a1 + [−a2]) + x (Sh−1(a1 + [−a2]) − Sh(a1 + [−a2])) z
+(Sh−2(a1 + [−a2]) − 2x2Sh(a1 + [−a2])z2

− xSh−1(a1 + [−a2])z3

1 − 2kxz − (4x2 − k2 − 2)z2 + 2kxz3 + z4 .

Remark 4.14. Some special cases can be investigated as in previous parts of this paper. So it is left to the readers.

5. Conclusion

In this paper, we have derived new theorems in order to determine new generalization of generating
functions of k-Fibonacci and k-Pell numbers and Fibonacci polynomails and Chebyshev polynomials of
the first and second kinds. The derived theorems and corollaries are based on symmetric functions and
products of these numbers and polynomials.
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