
Filomat 35:3 (2021), 731–735
https://doi.org/10.2298/FIL2103731K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Helly’s, Radon’s, and Caratheodory’s theorems are the basic theorems of convex analysis and
have an important place. These theorems have been studied by different authors for different classes of
convexity.

Caratheodory’s theorem for B−1
−convex sets has been proved before by Adilov and Yeşilce. In this

article, Helly’s and Radon’s theorems are discussed and examined for these sets.

1. Introduction

Convex analysis, which is one of the important fields of mathematics, has gained momentum and become
open to innovations especially as a result of the studies conducted in recent years. Examples of application
areas of convex analysis are optimization theory, inequality theory, mathematical economics and operations
research. Convexity draws upon geometry, analysis, linear algebra, and topology and also plays important
role in various areas of mathematics such as number theory, classical extremum problems, combinatorial
geometry, game theory, polytopes, and linear programing. In this sense, convex analysis is of interest
as a field of study. Convex geometry also examines the geometric properties of convex sets and convex
functions. Many authors have contributed to the foundation and development of the field by carrying out
studies. The leading ones of these researchers are Hermann Brunn, Hermann Minkowski, Werner Fenchel,
Constantin Caratheodory, and Eduard Helly. There are many theorems which have important result in
convex geometry, such as, Caratheodory’s, Helly’s and Radon’s theorems.

Caratheodory’s theorem is the fundamental dimensionality result in convexity theory, and it is the
source of many other results in which dimensionality is prominent [4]. Helly’s theorem was discovered by
the Austrian mathematician Eduard Helly. After its discovery, it became the subject of research articles by
hundreds of authors [4, 8, 9, 13]. It gives sufficient conditions for a family of convex sets to have a non-empty
intersection. Radon’s theorem constitutes an important step for a standard proof of Helly’s theorem about
the intersections of convex sets; this was the motivation of Radon’s original discovery of Radon’s theorem.
After the discovery of Radon’s theorem, studies on this theorem were carried out [7, 12, 17]. Three basic
theorems, and particularly that of Helly, have been studied, applied, and generalized by many authors.
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Especially in recent years there has been a steady flow of publications concerning Helly’s theorem and its
relatives [1, 4, 5, 7–9, 11–13, 17]. The most pleasant aspect of Helly’s theorem is the ease of incorporation
into a wide range of impressive applications, which allows new discoveries to be made and forms the basis
of the first short proof of some classical results.

Recently, the concept of abstract convexity, which is a generalization of the classical convexity, has
attracted a considerable attention. Convexity is important phenomena in optimization theory. The basic
concepts of convexity such as convex sets, convex functions, subdifferantials, conjugate functions have
specially played major role on the solution methods of optimization problems since these problems involve
convex functions and convex sets. Overtime, after a certain development stage in the optimization theory,
there has existed the need of solution methods for optimization problems involving ”nonconvex” sets
and ”nonconvex” functions such as the minimizing an arbitrary function over an arbitrary set without
assuming any one of the structures topologically or algebraically. Therefore, the extension of classical
convexity concepts into the ”nonconvex” sets and ”nonconvex” functions in classical sense yielded the
concepts of abstract convexity. Consequently, many authors have studied the suitable extension methods
of convex analysis and defined new types of convexities (See [14, 15, 18] and references therein). There are
two main approaches in obtaining abstract convexity; topological abstract convexity and functional abstract
convexity. Thus, many abstract convexity classes have emerged and many studies have been done in these
classes [3, 14, 15, 18]. B−convexity and B−1

−convexity are two examples for abstract convexity classes.
The concept of B−convexity first appeared in an article published by W.Briech and C.D.Horvath in

2004. Caratheodory’s, Helly’s and Radon’s theorems for B−convex sets are examined in this article [5].
B−convexity is obtained from the usual linear convexity through the formal substitution maximum for
addition.

The concept of B−1
−convexity first appeared in an article published by Adilov and Yeşilce in 2012 [2, 3].

B−convexity and B−1
−convexity are compared in [10]. Then, B−1

−convex sets and their properties are
examined in [3, 10]. Then, separation of B−1

−convex sets by B−1
−measurable maps is studied in [16].

Also, the applications of B−1
−convexity on mathematical economy are introduced in [6]. Then, one of the

important theorems, Caratheodory’s theorem is proved for B−1
−convex sets [1]. In this article, Helly’s and

Radon’s theorems are discussed and examined for B−1
−convex sets.

The outline of this article is as follows: In section 2, we recall the definition of B−1
−convex sets and also

some its important properties. In section 3, Helly’s theorem and Radon’s theorems for B−1
−convex sets are

proved. Also, Helly’s theorem is proved for an infinite family of compact B−1
−convex sets in Rn

++.

2. B−1−convex sets

Before we define the B−1-convex sets, let us give some preliminary information that we need to know.
For r ∈ Z−, the map x 7−→ ϕr(x) = x2r+1 is a homeomorphism from K = R\ {0} to itself; x = (x1, x2, ..., xn)→

Φr(x) =
(
ϕ1(x1), ϕ2(x2), ..., ϕn(xn)

)
is homeomorphism from Kn to itself.

For a finite nonempty set A =
{
x(1), x(2), ..., x(m)

}
⊂ Kn the Φr-convex hull (shortly r−convex hull) of A,

which we denote Cor(A) is given by

Cor(A) =

Φ−1
r

 m∑
i=1

tiΦr(x(i))

 : ti ≥ 0,
m∑

i=1

ti = 1

 .
We denote by

m∧
i=1

x(i) the greatest lower bound with respect to the coordinate-wise order relation of

x(1), x(2), ..., x(m)
∈ Rn, that is,

m∧
i=1

x(i) =
(
min

{
x(1)

1 , x
(2)
1 , ..., x

(m)
1

}
, ...,min

{
x(1)

n , x
(2)
n , ..., x

(m)
n

})
where x(i)

j denotes jth coordinate of the point x(i).

Thus, we can define B−1-polytopes as follows:
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Definition 2.1. [2] The Kuratowski-Painleve upper limit of the sequence of the sets {Cor(A)}r∈Z− , denoted by Co−∞(A)
where A is a finite subset of Kn is called B−1-polytope of A.

Next, the definition of B−1-convex sets with the help of B−1-polytope of A is as follow:

Definition 2.2. [2] A subset S of Kn is called a B−1-convex if for all finite subsets A ⊂ S the B−1-polytope Co−∞(A)
is contained in S.

Definition 2.1 of B−1
−polytope can be expressed in the following form in

Rn
++ = {(x1, x2, ..., xn) ∈ Rn : xi > 0, i = 1, 2, ...,n} .

Theorem 2.3. [2] For all nonempty finite subsets A =
{
x(1), x(2), ..., x(m)

}
⊂ Rn

++ we have

Co−∞(A) = lim
r→−∞

Cor(A) =

 m∧
i=1

tix(i) : ti ≥ 1, min
1≤i≤m

ti = 1

 .
By Theorem 2.3, we can reformulate the above definition for subsets of Rn

++ :
A subset S of Rn

++ is B−1-convex set if and only if for all x(1), x(2), .., x(m)
∈ S and all t1, t2, ..., tm ∈ [1,∞)

such that min {t1, t2, ..., tm} = 1 one has ∧m
i=1tix(i) ∈ S.

The following theorem presents more simple definition of B−1-convex sets.

Theorem 2.4. [2] A subset S of Rn
++ is B−1-convex set if and only if for all x(1), x(2)

∈ S

Co−∞
({

x(1), x(2)
})
⊂ S

that is, subset S of Rn
++ is B−1-convex set if and only if for all x(1), x(2)

∈ S and all t ∈ [1,∞) one has tx(1)
∧ x(2)

∈ S.

Some of procedures in which B−1-convexity is preserved are given in [3]:

Theorem 2.5. [2] The following properties hold:
(i) The empty set, Kn, as well as the singletons are B−1-convex;
(ii) If {Sλ : λ ∈ ∧} is an arbitrary family of B−1-convex sets, then ∩λSλ is B−1

−convex;
(iii) If {Sλ : λ ∈ ∧} is a family of B−1-convex such that ∀λ1, λ2 ∈ ∧, ∃λ3 ∈ ∧ such that Sλ1 ∪ Sλ2 ⊂ Sλ3 , then ∪λSλ
is B−1-convex.

Definition 2.6. [2] Given a set S ⊂ Kn, the intersection of all the B−1-convex subsets of Kn containing S is called
B−1-convex hull of S and we denote it by B−1[S].

Theorem 2.7. [2] The following properties hold:
(i) B−1[∅] = ∅, B−1[Kn] = Kn for all x ∈ Kn, B−1[{x}] = {x};
(ii) For all S ⊂ Kn, S ⊂ B−1[S] and B−1[B−1[S]] = B−1[S];
(iii) For all S1,S2 ⊂ Kn, if S1 ⊂ S2 then B−1[S1] ⊂ B−1[S2];
(iv) For all S ⊂ Kn, B−1[S] = ∪

{
B−1[A] : A is a finite subset of S

}
;

(v) A subset S ⊂ Kn, is B−1
−convex if and only if for all finite subsets A of S, B−1[A] ⊂ S.

3. Radon’s Theorem and Helly’s Theorem for B−1-Convex Sets

Theorem 3.1. [Radon’s Theorem] If A ⊂ Rn
++ is a finite set of cardinality at least n + 2, then there is a partition

A = A1 ∪ A2, in nonempty subsets, such that

Co−∞(A1) ∩ Co−∞(A2) , ∅.
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Proof. Let us apply Radon’s theorem which is provided for convex sets to operator;

A 7−→ Cor(A) (r ∈ Z−).

A can be partitioned into two subsets Ar,1,Ar,2 such that

Cor(Ar,1) ∩ Cor(Ar,2) , ∅

for all r ∈ Z−. Since A is a finite set, there exist a partition (A1,A2) and a sequence {rk}k∈N such that, the
following equality, for k ∈ N(

Ark,1,Ark,,2

)
= (A1,A2)

is correct. From there, for k ∈ N, a sequence of points
{
ark

}
k∈N is obtained such that

ark ∈ Cork (Ark ,1) ∩ Cork (Ark,2) = Cork (A1) ∩ Cork (A2).

Let us take a prism at Rn
++, such that A ⊂ Πn

i=1

[
xi, yi

]
, xi, yi ∈ Rn

++, i = 1, 2, ...,n. In this case, for k ∈ N

ark ∈ Cork (A1) ∩ Cork (A2) ⊂ Cork (A) ⊂ Πn
i=1

[
xi, yi

]
is true. Since

{
ark

}
k∈N is a bounded sequence, it has convergent subsequence (Bolzano-Weierstrass Theorem).

Let lim ark = a∗ without loss of generality. According to the limit defined by Painleve-Kuratowski,

x∗ ∈ Co−∞(A1) ∩ Co−∞(A2)

is true

Theorem 3.2. [Helly’s Theorem] LetF be a finite family ofB−1
−convex sets inRn

++ containing at least n+1 members.
Consider that every n + 1 members of F have a non-empty intersection. Then F has a non-empty intersection.

Proof. Let us apply the induction method. The theorem is valid if the family of set F consists of n + 1 sets.
Suppose that the theorem is provided when the number of sets of F family is m ≥ n + 1, and let us show

that the theorem is confirmed when the number of sets of the F family is m + 1.
Let Fi be B−1

−convex sets on Rn
++, for i = 0, 1, ...,m, such that

F = {F0,F1, ...,Fm}

and intersection of each n + 1 sets is nonempty.
Considering that the theorem is valid for the family consisting of m sets, then there are a0, a1, ..., am such

that

ai ∈ F0 ∩ F1 ∩ ...Fi−1 ∩ Fi+1 ∩ ... ∩ Fm

for all i = 0, 1, ...,m.
According to Theorem 3.1, A = {a0, a1, ..., am} has two partition A1 =

{
a j : j ∈ J

}
and A2 = {ak : k ∈ K} such

that

Co−∞ (A1) ∩ Co−∞ (A2) , ∅.

In this case, let

a ∈ Co−∞ (A1) ∩ Co−∞ (A2) . (1)

Since ∩ (Fk : k ∈ K) is B−1
−convex set and for all j ∈ J, a j ∈ ∩ (Fk : k ∈ K), the following relation holds true:

Co−∞ (A1) ⊂
⋂
k∈K

Fk. (2)
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Similarly, it can be shown that

Co−∞ (A2) ⊂
⋂
j∈J

F j. (3)

is also provided.
Thus, from (1), (2) and (3),

a ∈ Co−∞ (A1) ∩ Co−∞ (A2) ⊂

⋂
k∈K

Fk

 ∩
⋂

j∈J

F j

 = F0 ∩ F1 ∩ ...∩ Fm.

So,
m⋂

i=1
Fm , ∅

If compactness condition is also added on the sets, Helly’s theorem is satisfied for infinite family of sets.
The following lemma is used to prove this.

Lemma 3.3. [19] Let {Ci : i ∈ I} be family of compact sets in Rn whose intersection is empty. Then there exists a
finite subset I∗ ⊂ I such that the intersection of the family (Ci : i ∈ I) is empty.

Theorem 3.4. [Helly’s Theorem for infinite families] Let F be an infinite family of compactB−1
−convex sets inRn

++.
Suppose that every n + 1 members of F have a non-empty intersection. Then F has a non-empty intersection.

Proof. Let us assume the opposite. Let the intersection of the family of sets F be empty set, even if the
conditions of the theorem are verified. In this case, according to Lemma 3.3,F has a finite number of subsets
F∗ ⊂ Fwhose intersections are empty sets.

On the other hand, since F∗ provides Theorem 3.2, the intersection cannot be an empty set. It is a
contradiction
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