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Minimax Problems
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Abstract. In this paper, we consider the method for solving the finite minimax problems. By using the
exponential penalty function to smooth the finite minimax problems, a new three-term nonlinear conjugate
gradient method is proposed for solving the finite minimax problems, which generates sufficient descent
direction at each iteration. Under standard assumptions, the global convergence of the proposed new
three-term nonlinear conjugate gradient method with Armijo-type line search is established. Numerical
results are given to illustrate that the proposed method can efficiently solve several kinds of optimization
problems, including the finite minimax problem, the finite minimax problem with tensor structure, the
constrained optimization problem and the constrained optimization problem with tensor structure.
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1. Introduction

The finite minimax problem is one of the most important research topics in the field of optimization
research[1–7]. This kind of problem is also an important nonsmooth optimization problem, which is widely
used in engineering design, economic decision-making, game theory, nonlinear programming problems
and multi-objective programming problems (such as [8–10] and the references therein).

The general form of the finite minimax problem is

minx∈Rn F(x), F(x) = maxi=1,...,m fi(x), (1.1)

where fi(x) : Rn
→ R are continuous differentiable functions.

It is important to design an efficient algorithm to solve the finite minimax problem. As far as we
know, many well-established methods are used to solve the finite minimax problems [1–9, 11]. Such
as in [1], the researchers showed that they could formulate the conventional nonlinear programming
problem as an unconstrained minimax problem. In [2], the researcher proposed an effective method to
solve minimax problems referred to the aggregate method. A similar approach has been described in
[3] with constructing a penalty function. By constructing an interval extension of adjustable entropy

2010 Mathematics Subject Classification. Primary 90C47; Secondary 90C30, 15A69
Keywords. finite minimax problem; tensor structure; three-term nonlinear conjugate gradient method; global convergence;

polynomial complementarity problem
Received: 28 January 2020; Revised: 03 December 2020; Accepted: 28 February 2021
Communicated by Predrag Stanimirović
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function and some region deletion test rules, the researchers presented a new interval algorithm in [4].A
truncated aggregate smoothing Newton method was presented for solving minimax problems in [5].In [6],
the researcher concerned on the smoothing method to solve the minimax problems. The researchers gave
a smoothing FR conjugate gradient method for solving minimax problem in [7].

By the above literatures, we know that penalty function plays a very important role in solving the finite
minimax problems. The form of the exponential penalty function proposed in [11] is

1(x, t) = t ln
m∑

i=1

exp(
1i(x)

t
), (1.2)

where t is the penalty parameter, 1i(x) are continuous differential functions.
For the finite minimax problem (1.1), we can transform it into a smooth unconstrained optimization

problem, which can be showed as

min F̃(x, t). (1.3)

In (1.3), F̃(x, t) is a differentiable function defined as

F̃(x, t) = t ln
m∑

i=1

exp(
fi(x)

t
),

where t > 0 is a penalty parameter.
For three-term conjugate gradient methods [12–22] and the related methods [23–26] posse low memory

requirement and simple implementation, conjugate gradient methods are often used for solving uncon-
strained optimization problems. Recently, many researchers have presented kinds of three-term conjugate
gradient method for solving the unconstrained optimization problems.Hence, we consider using three-term
conjugate gradient method to solve the finite minimax problems. This is also one of our motivations of this
paper. On the other hand, tensor optimization problem is a new proposed optimization problem(one can
see [27–33] and the references therein). In particular, the finite minimax problems with the tensor structure
have not been considered. Therefore, we will study the finite minimax problems with the tensor structure
in this paper. And this is the other motivation of this paper. Now, we give the finite minimax problems
with the tensor structure.

Throughout this paper, we denote A as an m-th order n-dimensional tensor. A = (ai1,i2...im ), where
ai1,i2...im ∈ R for 1 ≤ i1, i2 . . . im ≤ n. We denote Tm,n as the set of all real m-th order n-dimensional square
tensors. For a tensorA ∈ Tm,n, x ∈ Rn,Axm−1 is a vector, whose i-th component is

(Axm−1)i =

n∑
i2,...,im=1

aii2...im xi2 · · · xim , i = 1, 2, . . . ,n.

For symmetric tensor A, we know that (Axm−1)
′

= (m − 1)Axm−2, where Axm−2 denotes an n × n matrix,
whose (i, j)-th component is defined as

(Axm−2)i j =

n∑
i3,...,im=1

ai ji3...im xi3 · · · xim , i, j = 1, 2, . . . ,n.

Denote

hi(x) = Aixm−1
− |x| − bi, i = 1, 2, . . . , l, (1.4)

whereAi is an m-th order n-dimensional tensor, bi is an n-th dimensional vector. The j-th of (1.4) is

hi
j(x) = (Aixm−1) j −

∣∣∣x j

∣∣∣ − bi
j, j = 1, 2, . . . ,n.
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It is obviously that
√

x2 + t −→ |x| as t −→ 0. hi(x) can be converted to

hi(x, t) = Aixm−1
−

√

x2 + t − bi, i = 1, 2, . . . , l.

For
max{hi

1(x, t), hi
2(x, t), . . . , hi

m(x, t)},

by (1.2), it can be defined as

h̃i(x, t) = t ln
n∑

j=1

exp


(Aixm−1) j −

√
x2

j + t − bi
j

t

 ,
where t > 0 is a penalty parameter.

For
max{h̃1(x, t), h̃2(x, t), . . . , h̃l(x, t)},

similar to (1.3), we can transform the finite minimax problem with tensor structure into a smooth uncon-
strained optimization problems (1.3), F̃(x, t) in (1.3) can be defined as

F̃(x, t) = t ln
l∑

i=1

exp
(

h̃i(x, t)
t

)
. (1.5)

The structure of the following paper is organized as follows. In Section 2, we propose the new three-term
conjugate gradient method with Armijo-type line search, and use it to solve the finite minimax problems
and the finite minimax problem with tensor structure.Under some wild assumptions, we prove the global
convergence of the proposed method.In Section 3,we report some numerical results for some well-known
finite minimax problems, the minimax problem with tensor structure, the constrained optimization problem
and the constrained optimization problem with tensor structure to show the effectiveness of the proposed
method. In Section 4, we complete this paper by drawing some conclusions.

2. New three-term conjugate gradient method

In this section, the new three-term conjugate gradient method with Armijo-type line search is proposed.
We also give the convergence analysis of the proposed method.

2.1. New three-term conjugate gradient method for smooth case

The unconstrained optimization problem

min
x∈Rn

f (x),

where f : Rn
→ R, and the gradient of f is available. Denote 1 is the gradient of f , 1k is the function value

of 1 at xk.
The iterative process of the nonlinear conjugate gradient method is given by xk+1 = xk +αkdk, k = 0, 1, . . . ,

where the step length αk can be obtained by line search, and the search direction is defined by

dk =

−1k, if k = 0,
−1k + βkdk−1, if k > 0.

There are many well-known conjugate gradient methods, such as [12–26, 34–42]. In [12], the iterative
formula of three-term conjugate gradient method is
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xk+1 = xk + αkdk,

where

dk =

−1k, if k = 0,
−β1

kok + β2
kpk + β3

kqk, if k > 0,

ok, pk and qk are directions and β1
k , β2

k and β3
k are parameters.

Based on the above methods,we give a new three-term conjugate gradient method with Armijo-type
line search.

The direction is generated by

dk =

−β1
kok + β2

kpk + β3
kqk, k > 0 &

∣∣∣1T
k dT

k

∣∣∣ ≥ ∆‖dk‖‖1k‖,

−1k, otherwise,
(2.1)

where ∆ ∈ (0, 1), the parameter βi
k is defined by

β1
k = 1 + γk

1>k dk−1

y>k−1dk−1
, β2

k = γkβ
DY
k + βPR

k , β3
k = −

1>k dk−1

‖1k−1‖
2 (2.2)

and

ok := 1k, pk := dk−1, qk := yk−1, (2.3)

where

βDY
k =

‖1k‖
2

dk−1yk−1
, βPRP

k =
1T

k yk−1

‖1k−1‖
2,

and yk−1 := 1k − 1k−1, {γk}k≥0 is a decreasing sequence satisfying limk→∞ γk = 0. The step length αk satisfies
the following conditions

αk = max
j
{σ j
τ
∣∣∣1>k dk

∣∣∣
‖dk‖

2 , j = 0, 1, 2, · · · }, (2.4)

f (xk + αkdk) − f (xk) ≤ −δα2
k‖dk‖

2, (2.5)

where δ > 0, σ ∈ (0, 1), τ > 0.
Now, we give the new three-term conjugate gradient method.

Algorithm 2.1
Step0. Choose constants δ > 0, σ ∈ (0, 1), τ > 0, ∆ ∈ (0, 1), ε > 0, an initial point x0 ∈ Rn, compute 10, let
d0 = −10.
Step1. If ‖d0‖ ≤ ε, stop; otherwise, go to Step 2;
Step2. Compute dk = β1

kok + β2
kpk + β3

kqk from (2.1), if
∣∣∣1T

k dk

∣∣∣ ≥ ∆‖dk‖‖1k‖, go to Step 3; otherwise, let dk = −1k,
go to Step 3;
Step3. Determine αk satisfying (2.4) and (2.5);
Step4. Get the next iterate xk+1 = xk + αkdk, and compute fk+1 and 1k+1;
Step5. If ‖dk‖ ≤ ε, stop; otherwise, go to Step 6;
Step6. Let k = k + 1, go to Step 2.

Next, we will establish the global convergence of Algorithm 2.1, which need the following standard
assumptions:
(A1) The level set L(x0) = {x ∈ Rn

| f (x) ≤ f (x0)} is bounded.
(A2) The gradient of objective function f is Lipschitz continuous on the open bounded convex set Ω of
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L(x0), i.e.,
‖1(x) − 1(y)‖ ≤ L1‖x − y‖, ∀x, y ∈ Ω,

where L1 is the Lipschitz constant.
From Assumption (A1) and (A2), it can be obtained that there exists a constant Γ > 0, subject to

‖1(x)‖ ≤ Γ. (2.6)

From Assumption(A2), we also have

‖yk‖ ≤ L1αk‖dk‖. (2.7)

Similar to [12],we get the following lemma.
Lemma 2.1 Let dk be generated by Algorithm 2.1. Then

1>k dk = −‖1k‖
2. (2.8)

Proof. From (2.1)-(2.3), we have

1T
k dk = 1T

k (−β1
kok + β2

kpk + β3
kqk)

= −(1 + γk
1T

k dk−1

yT
k−1dk−1

)‖1k‖
2 + γk

1T
k 1k

yT
k−1dk−1

1T
k dk−1

+
1T

k yk−1

‖1k−1‖
2 1

T
k dk−1 −

1T
k dk−1

‖1k−1‖
2 1

T
k yk−1

= −‖1k‖
2 < 0.

Lemma 2.2 Suppose that Assumption (A1) and (A2) hold, we have

∑
k≥0

(1>k dk)2

‖dk‖
2 =

∑
k≥0

‖1k‖
4

‖dk‖
2 < ∞.

Proof. Firstly, we prove that there exists a constant c1 > 0 such that

αk ≥ c1

∣∣∣1>k dk

∣∣∣
‖dk‖

2 , ∀k ≥ 0. (2.9)

Now,there are two cases.

Case(i) When αk = τ

∣∣∣1>k dk

∣∣∣
‖dk‖

2 , we have αk ≥ τ

∣∣∣1>k dk

∣∣∣
‖dk‖

2 , ∀k ≥ 0, let c1 = τ, then (2.9) holds.

Case(ii) When αk < τ

∣∣∣1>k dk

∣∣∣
‖dk‖

2 , it follows that σ−1αk is contradict with (2.5). So, we have

f (xk + σ−1αkdk) − f (xk) > −δ(σ−1αk)2
‖dk‖

2. (2.10)

By Assumption(A2), we know that there exists ξ ∈ (0, 1) such that
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f (xk + σ−1αkdk) − f (xk) = σ−1αk1(xk + ξσ−1αkdk)Tdk

= σ−1αk1
T
k dk + σ−1αk[1(xk + ξσ−1αkdk) − 1(xk)]Tdk

≤ σ−1αk1
T
k dk + σ−1αkdkL1ξσ

−1αkdk

= σ−1αk1
T
k dk + L1σ

−2α2
k‖dk‖

2.

Combined with the above inequation and (2.10), we obtain that

αk >
σ

δ + L1

∣∣∣1>k dk

∣∣∣
‖dk‖

2 .

Denote c = min{τ,
σ

δ + L1
}, then we get (2.9).

From (2.5), Assumption (A1) and (A2), we know that

δ
∑
k≥0

α2
k‖dk‖

2 < ∞. (2.11)

By (2.8) and (2.11), we get

∑
k≥0

(1>k dk)2

‖dk‖
2 =

∑
k≥0

‖1k‖
4

‖dk‖
2 < ∞.

We finish the proof of this lemma.

Lemma 2.3 Let {xk} is the sequence generated by Algorithm 2.1, then

lim
k→∞

αk‖dk‖ = 0. (2.12)

Proof. By (2.5), we have
∞∑

k=0

α2
k‖dk‖

2 < ∞.

Then
lim
k→∞

α2
k‖dk‖

2 = 0,

i.e.,
lim
k→∞

αk‖dk‖ = 0.

We get this lemma.

Lemma 2.4 Let {xk} is generated by Algorithm 1. If

y>k dk ≥ ∆‖1k‖‖dk‖

and ε > 0, for ∀k,we have
‖1k‖ ≥ ε.

Then, there exists a constant M > 0, satisfies
‖dk‖ ≤M.

Proof. For convenience, we denote I = {k|k > 0&
∣∣∣1T

k dT
k

∣∣∣ ≥ ∆‖dk‖‖1k‖}. From (2.1), (2.2), (2.3), (2.6) and (2.7),
the following inequation holds for any k ∈ I:
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‖dk‖ ≤

∣∣∣∣∣∣1 + γk
1T

k dk−1

yT
k−1dk−1

∣∣∣∣∣∣ ‖1k‖ + γk

∣∣∣βDY
∣∣∣ ‖dk−1‖ +

∣∣∣1T
k yk−1

∣∣∣
‖1k−1‖

2 ‖dk−1‖ +

∣∣∣1T
k dk−1

∣∣∣
‖1k−1‖

2 ‖yk−1‖

≤ ‖1k‖ + γk

∣∣∣1>k dk−1

∣∣∣∣∣∣yT
k−1dk−1

∣∣∣‖1k‖ + γk
‖1k‖

2∣∣∣dT
k−1yk−1

∣∣∣‖dk−1‖ +
‖1k‖‖yk−1‖

‖1k−1‖
2 ‖dk−1‖

+
‖1k‖‖dk−1‖

‖1k−1‖
2 ‖yk−1‖

≤ ‖1k‖ + γk
‖1k‖

2
‖dk−1‖

∆‖1k−1‖‖dk−1‖
+ γk

‖1k‖
2
‖dk−1‖

∆‖1k−1‖‖dk−1‖
+

2L1‖1k‖αk−1‖dk−1‖
2

‖1k−1‖
2

≤ Γ + 2γk
Γ2

∆ε
+ 2L1αk−1

Γ

ε2‖dk−1‖
2

= Γ + γ̂k1 + γ̂k2‖dk−1‖,

where γ̂k1 = 2γk
Γ2

∆ε
, γ̂k2 = 2L1αk−1

Γ

ε2‖dk−1‖.

From (2.12), we have
lim
k→∞

αk‖dk‖ = 0

and
lim
k→∞

γk = 0.

Hence, there are Λ1 ∈ (0, 1), Λ2 ∈ (0, 1), and integer k1, k2 such that for k ≥ k1, there exists γ̂k1 < Λ1, for k ≥ k2,
there exists γ̂k2 < Λ2, respectively.

Taking k0 = max{k1, k2}, Λ = max{Λ1,Λ2}, then, for any k ≥ k0, we have γ̂k1 < Λ and γ̂k2 < Λ. Therefore,
we get

‖dk‖ ≤ Γ + γ̂k1 + γ̂k2‖dk−1‖

≤ Γ + Λ + Λ‖dk−1‖

≤ (Λ + Λ2 + · · · + Λk−k0) + Γ(1 + Λ + Λ2 + · · · + Λk−k0−1) + Λk−k0
‖dk0‖

≤
1

1 −Λ
+ Γ

1
1 −Λ

+ ‖dk0‖.

Denote

M = max{‖d1‖, ‖d2‖, · · · , ‖dk0‖,
1

1 −Λ
+ Γ

1
1 −Λ

+ ‖dk0‖}.

We have
‖dk‖ ≤M.

For any k < I, we also get
‖dk‖ = ‖1k‖ ≤ Γ =: M.

Theorem 2.1 Suppose that Assumptions (A1) and (A2) hold, we have

lim
k→∞
‖1k‖ = 0.
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Proof. From Lemma 2.4, we have

∞∑
k=0

M−2
‖1k‖

4
≤

∞∑
k=0

‖1k‖
4

‖dk‖
2 =

∞∑
k=0

(1>k dk)2

‖dk‖
2 < ∞.

Then, we have limk→∞ ‖1k‖ = 0. The proof is completed.

2.2. New three-term conjugate gradient method for solving the finite minimax problems

In the following of this subsection, we use the proposed method to solve the finite minimax problems.
Denote 1̃(xk, tk) as the gradient of F̃(x, t) at xk, and eT

j is the j-th row of the unit matrix I. For any t > 0,
from (1.5), we get

∇xF̃(x, t) =

(
∂F̃(x, t)
∂x1

,
∂F̃(x, t)
∂x2

, . . . ,
∂F̃(x, t)
∂xn

)
,

and

∇xF̃(x, t) =
I∑l

i=1 exp

ln ∑n
j=1 exp

hi
j(x, t)

t

 ·∑n
j=1 exp

hi
j(x, t)

t



,

where

I =

l∑
i=1

exp

ln n∑
j=1

exp

hi
j(x, t)

t




·

n∑
j=1

exp

hi
j(x, t)

t


(Aixm−1)′j −

x j√
x2

j + t
eT

j



 .

Now, we give the new smoothing three-term conjugate gradient method for solving the finite minimax
problems.
Algorithm 2.2
Step0. Choose constants τ > 0, γ1 > 0, σ ∈ (0, 1), ∆ ∈ (0, 1), δ > 0, σ1 ∈ (0, 1), ε > 0. Choose an initial point
(x0, t0), compute 10, let d0 = −10;
Step1. If ‖d0‖ ≤ ε, stop; otherwise, go to Step 2;
Step2. Compute dk = β1

kok + β2
kpk + β3

kqk from (2.1), if
∣∣∣1̃T

k dk

∣∣∣ ≥ ∆‖dk‖‖1k‖, go to Step 3; otherwise, let dk = −1k,
go to Step 3;
Step3. Compute αk satisfies

αk = max
j
{σ j
τ
∣∣∣1̃>k dk

∣∣∣
‖dk‖

2 , j = 0, 1, 2, · · · },

F̃(xk + αkdk, tk) − F̃(xk, tk) ≤ −δα2
k‖dk‖

2;

Step4. Get the next iterate xk+1 = xk + αkdk, and compute k+1(x, t) and 1̃k+1;
Step5. If ‖dk‖ ≤ ε, stop; otherwise, go to Step 6;
Step6. If ‖∇xF̃(xk+1, tk)‖ ≥ γ1tk, let tk+1 = tk; otherwise, let tk+1 = σ1tk;
Step7. Let k = k + 1, go to Step 2.

The following theorem give the convergence of the new smoothing three-term conjugate gradient
method.
Theorem 2.2 Suppose that F̃(·, t) is a smoothing function of F(·, t). If for every fixed t > 0, F̃(·, t) satisfies
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Assumption (A1) and (A2), and {xk} is generated by Algorithm 2.2, then

lim inf
k→∞

‖∇xF̃(xk+1, tk)‖ = 0.

Proof. Denote K = {k|tk+1 = σ1tk}. Assume K is finite, there exists an integer k̂ such that

‖∇xF̃(xk, tk−1)‖ ≥ σ1tk, f or all k > k̂. (2.13)

Let tk = tk̂ = t̄, (1.3) can be converted to solve

min
x∈Rn

F̃(x, t̄).

From Theorem 2.1, we have
lim inf

k→∞
‖∇xF̃(xk, t̄)‖ = 0,

which is contradicted with (2.13). Hence, we get K is an infinite set. So, limk→∞ tk = 0. Taking K = {k0, k1, · · · },
where k0 < k1 < · · · . Then, we have

lim inf
i→∞

‖∇xF̃(xki+1, tki )‖ ≤ σ1 lim
i→∞

tki = 0.

3. Numerical results

In order to show the effectiveness of the proposed method, four types of the finite minimax problems are
considered in this section. We further report some numerical results, which are the numerical comparisons
of our method with the smoothing Fletcher-Reeves conjugate gradient method (SFR)[7] and fminunc in the
MATLAB tool box. We list some tables and figures to show the numerical results.

3.1. The finite minimax problem

In this subsection, we use the test problems taken from [3]. We define

γk =
δ1

(1 + 5k)ζ
,

where k is the number of iterations. The parameters are taken as follows:
ε = 10−5, ∆ = 0.1, δ1 = 10−4, ζ = 0.25, σ = 0.3, δ = 0.9, τ = 0.7, σ1 = 0.5, γ1 = 0.5, t0 = 2.

We choose ‖∇xF̃(xk, tk)‖ ≤ ε as the terminate condition. And we give the numerical results in Table 3.1,
where n, m and iter is denoted the number of variables, the number of functions and the iterations of the
algorithm, respectively. Let ∆(h) = |h(xk) − h(x∗)|. We also give the numerical results in Figures 3.1-3.5. In
addition to SFR, Algorithm 2.2 is also compared with fminunc, we can find that Algorithm 2.2 has much
smaller error than SFR, and the fminunc can only solve Examples 3.1-3.2. From Table 3.1, Figures 3.1-3.5,
we can see that our method is effectively to solve the finite minimax problems.

Remark 3.1. In addition to SFR and fminunc, we also compared with HSM[23], which is also efficient for solving
unconstrained optimization problems proposed recently.We find out that HSM is very sensitive to its parameters
when solving unconstrained optimization problems after smoothing with t. We will do more research in the future.

Example 3.1 Crescent [3].
h(x) = max{x2

1 + (x2 − 1)2 + x2 − 1,−x2
1 − (x2 − 1)2 + x2 + 1},

n = 2, h(x∗) = 0, x0 = (−1.5, 2).
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Example 3.2 Mifflin 1 [3].
h(x) = −x1 + max{x2

1 + x2
2 − 1, 0},

n = 2, h(x∗) = −1, x0 = (0.8, 0.6).

Example 3.3 Mifflin 2 [3].
h(x) = −x1 + 2(x2

1 + x2
2 − 1) + 1.75 max{±(x2

1 + x2
2 − 1},

n = 2, h(x∗) = −1, x0 = (−1,−1).

Example 3.4 Hald-Madsen 1 [3].
h(x) = max{±10(x2 − x2

1),±(1 − x1)},
n = 2, h(x∗) = 0, x0 = (1.2, 1).

Example 3.5 Maxq [3].
h(x) = max{x2

u},
n = 20, h(x∗) = 0, x0 = (1, . . . , 10,−11, . . . ,−20).

Table 3.1: The numerical results for Examples 3.1-3.5

problems n m iter ∆(h)

By Algorithm 2.2
Crescent 2 2 282 4.2903e − 06
Mifflin 1 2 2 79 1.0577e − 05
Mifflin 2 2 2 223 6.8712e − 06

Hald-Madsen 1 2 4 161 1.0577e − 05
Maxq 20 20 193 4.5712e − 05

By SFR
Crescent 2 2 9 0.3906
Mifflin 1 2 2 29 0.0014
Mifflin 2 2 2 18 0.0606

Hald-Madsen 1 2 4 78 0.0873
Maxq 20 20 115 1.1428e − 05

By fminunc
Crescent 2 2 \ 0.3571
Mifflin 1 2 2 \ 0.2
Mifflin 2 2 2 \ \

Hald-Madsen 1 2 4 \ \

Maxq 20 20 \ \
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Figure 3.1: The numerical results for Example 3.1
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Figure 3.2: The numerical results for Example 3.2
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Figure 3.3: The numerical results for Example 3.3
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Figure 3.4: The numerical results for Example 3.4
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Figure 3.5: The numerical results for Example 3.5

3.2. The finite minimax problem with tensor structure

In this subsection, we give the numerical experiments of the finite minimax problem with tensor
structure. From [43],we know that for any tensor A ∈ Tm,n, there exists a unique semi-symmetric tensor
Â ∈ Tm,n such that Âxm−1 = Axm−1 for any x ∈ Rn. Hence, we assume thatAxm−1 is semi-symmetric tensor,
and the Jacobian of Axm−1 at x is given by (m − 1)Axx−2. We choose ε = 10−3, ∆ = 0.7, δ1 = 10−4, ζ = 0.4,
σ = 0.3, δ = 0.3, τ = 0.4, σ1 = 0.5, γ1 = 0.3. We use ‖xk+1 − xk‖ ≤ ε as the terminate condition.

The numerical results are given in Table 3.2, in which the m, n and iter denote the order of the tensor,
the dimensional of the tensor and the number of iterations of the algorithm, respectively. We also give the
numerical results in Figures 3.6-3.8. From Table 3.2 and Figures 3.6-3.8, we know that Algorithm 2.2 and
SFR have similar numerical results and both of them are effectively for solving the finite minimax problems
with tensor structure.

Example 3.6 Consider the finite minimax problem (1.1) with tensor structure (1.4), where the two 3-th
order 2-dimensional tensorsA1 = (a1

i1i2i3
) andA2 = (a2

i1i2i3
). A1 is defined by a1

111 = a1
222 = 10, and a1

i jk = 3 for

all other i, j, k. A2 is defined by a2
111 = a2

222 = 3, and a2
i jk = 6 for all other i, j, k. b1 = (8, 8)T, b2 = (6, 0)T. The

initial point is x0 = (2, 6)T, t0 = 2.

Example 3.7 Consider the finite minimax problem (1.1) with tensor structure (1.4), where the two 3-th
order 2-dimensional tensorsA1 = (a1

i1i2i3
) andA2 = (a2

i1i2i3
). A1 is defined by a1

111 = a1
222 = 1, and a1

i jk = 3 for

all other i, j, k. A2 is defined by a2
111 = a2

222 = 10, and a2
i jk = 6 for all other i, j, k. b1 = (8, 2)T, b2 = (6, 8)T. The

initial point is x0 = (5, 2)T, t0 = 2.

Example 3.8 Consider the finite minimax problem (1.1) with tensor structure (1.4), where the two 3-th
order 3-dimensional tensors A1 = (a1

i1i2i3
) and A2 = (a2

i1i2i3
). A1 is defined by a1

111 = a1
222 = a1

333 = 0, and
a1

i jk = 3 for all other i, j, k. A2 is defined by a2
111 = a2

222 = a2
333 = 6, and a2

i jk = 2 for all other i, j, k. b1 = (0, 3, 8)T,
b2 = (6, 4, 6)T. The initial point is x0 = (4, 0, 2)T, t0 = 2.
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Table 3.2: The numerical results for Examples 3.6-3.8

Example m n iter optimal value

By Algorithm 2.2
3.6 3 2 11 -2.9339
3.7 3 2 7 -4.0784
3.8 3 3 20 -3.4054

By SFR
3.6 3 2 9 -2.3490
3.7 3 2 16 -4.0753
3.8 3 3 25 -3.2134
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Figure 3.6: The numerical results for Example 3.6
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Figure 3.7: The numerical results for Example 3.7
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Figure 3.8: The numerical results for Example 3.8

3.3. Constrained optimization problem

In this subsection, we concentrate on solving the constrained optimization problem by the finite minimax
problems. The constrained optimization problem

min U(x) (3.1)
s.t. 1i(x) ≤ 0, i = 1, 2, . . . ,m .
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where 1i(x) are continuous differential functions.
From [1], we know that (3.1) is equivalent to the problem of minimizing the unconstrained optimization

problem, which can be rewritten as

min V(x, α), (3.2)

where
V(x, α) = max{U(x),U(x) − αi1i(x)}, i = 1, 2, . . . ,m,

α = [α1, α2, . . . , αm]T, αi > 0, U(x) and 1i(x) are all continuous differential functions.
We can transform (3.2) into a smooth unconstrained optimization problem by (1.2), the unconstrained

optimization problem is transformed as

min Ṽ(x, α, t),Ṽ(x, α, t) = t ln[exp(
U(x)

t
) +

∑m
i=1 exp(

U(x) − αi1i(x)
t

)]. (3.3)

Denote the derivative of Ṽ(x, α, t) as 1(xk, tk, α). Then, the unconstrained optimization problem (3.3) can
be solved by Algorithm 2.2, the parameter values are taken as ε = 10−5, ∆ = 0.1, δ1 = 10−4, ζ = 0.25, σ = 0.3,
δ = 0.9, τ = 0.7, σ1 = 0.5, γ1 = 0.5, and α = αi, i = 1, 2, . . . ,m. When computing Example 3.9 and Example
3.10 by Algorithm 2.2, we choose the values of t as 2 and 1, respectively. We use ‖xk+1 − xk‖ ≤ ε as the
terminate condition.

We give the numerical results in Table 3.3 and Table 3.4, where the x0, iter and x∗ denote the initial
point, the number of iterations of the algorithms, and the solution point, respectively. Moreover, Figure
3.9 and Figure 3.10 also give the numerical results of Algorithm 2.2 and SFR[7]. We can see that Algorithm
2.2 has fewer iteration steps than SFR and both of the two algorithms are effectively to solve this kind of
optimization problems.
Example 3.9 Rosen-Suzuki.[44]

U(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

subject to
11(x) = −x2

1 − x2
2 − x2

3 − x2
4 − x1 + x2 − x3 + x4 + 8 ≥ 0,

12(x) = −x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 + 10 ≥ 0,

13(x) = −2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5 ≥ 0.

The solution is
U = −44, x = (0, 1, 2,−1)T.

Example 3.10 Beale.[44]

U(x) = 9 − 8x1 − 6x2 − 4x3 + 2x2
1 + 2x2

2 + x2
3 + 2x1x2 + 2x1x3

subject to
11(x) = x1 ≥ 0, 12(x) = x2 ≥ 0, 13(x) = x3 ≥ 0,

14(x) = 3 − x1 − x2 − 2x3 ≥ 0.

The solution is
U =

1
9
, x = (

4
3
,

7
9
,

4
9

)T.

3.4. Constrained minimax problem with tensor structure
In this subsection, we consider the constrained optimization problem with tensor structure. For any

(A1,A2, . . . ,Am) ∈ R[2,n]
× R[3,n]

× · · · × R[m,n] and q ∈ Rn, we consider the polynomial complementarity



Y. Hao et al. / Filomat 35:3 (2021), 737–758 753

0 20 40 60 80 100 120 140 160 180 200

iterations

-44

-42

-40

-38

-36

-34

-32

-30

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
Algorithm 2.2

SFR

Figure 3.9: The numerical results of Example 3.9 (the initial point is x0 = (0.3, 1.4, 1,−0.4)T)
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Figure 3.10: The numerical results of Example 3.10 (the initial point is x0 = (0.5, 0.5, 0.5)T )
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Table 3.3: The numerical results for Example 3.9 by Algorithm 2.2 and SFR

x0 α iter optimal
value

x∗

By Algorithm 2.2
(0, 0, 0, 0)T 100 54 -43.9806 (0.0039, 0.9979, 1.9964,−1.0034)T

(0.3, 1.4, 1,−0.4)T 100 126 -43.9605 (−0.0076, 1.0123, 1.9993,−0.9957)T

(0.28, 1.6, 1.79,−0.23)T 200 91 -43.9776 (−0.0070, 0.9959, 2.0047,−0.9936)T

(0.18, 1.4, 1.89. − 0.25)T 200 86 -43.9772 (−0.0091, 0.9954, 2.0063,−0.9918)T

By SFR
(0, 0, 0, 0)T 100 1093 -43.6508 (0.0150, 0.9733, 1.9640,−1.0378)T

(0.3, 1.4, 1,−0.4)T 100 197 -42.7042 (0.1007, 0.8701, 2.0412,−0.6514)T

(0.28, 1.6, 1.79,−0.23)T 200 1091 -43.7840 (−0.0410, 0.9743, 2.0137,−0.9840)T

(0.18, 1.4, 1.89. − 0.25)T 200 122 -43.8772 (−0.0428, 1.0743, 1.9992,−0.9803)T

Table 3.4: The numerical results for Example 3.10 by Algorithm 2.2 and SFR

x0 α iter optimal value x∗

By Algorithm 2.2
(0.5, 0.5, 0.5)T 100 44 0.1118 (1.3325, 0.7790, 0.4429)T

(0, 0, 0)T 100 35 0.1121 (1.3410, 0.7753, 0.4398)T

(0.1, 0.7,−0.3)T 150 45 0.1118 (1.3265, 0.7807, 0.4450)T

(1, 0.5, 0.5)T 150 42 0.1118 (1.3278, 0.7797, 0.4449)T

By SFR
(0.5, 0.5, 0.5)T 100 49 0.1415 (1.4748, 0.6838, 0.4040)T

(0, 0, 0)T 100 42 0.1131 (1.3491, 0.7816, 0.4313)T

(0.1, 0.7,−0.3)T 150 271 0.1176 (1.3121, 0.8154, 0.4293)T

(1, 0.5, 0.5)T 150 172 0.1202 (1.2885, 0.7542, 0.4721)T

problem[30]

x ≥ 0,
m∑

k=1

Akxk−1 + q ≥ 0, xT(
m∑

k=1

Akxk−1 + q) = 0. (3.4)

(3.4) is equivalent to the following constrained optimization problem with tensor structure

min xTF(x) (3.5)

s.t. Fi(x) = (
m∑

k=1

Akxk−1 + q)i ≥ 0 ,

xi ≥ 0 ,

where Fi(x) are continuous differential functions, i = 1, 2, . . . ,n. Then, we can rewrite (3.5) to the minimax
problem

min U(x, α, β)

U(x, α, β) = max{xTF(x), xTF(x) − αiFi(x), xTF(x) − βixi},

where αi > 0 and βi > 0. Then
min Ũ(x, α, β, t),
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Figure 3.11: The numerical results for Example 3.11

where

Ũ(x, α, β, t) = t ln[exp
xTF(x)

t
+

n∑
i=1

exp
xTF(x) − αiFi(x)

t
+

n∑
i=1

exp
xTF(x) − βixi

t
].

Denote the derivative of Ũ(x, α, t) as 1(xk, tk, α). We can solve (24) by Algorithm 2, the parameters are
taken as ε = 10−8, ∆ = 0.1, δ1 = 10−4, ζ = 0.99, σ = 0.3, δ = 0.9, τ = 0.7, σ1 = 0.2, γ1 = 0.5, t0 = 2, and αi = βi.
The initial points are taken randomly. We use ‖xk+1 − xk‖ ≤ ε as the terminate condition.

Two polynomial complementarity problems are considered, which are taken from [45]. We give the
numerical results in Table 3.5, where the iter, ∆(x) denote the number of iterations of the algorithm, the
norm of the vector between the solution point and the optimal point,respectly. We also give the numerical
results in Figure 3.11 and Figure 3.12. From Table 3.5, Figure 3.11 and Figure 3.12, we can see that Algorithm
2.2 is valid to solve the polynomial complementarity problems.
Example 3.11 Consider (3.4) withA ∈ R[3,2] and q ∈ R2, whereA is defined by a111 = a121 = a222 = a221 = 1,
a122 = a211 = −1 and zero otherwise. Let q = (5, 3)T, t0=2, x∗ = (0, 0)T.
Example 3.12 Consider (3.4) with A ∈ R[3,2] and q ∈ R2 where A is defined by a111 = a122 = a222 = 1,
a221 = a211 = −1, a121 = 2 and zero otherwise. Let q = (5, 3)T, t0=2, x∗ = (0, 0)T.

Table 3.5: The numerical results for Examples 3.11 and 3.12

Example α iter optimal value ∆(x)

By Algorithm 2.2
3.11 500 67 2.9638e − 04 4.3912e − 05
3.12 600 63 2.5482e − 04 3.7985e − 05

By SFR
3.11 500 30 0.1487 0.0265
3.12 600 38 0.1293 0.0230
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Figure 3.12: The numerical results for Example 3.12
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4. Concluding remarks

We proposed a new three-term conjugate gradient method for solving the finite minimax problems.
Under the mild assumptions, we prove the convergence of the method. We also consider four kinds of
finite minimax problems, which can be solved by the proposed method. We give the numerical tests of
our method, and compared our method with other related methods. Obvious advantages of our method
for solving minimax problems are shown by the given numerical results. Moreover, the finite minimax
problems with tensor structure is proposed for the first time. And the polynomial complementarity problem
is also solved by the finite minimax formulation. In the future, new conjugate gradient methods can be
considered to solve the minimax problems proposed in this paper.
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